Altered Functional Brain Connectivity in Mild Cognitive Impairment during a Cognitively Complex Car Following Task
Abstract
:1. Introduction
2. Materials and Methods
2.1. Behavioral Performance of Individuals with MCI on Car Following Task
2.1.1. Participants
2.1.2. Car Following Task
2.1.3. Statistical Analysis of Task Performance
2.2. Functional Brain Connectivity during Car Following Task
2.2.1. Participants
2.2.2. fMRI of the Car Following Task
2.2.3. fMRI Preprocessing
2.2.4. Functional Connectivity Analysis
Differences between MCI and Healthy Older Controls
Relationship with Lane Maintenance Behavior in MCI
3. Results
3.1. Behavioral Performance of Individuals with MCI on Car Following Task
3.2. Functional Brain Connectivity during Car Following Task
3.2.1. Differences between MCI and Cognitively Healthy Drivers
3.2.2. Functional Connectivity and Lane Maintenance Behavior in the MCI Group
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Region 1 | MNI Coordinates | Region 2 | MNI Coordinates | Bootstrap Ratio | ||||
---|---|---|---|---|---|---|---|---|
X | Y | Z | X | Y | Z | |||
L Inf Parietal | −42 | −50 | 48 | L Mid Frontal | −36 | 30 | 36 | −3.77 |
R Sup Parietal | 28 | −62 | 62 | R Mid Frontal | 36 | 30 | 36 | −4.08 |
R Inf Parietal | 46 | −48 | 54 | R Mid Frontal | 36 | 30 | 36 | −3.74 |
R Precuneus | 8 | −60 | 44 | R Mid Frontal | 36 | 30 | 36 | −4.06 |
R Cuneus | 14 | −82 | 30 | R Frontal Inf Tri | 50 | 28 | 18 | −3.88 |
R Sup Occipital | 24 | −84 | 30 | R Frontal Inf Tri | 50 | 28 | 18 | −3.70 |
R Supramarginal | 58 | −34 | 36 | R Frontal Inf Tri | 50 | 28 | 18 | −4.19 |
Vermis | 2 | −68 | −14 | R Frontal Inf Tri | 50 | 28 | 18 | −3.96 |
Vermis | 2 | −72 | −24 | R Frontal Inf Tri | 50 | 28 | 18 | −3.66 |
R Sup Occipital | 24 | −84 | 30 | L Sup Med Frontal | −4 | 46 | 30 | −4.10 |
R Angular | 46 | −62 | 40 | L Sup Med Frontal | −4 | 46 | 30 | −4.35 |
R Angular | 46 | −62 | 40 | R Sup Med Frontal | 8 | 50 | 30 | −4.06 |
R Amygdala | 28 | −4 | −14 | L Amygdala | −22 | −4 | −14 | −3.66 |
L Caudate | −10 | 10 | 8 | R Cuneus | 14 | −76 | 12 | −4.02 |
L Caudate | −10 | 10 | 8 | L Cuneus | −8 | −82 | 30 | −4.28 |
R Caudate | 14 | 10 | 8 | L Cuneus | −8 | −82 | 30 | −3.88 |
R Frontal Inf Oper | 50 | 12 | 22 | Vermis | 2 | −68 | −14 | −4.10 |
L Cerebellum | −30 | −62 | −46 | Vermis | 2 | −56 | −34 | −4.17 |
L Cerebellum | −26 | −56 | −46 | Vermis | 2 | −56 | −34 | −3.72 |
L Cerebellum | −10 | −50 | −46 | Vermis | 2 | −56 | −34 | −5.02 |
Region 1 | MNI Coordinates | Region 2 | MNI Coordinates | Bootstrap Ratio | ||||
---|---|---|---|---|---|---|---|---|
X | Y | Z | X | Y | Z | |||
R Post Cingulum | 8 | −44 | 22 | R Frontal Inf Oper | 50 | 12 | 22 | 4.09 |
R Post Cingulum | 8 | −44 | 22 | R Frontal Inf Tri | 50 | 28 | 18 | 4.49 |
R Lingual | 14 | −68 | −2 | R Sup Occipital | 24 | −84 | 30 | 3.81 |
Vermis | 2 | −54 | −6 | R Med Orb Frontal | 8 | 50 | −6 | 3.80 |
R Mid Temporal | 58 | −38 | −2 | R Post Cingulum | 8 | −44 | 22 | 4.26 |
R Cerebellum | 28 | −34 | −42 | L Heschl | −38 | −22 | 12 | 3.99 |
R Cerebellum | 12 | −54 | −46 | Vermis | 2 | −68 | −34 | −4.34 |
Region 1 | MNI Coordinates | Region 2 | MNI Coordinates | Bootstrap Ratio | ||||
---|---|---|---|---|---|---|---|---|
X | Y | Z | X | Y | Z | |||
Vermis | 2 | −40 | −20 | L Sup Med Frontal | −4 | 46 | 30 | 4.62 |
Vermis | 2 | −40 | −20 | R Sup Med Frontal | 8 | 50 | 30 | 4.27 |
R Inf Oper Frontal | 50 | 12 | 22 | R Post Cingulum | 8 | −44 | 22 | 4.06 |
R Inf Tri Frontal | 50 | 28 | 18 | R Post Cingulum | 8 | −44 | 22 | 4.82 |
R Mid Temporal | 58 | −38 | −2 | R Post Cingulum | 8 | −44 | 22 | 3.92 |
L Rolandic Oper | −48 | −10 | 18 | L Angular | −44 | −62 | 36 | −3.47 |
R Sup Orb Frontal | 18 | 44 | −14 | L Caudate | −10 | 10 | 8 | 3.95 |
R Inf Orb Frontal | 40 | 30 | −10 | R Sup Temporal Pole | 50 | 12 | −14 | −4.05 |
L Cerebellum | −22 | −62 | −20 | L Mid Temporal | −58 | −38 | −2 | −4.08 |
R Cerebellum | 18 | −48 | −20 | R Mid Temporal | 58 | −38 | −2 | −3.37 |
L Cerebellum | −14 | −48 | −14 | L Inf Temporal | −52 | −32 | −24 | −3.37 |
R Cerebellum | 28 | −60 | −24 | L Cerebellum Crus | −26 | −76 | −38 | −4.77 |
R Cerebellum | 28 | −60 | −46 | L Cerebellum Crus | −36 | −68 | −28 | −3.80 |
R Cerebellum Crus | 36 | −68 | −28 | R Cerebellum Crus | 34 | −72 | −38 | −4.46 |
L Cerebellum | −10 | −50 | −46 | R Cerebellum Crus | 34 | −72 | −38 | −4.54 |
L Cerebellum | −22 | −62 | −20 | L Cerebellum Crus | −26 | −76 | −38 | −3.55 |
Vermis | 2 | −68 | −34 | L Cerebellum Crus | −26 | −76 | −38 | −4.06 |
Vermis | 2 | −54 | −6 | R Cerebellum Crus | 34 | −72 | −38 | −3.35 |
L Cerebellum | −14 | −48 | −14 | R Cerebellum Crus | 34 | −72 | −38 | −4.46 |
L Cerebellum | −26 | −56 | −46 | R Cerebellum Crus | 34 | −72 | −38 | −4.30 |
Vermis | 2 | −68 | −34 | R Cerebellum Crus | 34 | −72 | −38 | −5.43 |
R Cerebellum | 34 | −62 | −46 | L Cerebellum | −14 | −48 | −14 | −3.92 |
Vermis | 2 | −40 | −20 | R Cerebellum | 34 | −62 | −46 | −3.63 |
Vermis | 2 | −54 | −6 | R Cerebellum | 34 | −62 | −46 | −3.34 |
Vermis | 2 | −68 | −34 | R Cerebellum | 34 | −62 | −46 | −3.39 |
L Rolandic Oper | −48 | −10 | 18 | L Cerebellum | −22 | −34 | −42 | 4.39 |
R Sup Frontal | 20 | 28 | 44 | Vermis | 2 | −40 | −20 | 3.49 |
R Mid Frontal | 36 | 30 | 36 | Vermis | 2 | −40 | −20 | 3.70 |
References
- Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Tangalos, E.G.; Kokmen, E. Mild cognitive impairment: Clinical characterization and outcome. Arch. Neurol. 1999, 56, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Aretouloi, E.; Brandt, J. Everyday functioning in mild cognitive impairment and its relationship with executive cognition. Int. J. Geriatr. Psychiatry 2010, 25, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Gold, D.A. An examination of instrumental activities of daily living assessment in older adults and mild cognitive impairment. J. Clin. Exp. Neuropsychol. 2012, 34, 11–34. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.R.; Lee, K.S.; Cheong, H.K.; Eom, J.S.; Oh, B.H.; Hong, C.H. Characteristic profiles of instrumental activities of daily living in different subtypes of mild cognitive impairment. Dement. Geriatr. Cogn. Disord. 2009, 27, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Reppermund, S.; Brodaty, H.; Crawford, J.D.; Kochan, N.A.; Draper, B.; Slavin, M.J.; Trollor, J.N.; Sachdev, P.S. Impairment in instrumental activities of daily living with high cognitive demand is an early marker of mild cognitive impairment: The Sydney Memory and Ageing Study. Psychol. Med. 2013, 43, 2437–2445. [Google Scholar] [CrossRef] [PubMed]
- Calhoun, V.D.; Pekar, J.J.; McGinty, V.B.; Adali, T.; Watson, T.D.; Pearlson, G.D. Different activation dynamics in multiple neural systems during simulated driving. Hum. Brain Mapp. 2002, 16, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Choi, M.H.; Yoon, H.J.; Kim, H.J.; Jeoung, U.H.; Park, S.J.; Lim, D.W.; Chung, S.C.; Lee, B.Y. Cerebral activation and lateralization due to the cognition of a various driving speed difference: An fMRI study. Biomed. Mater. Eng. 2014, 24, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
- Just, M.A.; Keller, T.A.; Cynkar, J. A decrease in brain activation associated with driving when listening to someone speak. Brain Res. 2008, 1205, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, T.A.; Kan, K.; Hung, Y.; Tam, F.; Naglie, G.; Graham, S.J. Brain activity during driving with distraction: An immersive fMRI study. Front. Hum. Neurosci. 2013, 7, 53. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, Y.; Ebe, K.; Kozato, A.; Okada, T.; Sadato, N. The neural substrates of driving at a safe distance: A functional MRI study. Neurosci. Lett. 2003, 352, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Wadley, V.G.; Okonkwo, O.; Crowe, M.; Vance, D.E.; Elgin, J.M.; Ball, K.K.; Owsley, C. Mild cognitive impairment and everyday function: An investigation of driving performance. J. Geriatr. Psychiatry Neurol. 2009, 22, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Frittelli, C.; Borghetti, D.; Iudice, G.; Bonanni, E.; Maestri, M.; Tognoni, G.; Pasquali, L.; Iudice, A. Effects of Alzheimer’s disease and mild cognitive impairment on driving ability : A controlled clinical study by simulated driving test. Int. J. Gen. Psychiatry 2009, 24, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Kawano, N.; Iwamoto, K.; Iidaka, T.; Ozaki, N. Effects of mild cognitive impairment on driving performance in older drivers. J. Am. Geriatr. Soc. 2012, 60, 1379–1381. [Google Scholar] [CrossRef] [PubMed]
- Devlin, A.; McGillivray, J.; Charlton, J.; Lowndes, G.; Etienne, V. Investigating driving behaviour of older drivers with mild cognitive impairment using a portable driving simulator. Accid. Anal. Prev. 2012, 49, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Hird, M.A.; Vesely, K.A.; Fischer, C.E.; Graham, S.J.; Naglie, G.; Schweizer, T.A. Investigating Simulated Driving Errors in Amnestic Single- and Multiple-Domain Mild Cognitive Impairment. J. Alzheimer’s Dis. 2017, 56, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Damoiseaux, J.S. Resting-state fMRI as a biomarker for Alzheimer’s disease. Alzheimer’s Res. Ther. 2012, 4, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Engel, A.K.; Fries, P.; Singer, W. Dynamic Predictions: Oscillations and Synchrony in Top–Down Processing. Nat. Rev. Neurosci. 2001, 2, 704–716. [Google Scholar] [CrossRef] [PubMed]
- Varela, F.; Lachaux, J.P.; Rodriguez, E.; Martinerie, J. The brainweb: Phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2001, 2, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Bajo, R.; Maestú, F.; Nevado, A.; Sancho, M.; Gutiérrez, R.; Campo, P.; Castellanos, N.P.; Gil, P.; Moratti, S.; Pereda, E.; Del-Pozo, F. Functional connectivity in mild cognitive impairment during a memory task: Implications for the disconnection hypothesis. J. Alzheimer’s Dis. 2010, 22, 183–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bokde, A.L.W.; Lopez-Bayo, P.; Meindl, T.; Pechler, S.; Born, C.; Faltraco, F.; Teipel, S.J.; Möller, H.-J.; Hampel, H. Functional connectivity of the fusiform gyrus during a face-matching task in subjects with mild cognitive impairment. Brain 2006, 129, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Müller-Oehring, E.M.; Sullivan, E.V.; Pfefferbaum, A.; Huang, N.C.; Poston, K.L.; Bronte-Stewart, H.M.; Schulte, T. Task-rest modulation of basal ganglia connectivity in mild to moderate Parkinson’s disease. Brain Imaging Behav. 2015, 9, 619–638. [Google Scholar] [CrossRef] [PubMed]
- Schurz, M.; Wimmer, H.; Richlan, F.; Ludersdorfer, P.; Klackl, J.; Kronbichler, M. Resting-state and task-based functional brain connectivity in developmental dyslexia. Cereb. Cortex 2015, 25, 3502–3514. [Google Scholar] [CrossRef] [PubMed]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Classen, S.; Bewernitz, M.; Shechtman, O. Driving simulator sickness: An evidence-based review of the literature. Am. J. Occup. Ther. 2011, 65, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Matas, N.A.; Nettelbeck, T.; Burns, N.R. Dropout during a driving simulator study: A survival analysis. J. Saf. Res. 2015, 55, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Kan, K.; Schweizer, T.A.; Tam, F.; Graham, S.J. Methodology for functional MRI of simulated driving. Med. Phys. 2013, 40, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Churchill, N.W.; Spring, R.; Afshin-Pour, B.; Dong, F.; Strother, S.C. An automated, adaptive framework for optimizing preprocessing pipelines in task-based functional MRI. PLoS ONE 2015, 10, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Cox, R. AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 1996, 29, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.; Jenkinson, M.; Woolrich, M.W.; Beckmann, C.F.; Behrens, T.E.J.; Johansen-Berg, H.; Bannister, P.R.; De Luca, M.; Drobnjak, I.; Flitney, D.E.; et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004, 23, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Mazziotta, J.C.; Toga, A.W.; Evans, A.; Fox, P.; Lancaster, J. A probabilistic atlas of the human brain: Theory and rationale for its development. Neuroimage 1995, 2, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002, 15, 273–289. [Google Scholar] [CrossRef] [PubMed]
- De Schotten, M.T.; Dell’Acqua, F.; Forkel, S.J.; Simmons, A.; Vergani, F.; Murphy, D.G.M.; Catani, M. A lateralized brain network for visuospatial attention. Nat. Neurosci. 2011, 14, 1245–1246. [Google Scholar] [CrossRef]
- Ridderinkhof, K.R.; Ullsperger, M.; Crone, E.A.; Nieuwenhuis, S. The role of the medial frontal cortex in cognitive control. Science 2004, 306, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Grahn, J.A.; Parkinson, J.A.; Owen, A.M. The cognitive functions of the caudate nucleus. Prog. Neurobiol. 2008, 86, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, Y.; Toyoda, H.; Sakai, H.; Shin, D.; Ebe, K.; Sadato, N. Suppression of brain activity related to a car-following task with an auditory task: An fMRI study. Transp. Res. Part F Traffic Psychol. Behav. 2012, 15, 25–37. [Google Scholar] [CrossRef]
- Broyd, S.J.; Demanuele, C.; Debener, S.; Helps, S.K.; James, C.J.; Sonuga-Barke, E.J.S. Default-mode brain dysfunction in mental disorders: A systematic review. Neurosci. Biobehav. Rev. 2009, 33, 279–296. [Google Scholar] [CrossRef] [PubMed]
- Mason, M.F.; Norton, M.I.; Van Horn, J.D.; Wegner, D.M.; Grafton, S.T.; Macrae, C.N. Wandering minds: Stimulus-independent thought. Science 2007, 315, 393–395. [Google Scholar] [CrossRef] [PubMed]
- Sonuga-Barke, E.J.S.; Castellanos, F.X. Spontaneous attentional fluctuations in impaired states and pathological conditions: A neurobiological hypothesis. Neurosci. Biobehav. Rev. 2007, 31, 977–986. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, N.S.; Ross, T.J.; Hoffmann, R.; Garavan, H.; Stein, E.A. Multiple Neuronal Networks Mediate Sustained Attention. J. Cogn. Neurosci. 2003, 15, 1028–1038. [Google Scholar] [CrossRef] [PubMed]
- Stoodley, C.J.; Schmahmann, J.D. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 2010, 46, 831–844. [Google Scholar] [CrossRef] [PubMed]
- De Winter, J.C.F.; de Groot, S.; Mulder, M.; Wieringa, P.A.; Dankelman, J.; Mulder, J.A. Relationships between driving simulator performance and driving test results. Ergonomics 2009, 52, 137–153. [Google Scholar] [CrossRef] [PubMed]
- Hallvig, D.; Anund, A.; Fors, C.; Kecklund, G.; Karlsson, J.G.; Wahde, M.; Åkerstedt, T. Sleepy driving on the real road and in the simulator: A comparison. Accid. Anal. Prev. 2013, 50, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Mayhew, D.R.; Simpson, H.M.; Wood, K.M.; Lonero, L.; Clinton, K.M.; Johnson, A.G. On-road and simulated driving: Concurrent and discriminant validation. J. Saf. Res. 2011, 42, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Bedard, M.; Parkkari, M.; Weaver, B.; Riendeau, J.; Dahlquist, M. Assessment of driving performance using a simulator protocol: Validity and reproducibility. Am. J. Occup. Ther. 2010, 64, 336–340. [Google Scholar] [CrossRef] [PubMed]
Healthy Controls (n = 20) | MCI Patients (n = 24) | p-Value | |
---|---|---|---|
Age, years | 66.7 ± 8.2 | 66.5 ± 9.5 | 0.924 |
Education, years | 16.7 ± 2.0 | 15.0 ± 2.6 | 0.072 |
Sex, n (%) male | 14 (70.0%) | 14 (58.3%) | 0.350 |
Driving expereince, years | 44.3 ± 12.6 | 45.8 ± 10.4 | 0.711 |
Driving experience, hours/week | 6.8 ± 6.2 | 6.3 ± 4.6 | 0.945 |
Self-reported accidents | 1.8 ± 2.4 | 1.6 ± 1.4 | 0.946 |
MoCA total score (/30) | 27.9 ± 1.2 | 23.8 ± 1.9 | <0.001 |
Healthy Controls (n = 20) | MCI Patients (n = 24) | p-Value | |
---|---|---|---|
Centerline crossings | 0.3 (0.6) | 0.9 (2.7) | 0.608 |
Roadedge excursions | 0.4 (0.9) | 2.3 (4.7) | 0.084 |
Lane deviations | 0.7 (1.2) | 3.2 (6.5) | 0.171 |
Collisions | 0 (0) | 0.04 (0.2) | 0.361 |
Speed exceedances | 0.6 (1.0) | 0.9 (1.1) | 0.154 |
Total errors | 1.3 (1.4) | 4.2 (7.3) | 0.147 |
SDLP, m | 0.3 (0.1) | 0.4 (0.2) | 0.409 |
SD in steering, degrees | 2.8 (0.3) | 3.2 (0.8) | 0.018 |
SD in speed, km/h | 9.0 (2.2) | 10.5 (4.5) | 0.157 |
SD in range from car, m | 23.9 (11.3) | 21.2 (16.2) | 0.126 |
Behavioral MCI Patients (n = 24) | fMRI MCI Patients (n = 15) | fMRI Healthy Controls | |
---|---|---|---|
Age, years | 66.5 ± 9.5 | 67.0 ± 9.3 | 65.1 ± 9.0 |
Education, years | 15.0 ± 2.6 | 16.1 ± 4.2 | 17.0 ± 2.5 |
Sex, n (%) male | 14 (58.3%) | 12 (80%) | 11 (73%) |
Driving expereince, years | 45.8 ± 10.4 | 47.5 ± 9.0 | 47.3 ± 9.5 |
Driving experience, hours/week | 6.3 ± 4.6 | 8.1 ± 4.7 | 6.8 ± 4.7 |
Self-reported accidents | 1.6 ± 1.4 | 1.5 ± 1.4 | 1.3 ± 1.3 |
MoCA total score (/30) | 23.8 ± 1.9 | 24.7 ± 1.7 | 28.2 ± 1.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hird, M.A.; Churchill, N.W.; Fischer, C.E.; Naglie, G.; Graham, S.J.; Schweizer, T.A. Altered Functional Brain Connectivity in Mild Cognitive Impairment during a Cognitively Complex Car Following Task. Geriatrics 2018, 3, 20. https://doi.org/10.3390/geriatrics3020020
Hird MA, Churchill NW, Fischer CE, Naglie G, Graham SJ, Schweizer TA. Altered Functional Brain Connectivity in Mild Cognitive Impairment during a Cognitively Complex Car Following Task. Geriatrics. 2018; 3(2):20. https://doi.org/10.3390/geriatrics3020020
Chicago/Turabian StyleHird, Megan A., Nathan W. Churchill, Corinne E. Fischer, Gary Naglie, Simon J. Graham, and Tom A. Schweizer. 2018. "Altered Functional Brain Connectivity in Mild Cognitive Impairment during a Cognitively Complex Car Following Task" Geriatrics 3, no. 2: 20. https://doi.org/10.3390/geriatrics3020020
APA StyleHird, M. A., Churchill, N. W., Fischer, C. E., Naglie, G., Graham, S. J., & Schweizer, T. A. (2018). Altered Functional Brain Connectivity in Mild Cognitive Impairment during a Cognitively Complex Car Following Task. Geriatrics, 3(2), 20. https://doi.org/10.3390/geriatrics3020020