Food Services Using Energy- and Protein-Fortified Meals to Assist Vulnerable Community-Residing Older Adults Meet Their Dietary Requirements and Maintain Good Health and Quality of Life: Findings from a Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Nutritional Intervention
2.4. Outcome Assessment Methods
2.5. Data Analysis
3. Results
3.1. Participants
3.2. Nutrient Intakes
3.3. Clinical Outcomes
3.4. Surveys
“Enjoying MOW because of less preparation for food.”“Meals are affordable if they are actually eaten.”
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moreira, N.C.F.; Krausch-Hofmann, S.; Matthys, C.; Vereecken, C.; Vanhauwaert, E.; Declercq, A.; Bekkering, G.E.; Duyck, J. Risk factors for malnutrition in older adults: A systematic review of the literature based on longitudinal data. Adv. Nutr. 2016, 7, 507–522. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, M.J.; Bauer, J.M.; Ramsch, C.; Uter, W.; Guigoz, Y.; Cederholm, T.; Thomas, D.R.; Anthony, P.S.; Charlton, K.E.; Maggio, M.; et al. Frequency of malnutrition in older adults: A multinational perspective using the mini nutritional assessment. J. Am. Geriatr. Soc. 2010, 58, 1734–1738. [Google Scholar] [CrossRef] [PubMed]
- Gaskill, D.; Black, L.J.; Isenring, E.A.; Hassall, S.; Sanders, F.; Bauer, J.D. Malnutrition prevalence and nutrition issues in residential aged care facilities. Australas. J. Ageing 2008, 27, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Charlton, K.E.; Nichols, C.; Bowden, S.; Lambert, K.; Barone, L.; Mason, M.; Milosavljevic, M. Older rehabilitation patients are at high risk of malnutrition: Evidence from a large australian database. J. Nutr. Health Aging 2010, 14, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Rist, G.; Miles, G.; Karimi, L. The presence of malnutrition in community-living older adults receiving home nursing services. Nutr. Diet. 2012, 69, 46–50. [Google Scholar] [CrossRef]
- Visvanathan, R.; Macintosh, C.; Callary, M.; Penhall, R.; Horowitz, M.; Chapman, I. The nutritional status of 250 older australian recipients of domiciliary care services and its association with outcomes at 12 months. J. Am. Geriatr. Soc. 2003, 51, 1007–1011. [Google Scholar] [CrossRef] [PubMed]
- Correia, M.I.T.D.; Waitzberg, D.L. The impact of malnutrition on morbidity, mortality, length of hospital stay and costs evaluated through a multivariate model analysis. Clin. Nutr. 2003, 22, 235–239. [Google Scholar] [CrossRef]
- Rahi, B.; Morais, J.A.; Gaudreau, P.; Payette, H.; Shatenstein, B. Energy and protein intakes and their association with a decline in functional capacity among diabetic older adults from the nuage cohort. Eur. J. Nutr. 2016, 55, 1729–1739. [Google Scholar] [CrossRef] [PubMed]
- Elia, M. A Report on the Cost of Disease-Relared Malnutrition in England and a Budget Impact Analysis of Implementing the Nice Clinical Guidelines/Quality Standard on Nutritional Support in Adults; National Institute for Health Research: Melbourn, UK; BAPEN: Redditch, UK, 2015; pp. 8–23. [Google Scholar]
- Access Econmics Pty Limited. Cost Benerfit Analysis of an Intervention to Improve the Nutritional Status of Community Dwelling Older Australians; Access Econmics Pty Limited: Barton, Australia, 2011. [Google Scholar]
- World Health Organisation (WHO). Nutrition for Older Persons; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Oppenheimer, M.; Warburton, J. Meals on Wheels: Building towards a New Social Experiment for Our Times; Flinders University: Adelaide, Australia, 2014. [Google Scholar]
- Wells, Y. Review of Meal Services under the Home and Community Care (HACC) Program: Final Report—Implications for Meal Services in the Commonwealth Home Support Program; Australian Institute for Primary Care and Ageing, La Trobe University: Melbourne, Australia, 2013. [Google Scholar]
- Arjuna, T.; Miller, M.; Soenen, S.; Chapman, I.; Visvanathan, R.; Luscombe-Marsh, N.D. Serve size and estimated energy and protein contents of meals prepared by ‘meals on wheels’ South Australia Inc.: Findings from a meal audit study. Foods 2018, 7, 26. [Google Scholar] [CrossRef] [PubMed]
- Pargeter, K.A. Meals on wheels: A nutritional evaluation. In National Research Institute of Gerontology and Geriatric Medicine; National Research Institute of Gerontology and Geriatric Medicine: Parkville, Australia, 1986. [Google Scholar]
- Stuckey, S.J.; Darnton-Hill, I.; Ash, S.; Brand, J.C.; Hain, D.L. Dietary patterns of elderly people living in inner sydney. Hum. Nutr. Appl. Nutr. 1984, 38, 255–264. [Google Scholar] [PubMed]
- Luscombe-Marsh, N.; Chapman, I.; Visvanathan, R. Hospital admissions in poorly nourished, compared with well-nourished, older south australians receiving ‘meals on wheels’: Findings from a pilot study. Australas. J. Ageing 2014, 33, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Kretser, A.J.; Voss, T.; Kerr, W.W.; Cavadini, C.; Friedmann, J. Effects of two models of nutritional intervention on homebound older adults at nutritional risk. J. Am. Diet. Assoc. 2003, 103, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Schofield, W.N. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985, 39, 5–41. [Google Scholar] [PubMed]
- National Health and Medical Research Council. Nutrient Reference Values for Australia and New Zealand Including Recommended Dietary Intakes. Available online: https://www.nrv.gov.au/nutrients (accessed on 6 July 2015).
- Stote, K.S.; Radecki, S.V.; Moshfegh, A.J.; Ingwersen, L.A.; Baer, D.J. The number of 24 h dietary recalls using the us department of agriculture’s automated multiple-pass method required to estimate nutrient intake in overweight and obese adults. Public Health Nutr. 2011, 14, 1736–1742. [Google Scholar] [CrossRef] [PubMed]
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The us department of agriculture automated multiple-pass method reduces bias in the collection of energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Guigoz, Y.; Vellas, B.; Garry, P.J. Mini nutritional assessment: A practical assessment tool for grading the nutritional state of elderly patients. Facts Res. Gerontol. 1994, 4, 15–59. [Google Scholar]
- Wilson, M.M.; Thomas, D.R.; Rubenstein, L.Z.; Chibnall, J.T.; Anderson, S.; Baxi, A.; Diebold, M.R.; Morley, J.E. Appetite assessment: Simple appetite questionnaire predicts weight loss in community-dwelling adults and nursing home residents. Am. J. Clin. Nutr. 2005, 82, 1074–1081. [Google Scholar] [CrossRef] [PubMed]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef] [PubMed]
- Bowden, M.G.; Behrman, A.L. Step activity monitor: Accuracy and test-retest reliability in persons with incomplete spinal cord injury. J. Rehabil. Res. Dev. 2007, 44, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef] [PubMed]
- Hawthorne, G.; Richardson, J.; Osborne, R. The assessment of quality of life (aqol) instrument: A psychometric measure of health-related quality of life. Qual. Life Res. 1999, 8, 209–224. [Google Scholar] [CrossRef] [PubMed]
- Yesavage, J.A.; Brink, T.L.; Rose, T.L.; Lum, O.; Huang, V.; Adey, M.; Leirer, V.O. Development and validation of a geriatric depression screening scale: A preliminary report. J. Psychiatr. Res. 1982, 17, 37–49. [Google Scholar] [CrossRef]
- Food Standards Australia and New Zealand (FSANZ). Australian Food, Supplement and Nutrient Database 2007 for Estimation of Population Nutrient Intakes; FSANZ: Canberra, Australia, 2007.
- Pedersen, A.B.; Mikkelsen, E.M.; Cronin-Fenton, D.; Kristensen, N.R.; Pham, T.M.; Pedersen, L.; Petersen, I. Missing data and multiple imputation in clinical epidemiological research. Clin. Epidemiol. 2017, 9, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Salim, A.; Mackinnon, A.; Christensen, H.; Griffiths, K. Comparison of data analysis strategies for intent-to-treat analysis in pre-test-post-test designs with substantial dropout rates. Psychiatry Res. 2008, 160, 335–345. [Google Scholar] [CrossRef] [PubMed]
- White, I.R.; Carlin, J.B. Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values. Stat. Med. 2010, 29, 2920–2931. [Google Scholar] [CrossRef] [PubMed]
- Charlton, K.E.; Walton, K.; Moon, L.; Smith, K.; Mcmahon, A.T.; Ralph, F.; Stuckey, M.; Manning, F.; Krassie, J. “It could probably help someone else but not me”: A feasibility study of a snack programme offered to meals on wheels clients. J. Nutr. Health Aging 2013, 17, 364–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maclellan, D.L. Contribution of home-delivered meals to the dietary intake of the elderly. J. Nutr. Elder 1997, 16, 17–32. [Google Scholar] [CrossRef]
- Roy, M.A.; Payette, H. Meals-on-wheels improves energy and nutrient intake in a frail free-living elderly population. J. Nutr. Health Aging 2006, 10, 554–560. [Google Scholar] [PubMed]
- Wright, L.; Vance, L.; Sudduth, C.; Epps, J.B. The impact of a home-delivered meal program on nutritional risk, dietary intake, food security, loneliness, and social well-being. J. Nutr. Gerontol. Geriatr. 2015, 34, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Fogler-Levitt, E.; Lau, D.; Csima, A.; Krondl, M.; Coleman, P. Utilization of home-delivered meals by recipients 75 years of age or older. J. Am. Diet. Assoc. 1995, 95, 552–557. [Google Scholar] [CrossRef]
- Moran, M.B. Challenges in the meals on wheels program—Research editorial. J. Am. Diet. Assoc. 2004, 104, 1219–1221. [Google Scholar] [CrossRef] [PubMed]
- Bonnefoy, M.; Cornu, C.; Normand, S.; Boutitie, F.; Bugnard, F.; Rahmani, A.; Lacour, J.R.; Laville, M. The effects of exercise and protein-energy supplements on body composition and muscle function in frail elderly individuals: A long-term controlled randomised study. Br. J. Nutr. 2003, 89, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Norman, K.; Kirchner, H.; Freudenreich, M.; Ockenga, J.; Lochs, H.; Pirlich, M. Three month intervention with protein and energy rich supplements improve muscle function and quality of life in malnourished patients with non-neoplastic gastrointestinal disease—A randomized controlled trial. Clin. Nutr. 2008, 27, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the prot-age study group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A.D.; Godfryd, A.; Buys, D.R.; Locher, J.L. Does participation in home-delivered meals programs improve outcomes for older adults? Results of a systematic review. J. Nutr. Gerontol. Geriatr. 2015, 34, 124–167. [Google Scholar] [CrossRef] [PubMed]
- Wunderlich, S.; Bai, Y.; Piemonte, J. Nutrition risk factors among home delivered and congregate meal participants: Need for enhancement of nutrition education and counseling among home delivered meal participants. J. Nutr. Health Aging 2011, 15, 768–773. [Google Scholar] [CrossRef] [PubMed]
- Choi, N.G. Determinants of frail elders’ lengths of stay in meals on wheels. Gerontologist 1999, 39, 397–404. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total Enrolled | Completers | Non-Completers |
---|---|---|---|
(n = 41) | (n = 29) | (n = 12) | |
Male/Female (n) | 19/22 | 13/16 | 6/6 |
Age (year) | 83.9 ± 0.9 | 83.1 ± 1.1 | 85.7 ± 1.9 |
Height (m) | 1.63 ± 0.09 | 1.63 ± 0.01 | 1.63 ± 0.03 |
Body weight (kg) | 58.0 ± 1.6 | 57.3 ± 1.7 | 59.8 ± 3.6 |
Body mass index (BMI) (kg/m2) | 21.9 ± 0.6 | 21.7 ± 0.7 | 22.2 ± 1.0 |
Self-reported percent weight loss in the previous three months | 4.0 ± 1.0 | 4.9 ± 1.3 | 1.9 ± 1.0 |
Number of medications | 7.1 ± 0.6 | 7.2 ± 0.8 | 7.0 ± 0.7 |
Multivitamins/minerals | 2.0 ± 0.3 | 2.2 ± 0.4 | 1.2 ± 0.3 |
Number of unmet needs based on Meals on Wheels (MOW) assessment | 3.7 ± 0.2 | 3.7 ± 0.2 | 3.6 ± 0.4 |
Living status (n): | |||
Alone | 26 | 17 | 9 |
With significant other | 15 | 12 | 3 |
Require nutrition support (n) | |||
Yes | 14 | 10 | 4 |
No | 27 | 19 | 8 |
MOW referral source (n) | |||
Self | 17 | 6 | 1 |
Health professional | 20 | 3 | 4 |
Family | 27 | 7 | 3 |
Hospital | 23 | 5 | 3 |
Doctor | 13 | 3 | 1 |
Friends | 0 | 1 | 0 |
Others | 0 | 4 | 0 |
Nutrients | STD | HEHP | CON | p Value Change from Baseline for STD † | p Value Change from Baseline for HEHP † | p Value Change from Baseline for CON † | p Value STD vs. CON ‡ | p Value HEHP vs. CON ‡ | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Baseline (n = 16) | Change from Baseline (n = 16) | Baseline (n = 14) | Change from Baseline (n = 14) | Baseline (n = 11) | Change from Baseline (n = 11) | ||||||
Energy (kJ) | 6512 ± 376 | 635 ± 979 | 6151 ± 376 | 1958 ± 621 | 6278 ± 468 | 211 ± 422 | 0.52 | 0.002 * | 0.62 | 0.52 | 0.06 |
Protein (g) | 68 ± 6 | 17 ± 17 | 67 ± 4 | 18 ± 7 | 71 ± 5 | −0.5 ± 8 | 0.32 | 0.014 * | 0.18 | 0.61 | 0.34 |
Total fat (g) | 55 ± 5 | 6 ± 12 | 51 ± 5 | 19 ± 8 | 51. ± 4 | −0.2 ± 6 | 0.62 | 0.018 * | 0.97 | 0.26 | 0.021 * |
Saturated fat (g) | 22 ± 2 | 3 ± 4 | 21 ± 2 | 9 ± 3 | 23 ± 2 | −2 ± 3 | 0.50 | 0.007 * | 0.42 | 0.15 | 0.004 * |
Carbohydrate (g) | 196 ± 17 | −5 ± 29 | 180 ± 11 | 43 ± 18 | 173± 12 | 6 ± 13 | 0.85 | 0.021 * | 0.63 | 0.81 | 0.09 |
Sugars (g) | 97 ± 12 | −9 ± 16 | 100 ± 11 | 11 ± 9 | 85 ± 9 | −5 ± 11 | 0.56 | 0.20 | 0.66 | 0.61 | 0.049 * |
Fiber (g) | 17 ± 2 | −0.1 ± 8 | 17 ± 2 | 2 ± 3 | 19 ± 2 | 5 ± 5 | 0.98 | 0.53 | 0.27 | 0.32 | 0.52 |
Vitamin C (mg) | 75 ± 15 | 3 ± 30 | 74 ± 12 | 10 ± 19 | 77± 16 | −2 ± 13 | 0.93 | 0.59 | 0.90 | 0.84 | 0.65 |
Calcium (mg) | 824 ± 101 | 200 ± 211 | 887 ± 68 | 181 ± 98 | 801 ± 110 | −32 ± 107 | 0.35 | 0.07 | 0.76 | 0.41 | 0.17 |
Iron (mg) | 10 ± 1 | −0.4 ± 2 | 7 ± 1 | 2 ± 1 | 10 ± 1 | −0.5 ± 1 | 0.84 | 0.14 | 0.70 | 0.71 | 0.66 |
Nutrients | STD | HEHP | CON | |||
---|---|---|---|---|---|---|
Baseline (n = 16) | Week 12 (n = 16) | Baseline (n = 14) | Week 12 (n = 14) | Baseline (n = 11) | Week 12 (n = 11) | |
Energy # | 106 | 116 | 102 | 132 | 102 | 106 |
Protein † | 102 | 125 | 103 | 124 | 103 | 102 |
Total fat | 91 | 94 | 89 | 93 | 88 | 82 |
Saturated fat | 130 | 138 | 130 | 140 | 141 | 115 |
Carbohydrate | 112 | 98 | 109 | 102 | 103 | 105 |
Sugars | 108 | 99 | 111 | 122 | 94 | 89 |
Fiber | 68 | 67 | 68 | 77 | 74 | 95 |
Vitamin C | 166 | 176 | 163 | 190 | 171 | 159 |
Calcium | 63 | 76 | 68 | 82 | 62 | 62 |
Iron | 119 | 113 | 108 | 133 | 126 | 123 |
Clinical Outcomes | STD | HEHP | CON | p Value Change from Baseline for STD † | p Value Change from Baseline for HEHP † | p Value Change from Baseline for CON † | p Value STD vs. CON ‡ | p Value HEHP vs. CON ‡ | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Baseline (n = 16) | Change from Baseline (n = 16) | Baseline (n = 14) | Change from Baseline (n = 14) | Baseline (n = 11) | Change from Baseline (n = 11) | ||||||
MNA score | 19.6 ± 0.5 | 2.8 ± 2.1 | 18.6 ± 1.2 | 4.0 ± 1.1 | 22.0 ± 0.8 | 1.8 ± 1.1 | 0.18 | 0.001 * | 0.10 | 0.83 | 0.65 |
SNAQ score | 12.7 ± 0.6 | 1.5 ± 1.1 | 12.2 ± 0.6 | 0.9 ± 0.5 | 13.9 ± 0.6 | 0.5 ± 0.6 | 0.18 | 0.09 | 0.38 | 0.89 | 0.65 |
Body weight (kg) | 58.9 ± 2.9 | 0.8 ± 1.3 | 57.4 ± 3.0 | 1.1 ± 1.4 | 57.6 ± 2.0 | 0.1 ± 1.0 | 0.56 | 0.44 | 0.94 | 0.28 | 0.37 |
BMI (kg/m2) | 22.2 ± 0.8 | 0.8 ± 0.6 | 21.9 ± 1.3 | 0.3 ± 0.5 | 21.4 ± 0.7 | 0 ± 0.4 | 0.15 | 0.58 | 0.94 | 0.15 | 0.46 |
Calf circumference (cm) | 32.1 ± 0.8 | 0.7 ± 1.1 | 32.0 ± 0.9 | 0.6 ± 0.5 | 32.5 ± 0.7 | −0.2 ± 0.3 | 0.52 | 0.25 | 0.61 | 0.45 | 0.46 |
Arm circumference (cm) | 24.0 ± 0.8 | 1.6 ± 1.0 | 25.1 ± 1.1 | 0 ± 0.7 | 25.2 ± 0.7 | 0 ± 0.5 | 0.09 | 0.97 | 0.98 | 0.14 | 0.92 |
Triceps skinfold (mm) | 8.0 ± 1.9 | −0.9 ± 1.2 | 7.9 ± 1.3 | −2.0 ± 1.3 | 9.7 ± 1.5 | −1.4 ± 0.7 | 0.46 | 0.14 | 0.032 * | 0.66 | 0.29 |
Handgrip strength (kg) | 19.5 ± 1.8 | 0.0 ± 1.7 | 16.7 ± 1.8 | 0.4 ± 0.9 | 21.8 ± 1.8 | 0.2 ± 1.1 | 0.99 | 0.64 | 0.82 | 0.97 | 0.98 |
Gait speed (m/s) | 0.62 ± 0.07 | 0.06 ± 0.09 | 0.66 ± 0.07 | −0.03 ± 0.05 | 0.74 ± 0.07 | 0.05 ± 0.08 | 0.49 | 0.51 | 0.55 | 0.86 | 0.24 |
AQoL | 29.7 ± 1.5 | 0.6 ± 1.5 | 30.8 ± 1.4 | 0 ± 1.0 | 30 ± 1.5 | −1.0 ± 1.4 | 0.72 | 0.97 | 0.51 | 0.59 | 0.65 |
GDS | 5.5 ± 0.8 | 0.8 ± 1.2 | 4.7 ± 0.6 | −0.7 ± 0.8 | 3.9 ± 1.2 | 0.8 ± 1.0 | 0.53 | 0.40 | 0.44 | 0.73 | 0.43 |
Clinical Outcomes | STD | HEHP | CON | p Value Change from Baseline for STD † | p Value Change from Baseline for HEHP † | p Value Change from Baseline for CON † | p Value STD vs. CON ‡ | p Value HEHP vs. CON ‡ | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Baseline (n = 16) | Week 12 (n = 16) | Baseline (n = 14) | Week 12 (n = 14) | Baseline (n = 11) | Week 12 (n = 11) | ||||||
Number of hospital admission (frequency) | |||||||||||
0 admissions | 6 | 5 | 3 | 7 | 6 | 5 | 0.11 | 1.0 | 0.42 | 0.25 | 0.84 |
1 admission | 8 | 3 | 9 | 3 | 3 | 2 | |||||
2 admissions | 1 | 3 | 1 | 2 | 1 | 2 | |||||
3 or more admissions | 1 | 5 | 1 | 2 | 1 | 2 | |||||
Total admissions | 10 | 11 | 11 | 7 | 4 | 6 | |||||
Length of hospital stay (days) | |||||||||||
0 day | 6 | 6 | 4 | 8 | 6 | 6 | 0.12 | 0.06 | 1.0 | 0.66 | 0.92 |
1–6 days | 3 | 1 | 5 | 1 | 4 | 2 | |||||
7–13 days | 4 | 0 | 2 | 2 | 0 | 1 | |||||
14 or more days | 3 | 9 | 3 | 3 | 1 | 2 | |||||
Number of falls (frequency) | |||||||||||
0 falls | 10 | 7 | 10 | 10 | 8 | 7 | 0.40 | 0.56 | 0.95 | 0.54 | 0.63 |
1 fall | 5 | 5 | 2 | 3 | 1 | 2 | |||||
2 falls | 0 | 4 | 1 | 1 | 2 | 2 | |||||
3 falls | 1 | 0 | 1 | 0 | 0 | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arjuna, T.; Miller, M.; Ueno, T.; Visvanathan, R.; Lange, K.; Soenen, S.; Chapman, I.; Luscombe-Marsh, N. Food Services Using Energy- and Protein-Fortified Meals to Assist Vulnerable Community-Residing Older Adults Meet Their Dietary Requirements and Maintain Good Health and Quality of Life: Findings from a Pilot Study. Geriatrics 2018, 3, 60. https://doi.org/10.3390/geriatrics3030060
Arjuna T, Miller M, Ueno T, Visvanathan R, Lange K, Soenen S, Chapman I, Luscombe-Marsh N. Food Services Using Energy- and Protein-Fortified Meals to Assist Vulnerable Community-Residing Older Adults Meet Their Dietary Requirements and Maintain Good Health and Quality of Life: Findings from a Pilot Study. Geriatrics. 2018; 3(3):60. https://doi.org/10.3390/geriatrics3030060
Chicago/Turabian StyleArjuna, Tony, Michelle Miller, Tomoko Ueno, Renuka Visvanathan, Kylie Lange, Stijn Soenen, Ian Chapman, and Natalie Luscombe-Marsh. 2018. "Food Services Using Energy- and Protein-Fortified Meals to Assist Vulnerable Community-Residing Older Adults Meet Their Dietary Requirements and Maintain Good Health and Quality of Life: Findings from a Pilot Study" Geriatrics 3, no. 3: 60. https://doi.org/10.3390/geriatrics3030060
APA StyleArjuna, T., Miller, M., Ueno, T., Visvanathan, R., Lange, K., Soenen, S., Chapman, I., & Luscombe-Marsh, N. (2018). Food Services Using Energy- and Protein-Fortified Meals to Assist Vulnerable Community-Residing Older Adults Meet Their Dietary Requirements and Maintain Good Health and Quality of Life: Findings from a Pilot Study. Geriatrics, 3(3), 60. https://doi.org/10.3390/geriatrics3030060