The Impact of Parkinson’s Disease on Postural Control in Older People and How Sex can Mediate These Results: A Systematic Review
Abstract
:1. Introduction
2. Methodology
2.1. Search Strategy and Studies Selection
2.2. Data Extraction
3. Results
4. Discussion
4.1. Impact of Parkinson’s Disease
4.2. Comparison between Sexes
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Statistique Canada. Chiffres Selon L’âge et le Sexe, et Selon le Type de Logement: Fait saillants du Recensement de 2016. Available online: https://www150.statcan.gc.ca/n1/daily-quotidien/170503/dq170503a-fra.htm (accessed on 25 August 2021).
- Larsson, L.; Degens, H.; Li, M.; Salviati, L.; Lee, Y.I.; Thompson, W.; Kirkland, J.L.; Sandri, M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol. Rev. 2018, 99, 427–511. [Google Scholar] [CrossRef] [PubMed]
- Harman, D. The aging process. Proc Natl Acad Sci USA 1981, 78, 7124–7128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baudry, S. Aging Changes the Contribution of Spinal and Corticospinal Pathways to Control Balance. Exerc. Sport Sci. Rev. 2016, 44, 104–109. [Google Scholar] [CrossRef]
- Gonzalez-Usigli, H.A. Maladie de Parkinson. Available online: https://www.merckmanuals.com/fr-ca/professional/troubles-neurologiques/troubles-du-mouvement-et-troubles-cérébelleux/maladie-de-parkinson (accessed on 25 August 2021).
- Agence de la santé publique du Canada. Système Canadien de Surveillance des Maladies Chroniques le Parkinsonisme au Canada, y Compris la Maladie de Parkinson. Available online: https://www.canada.ca/fr/sante-publique/services/publications/maladies-et-affections/parkinsonisme.html (accessed on 25 August 2021).
- Lew, M. Overview of Parkinson’s disease. Pharmacotherapy 2007, 27, 155S–160S. [Google Scholar] [CrossRef] [Green Version]
- Lima, M.G.; Barros, M.B.; Cesar, C.L.; Goldbaum, M.; Carandina, L.; Ciconelli, R.M. Impact of chronic disease on quality of life among the elderly in the state of Sao Paulo, Brazil: A population-based study. Rev. Panam. Salud Publica 2009, 25, 314–321. [Google Scholar] [CrossRef] [Green Version]
- Agrément Canada; Institut Canadien d’Information sur la santé; Institut Canadien Pour la séCurité des Patients. Prévention des Chutes: Des Données Probantes à L’amélioration des Soins de Santé au Canada. Canada. 2014. Available online: https://www.patientsafetyinstitute.ca/fr/toolsresources/Pages/Falls-resources-Getting-Started-Kit.aspx (accessed on 25 August 2021).
- Friedman, S.M.; Munoz, B.; West, S.K.; Rubin, G.S.; Fried, L.P. Falls and fear of falling: Which comes first? A longitudinal prediction model suggests strategies for primary and secondary prevention. J. Am. Geriatr. Soc. 2002, 50, 1329–1335. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, N.; Metter, E.J.; Lauretani, F.; Bandinelli, S.; Guralnik, J.; Ferrucci, L. Activity restriction induced by fear of falling and objective and subjective measures of physical function: A prospective cohort study. J. Am. Geriatr. Soc. 2008, 56, 615–620. [Google Scholar] [CrossRef]
- Allen, N.E.; Schwarzel, A.K.; Canning, C.G. Recurrent falls in Parkinson’s disease: A systematic review. Parkinsons Dis. 2013, 2013, 906274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministère de la Santé et des Services Sociaux (MSSS). La Prévention des Chutes Dans un Continuum de Services Pour les Aînés Vivant à Domicile; MSSS: Quebec, QC, Canada, 2005. [Google Scholar]
- Li, F.; Fisher, K.J.; Harmer, P.; McAuley, E.; Wilson, N.L. Fear of falling in elderly persons: Association with falls, functional ability, and quality of life. J. Gerontol. B Psychol. Sci. Soc. Sci. 2003, 58, P283–P290. [Google Scholar] [CrossRef]
- Murphy, S.L.; Williams, C.S.; Gill, T.M. Characteristics associated with fear of falling and activity restriction in community-living older persons. J. Am. Geriatr. Soc. 2002, 50, 516–520. [Google Scholar] [CrossRef]
- Statistique Canada Tableau 17-10-0134-01 Estimations de la Population (Recensement de 2016 et Données Administratives), Selon le Groupe d’âge et le Sexe au 1er Juillet, Canada, Provinces, Territoires, Régions Sociosanitaires (Limites de 2018) et Groupes de Régions Homologues. Available online: https://www150.statcan.gc.ca/t1/tbl1/fr/tv.action?pid=1710013401 (accessed on 24 September 2019).
- Wong, S.L.; Gilmour, H.; Ramage-Morin, P.L. La Maladie de Parkinson: Prévalence, Diagnostic et Conséquences; Stastique Canada: Ottawa, ON, Canada, 2014; Rapports sur la santé; Volume 25, pp. 11–16. [Google Scholar]
- Hoehn, M.M.; Yahr, M.D. Parkinsonism: Onset, progression, and mortality. Neurology 2001, 57, S11–S26. [Google Scholar]
- Rinne, J.O.; Portin, R.; Ruottinen, H.; Nurmi, E.; Bergman, J.; Haaparanta, M.; Solin, O. Cognitive impairment and the brain dopaminergic system in Parkinson disease: [18F]fluorodopa positron emission tomographic study. Arch. Neurol. 2000, 57, 470–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Morand, A. Pratique de la Rééducation Neurologique, 2nd ed.; Elsevier Masson: Paris, France, 2014. [Google Scholar]
- Cabeleira, M.E.P.; Pagnussat, A.S.; do Pinho, A.S.; Asquidamini, A.C.D.; Freire, A.B.; Pereira, B.T.; de Mello Rieder, C.R.; Schifino, G.P.; Fornari, L.H.T.; Junior, N.D.S.; et al. Impairments in gait kinematics and postural control may not correlate with dopamine transporter depletion in individuals with mild to moderate Parkinson’s disease. Eur. J. Neurosci. 2019, 49, 1640–1648. [Google Scholar] [CrossRef]
- Levine, C.B.; Fahrbach, K.R.; Siderowf, A.D.; Estok, R.P.; Ludensky, V.M.; Ross, S.D. Diagnosis and treatment of Parkinson’s disease: A systematic review of the literature. Evid. Rep. Technol. Assess. 2003, 57, 1–4. [Google Scholar]
- de Almeida, I.A.; Terra, M.B.; de Oliveira, M.R.; da Silva Júnior, R.A.; Ferraz, H.B.; Santos, S.M.S. Comparing postural balance among older adults and Parkinson’s disease patients. Mot. Rev. Educ. Física 2016, 22, 261–265. [Google Scholar] [CrossRef]
- Wilczynski, J.; Pedrycz, A.; Mucha, D.; Ambrozy, T.; Mucha, D. Body Posture, Postural Stability, and Metabolic Age in Patients with Parkinson’s Disease. Biomed. Res. Int. 2017, 2017, 3975417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakagawa, H.B.; Ferraresi, J.R.; Prata, M.G.; Scheicher, M.E. Postural balance and functional independence of elderly people according to gender and age: Cross-sectional study. Sao Paulo Med. J. 2017, 135, 260–265. [Google Scholar] [CrossRef]
- Santos, S.M.; da Silva, R.A.; Terra, M.B.; Almeida, I.A.; de Melo, L.B.; Ferraz, H.B. Balance versus resistance training on postural control in patients with Parkinson’s disease: A randomized controlled trial. Eur. J. Phys. Rehabil. Med. 2017, 53, 173–183. [Google Scholar] [PubMed]
- Duncan, R.P.; Leddy, A.L.; Cavanaugh, J.T.; Dibble, L.E.; Ellis, T.D.; Ford, M.P.; Foreman, K.B.; Earhart, G.M. Detecting and predicting balance decline in Parkinson disease: A prospective cohort study. J. Parkinsons Dis. 2015, 5, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Cooper, J.; Porter, M.M.; Ready, A.E. Adoption of Canada’s Physical Activity Guide and Handbook for Older Adults: Impact on functional fitness and energy expenditure. Can. J. Appl. Physiol. 2004, 29, 395–410. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.; Agada, P.; Grill, S.; Kiemel, T.; Jeka, J.J. A central processing sensory deficit with Parkinson’s disease. Exp. Brain Res. 2016, 234, 2369–2379. [Google Scholar] [CrossRef] [Green Version]
- Roland, K.P.; Jones, G.R.; Jakobi, J.M. Parkinson’s disease and sex-related differences in electromyography during daily life. J. Electromyogr. Kinesiol. 2013, 23, 958–965. [Google Scholar] [CrossRef] [PubMed]
- Tassorelli, C.; Berlangieri, M.; Buscone, S.; Bolla, M.; De Icco, R.; Baricich, A.; Pacchetti, C.; Cisari, C.; Sandrini, G. Falls, fractures and bone density in Parkinson’s disease—A cross-sectional study. Int. J. Neurosci. 2017, 127, 299–304. [Google Scholar] [CrossRef]
- Viitasalo, M.K.; Kampman, V.; Sotaniemi, K.A.; Leppavuori, S.; Myllyla, V.V.; Korpelainen, J.T. Analysis of sway in Parkinson’s disease using a new inclinometry-based method. Mov. Disord. 2002, 17, 663–669. [Google Scholar] [CrossRef]
- de Castro, L.A.; Ribeiro, L.R.; Mesquita, R.; de Carvalho, D.R.; Felcar, J.M.; Merli, M.F.; Fernandes, K.B.; da Silva, R.A.; Teixeira, D.C.; Spruit, M.A.; et al. Static and Functional Balance in Individuals with COPD: Comparison with Healthy Controls and Differences According to Sex and Disease Severity. Respir. Care 2016, 61, 1488–1496. [Google Scholar] [CrossRef]
- Wolfson, L.; Whipple, R.; Derby, C.A.; Amerman, P.; Nashner, L. Gender differences in the balance of healthy elderly as demonstrated by dynamic posturography. J. Gerontol. 1994, 49, M160–M167. [Google Scholar] [CrossRef]
- Hageman, P.A.; Leibowitz, J.M.; Blanke, D. Age and gender effects on postural control measures. Arch. Phys. Med. Rehabil. 1995, 76, 961–965. [Google Scholar] [CrossRef]
- Palazzo, F.; Nardi, A.; Lamouchideli, N.; Caronti, A.; Alashram, A.; Padua, E.; Annino, G. The effect of age, sex and a firm-textured surface on postural control. Exp. Brain Res. 2021, 239, 2181–2191. [Google Scholar] [CrossRef] [PubMed]
- Sirriyeh, R.; Lawton, R.; Gardner, P.; Armitage, G. Reviewing studies with diverse designs: The development and evaluation of a new tool. J. Eval. Clin. Pract. 2012, 18, 746–752. [Google Scholar] [CrossRef] [PubMed]
- Galna, B.; Murphy, A.T.; Morris, M.E. Obstacle crossing in people with Parkinson’s disease: Foot clearance and spatiotemporal deficits. Hum. Mov. Sci. 2010, 29, 843–852. [Google Scholar] [CrossRef]
- Galna, B.; Murphy, A.T.; Morris, M.E. Obstacle crossing in Parkinson’s disease: Mediolateral sway of the centre of mass during level-ground walking and obstacle crossing. Gait Posture 2013, 38, 790–794. [Google Scholar] [CrossRef] [PubMed]
- Hiorth, Y.H.; Lode, K.; Larsen, J.P. Frequencies of falls and associated features at different stages of Parkinson’s disease. Eur. J Neurol. 2013, 20, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Marchese, R.; Bove, M.; Abbruzzese, G. Effect of cognitive and motor tasks on postural stability in Parkinson’s disease: A posturographic study. Mov. Disord. 2003, 18, 652–658. [Google Scholar] [CrossRef]
- Fritz, N.E.; Kegelmeyer, D.A.; Kloos, A.D.; Linder, S.; Park, A.; Kataki, M.; Adeli, A.; Agrawal, P.; Scharre, D.W.; Kostyk, S.K. Motor performance differentiates individuals with Lewy body dementia, Parkinson’s and Alzheimer’s disease. Gait Posture 2016, 50, 1–7. [Google Scholar] [CrossRef]
- Latt, M.D.; Lord, S.R.; Morris, J.G.; Fung, V.S. Clinical and physiological assessments for elucidating falls risk in Parkinson’s disease. Mov. Disord. 2009, 24, 1280–1289. [Google Scholar] [CrossRef] [PubMed]
- Rochester, L.; Hetherington, V.; Jones, D.; Nieuwboer, A.; Willems, A.M.; Kwakkel, G.; Van Wegen, E. Attending to the task: Interference effects of functional tasks on walking in Parkinson’s disease and the roles of cognition, depression, fatigue, and balance. Arch. Phys. Med. Rehabil. 2004, 85, 1578–1585. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.; Iansek, R.; Smithson, F.; Huxham, F. Postural instability in Parkinson’s disease: A comparison with and without a concurrent task. Gait Posture 2000, 12, 205–216. [Google Scholar] [CrossRef]
- Rodriguez-Oroz, M.C.; Jahanshahi, M.; Krack, P.; Litvan, I.; Macias, R.; Bezard, E.; Obeso, J.A. Initial clinical manifestations of Parkinson’s disease: Features and pathophysiological mechanisms. Lancet Neurol. 2009, 8, 1128–1139. [Google Scholar] [CrossRef] [Green Version]
- Kempster, P.A.; Frankel, J.P.; Bovingdon, M.; Webster, R.; Lees, A.J.; Stern, G.M. Levodopa peripheral pharmacokinetics and duration of motor response in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 1989, 52, 718–723. [Google Scholar] [CrossRef] [Green Version]
- Karachi, C.; Grabli, D.; Bernard, F.A.; Tande, D.; Wattiez, N.; Belaid, H.; Bardinet, E.; Prigent, A.; Nothacker, H.P.; Hunot, S.; et al. Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J. Clin. Investig. 2010, 120, 2745–2754. [Google Scholar] [CrossRef] [Green Version]
- Bohnen, N.I.; Frey, K.A.; Studenski, S.; Kotagal, V.; Koeppe, R.A.; Scott, P.J.; Albin, R.L.; Muller, M.L. Gait speed in Parkinson disease correlates with cholinergic degeneration. Neurology 2013, 81, 1611–1616. [Google Scholar] [CrossRef] [Green Version]
- Tomlinson, C.L.; Stowe, R.; Patel, S.; Rick, C.; Gray, R.; Clarke, C.E. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov. Disord. 2010, 25, 2649–2653. [Google Scholar] [CrossRef]
- Fahn, S.; Oakes, D.; Shoulson, I.; Kieburtz, K.; Rudolph, A.; Lang, A.; Olanow, C.W.; Tanner, C.; Marek, K. Levodopa and the progression of Parkinson’s disease. N. Engl. J. Med. 2004, 351, 2498–2508. [Google Scholar] [PubMed]
- Fowler, A.; Gernon, S.; Pahwa, R.; Lyons, K. Objective Evaluation of Levodopa Response on Gait and Balance (P2.041). Neurology 2018, 90, P2.041. [Google Scholar]
- Peel, N.M. Epidemiology of Falls in Older Age. Rev. Can. Vieil. 2011, 30, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef]
- Pereira, C.; Silva, R.A.D.; de Oliveira, M.R.; Souza, R.D.N.; Borges, R.J.; Vieira, E.R. Effect of body mass index and fat mass on balance force platform measurements during a one-legged stance in older adults. Aging Clin. Exp. Res. 2018, 30, 441–447. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria | |
---|---|---|
Main features |
|
|
Participants |
|
|
Interventions/measures |
|
|
Quote |
|
Abbreviations | Definitions |
---|---|
BBS | BERG Balance Scale |
BTD | Bone Density |
COM | Center of Mass |
COP | Center of Pressure |
DLB (LBD) | Dementia with Lewy bodies (Lewy body Dementia) |
FES | Fall Efficacy Scale |
F8W test | Figure of 8 Walk Test |
FIM | Functional Independence Measure |
H&Y stage | Hoehn and Yahr’s Stage |
MMSE | Mini-Mental State Examination |
n/a | Not Applicable |
ND | Not Determined |
N.E. | Not Evaluated |
PD | Parkinson’s Disease |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
QATSDD | Quality Assessment Tool for Studies with Diverse Designs |
TMT | Tinetti Mobility Test |
TUG | Timed Up and Go |
UBPI | Ultrasound Bone Profile Index |
UPDRS | Unified Parkinson’s Disease Rating Scale |
YO | Eyes opened |
YF | Eyes closed |
Score (0–3) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Criteria | Paper: Fritz et al. (2016) | Paper: Tassorelli et al. (2016) | Paper: Galna et al. (2013) | Paper: Hiorth et al. (2013) | Paper: Galna et al. (2010) | Paper: Latt et al. (2009) | Paper: Rochester et al. (2004) | Paper: Marchese et al. (2003) | Paper: Viitasalo et al. (2002) | Paper: Morris et al. (2000) |
Explicit theoretical framework | 2 | 1 | 2 | 2 | 3 | 2 | 2 | 2 | 3 | 3 |
Statement of aims/objectives in main body of report | 3 | 2 | 3 | 3 | 3 | 3 | 3 | 2 | 3 | 3 |
Clear description of research setting | 2 | 2 | 2 | 2 | 3 | 2 | 3 | 2 | 3 | 2 |
Evidence of sample size considered in terms of analysis | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
Representative sample of target group of a reasonable size | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 1 |
Description of procedure for data collection | 2 | 2 | 3 | 2 | 2 | 3 | 2 | 2 | 2 | 2 |
Rationale for choice of data collection tool(s) | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 3 | 3 |
Detailed recruitment data | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 2 |
Statistical assessment of reliability and validity of measurement tool(s) (Quantitative only) | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
Fit between stated research question and method of data collection(Quantitative only) | 3 | 2 | 3 | 2 | 3 | 2 | 3 | 2 | 3 | 2 |
Fit between stated research question and format and content of data collection tool e.g., interview schedule (Qualitative only) | N.E. | N.E. | N.E. | N.E. | N.E. | N.E. | N.E. | N.E. | N.E. | N.E. |
Fit between research question and method of analysis (Quantitative only) | 2 | 2 | 2 | 2 | 3 | 2 | 3 | 3 | 2 | 2 |
Good justification for analytic method selected | 1 | 1 | 1 | 2 | 2 | 3 | 2 | 2 | 0 | 2 |
Assessment of reliability of analytic process (Qualitative only) | N.E. | N.E. | N.E. | N.E. | N.E. | N.E. | N.E. | N.E. | N.E. | N.E. |
Evidence of user involvement in design | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Strengths and limitations critically discussed | 1 | 2 | 1 | 2 | 0 | 2 | 2 | 0 | 0 | 1 |
Total (/42) | 22 | 17 | 20 | 20 | 25 | 28 | 26 | 19 | 21 | 23 |
Studies | N | Mean Age ± SD (Years) | Gender (M/W) | H&Y Stage | Mean Time Since Parkinson’s Diagnosis ± SD (Years) | N Fallers (M/W) | Mean Total Score MMSE ± SD | Mean Dose L-Dopa (mg) | Dyskinesia Freezing | Balance |
---|---|---|---|---|---|---|---|---|---|---|
1. Fritz et al. 2016 | Parkinson: 21 | 72.38 ± 4.72 | 13/8 | ND | ND | ND | 27.81 ± 1.36 | ND | ND | ND |
Parkinson with dementia: 10 | 74.2 ± 5.16 | 7/3 | ND | ND | ND | 27.6 ± 2.51 | ND | ND | ND | |
Alzheimer: 21 | 75.05 ± 4.96 | 13/8 | n/a | n/a | ND | 22.43 ± 4.25 | n/a | n/a | ND | |
LBD: 21 | 73.95 ± 4.78 | 13/8 | n/a | n/a | ND | 22.57 ± 3.57 | n/a | n/a | ND | |
DLB: 11 | 73.7 ± 4.59 | 6/5 | n/a | n/a | ND | 24.45 ± 4.46 | n/a | n/a | ND | |
2. Tassorelli et al. 2016 | Parkinson: 42 | 74.28 ± 6.8 | 18/24 | 4 (stage 1) 20 (stage 2) 18 (stage 3) | 8.5 ± 5.5 | 27 (7/20) | >24 | ND | ND | Mean score BBS ± SD: 47.9 ± 12.9 |
Control: 21 | 75.2 ± 6.5 | 11/10 | n/a | n/a | n/a | ND | ND | n/a | ND | |
3. Galna et al. 2010 | Parkinson: 20 | 65.6 ± 7.7 | 16/4 | Stages 1 à 3 | ND | ND | 28.1 ± 1.5 | 662.5 | Dyskinesia: n = 0 Freezing: n = 0 | ND |
Control: 20 | 65.3 ± 8.0 | 16/4 | n/a | n/a | ND | 28.6 ± 1.6 | n/a | n/a | ND | |
4. Galna et al. 2013 | Same to Galna et al. 2010 study | |||||||||
5. Hiorth et al. 2013 | Parkinson 1: 232 | 73.5 ± 8.5 | 113/119 | Mean 2.8 ± 1.1 | 8.6 ± 5.7 | 103 | 24.3 ± 6.8 Including n = 61 avec dementia | 479 ± 254 | ND | ND |
Parkinson 2: 207 | 67.9 ± 9.2 | 122/85 | Mean 1.9 ± 0.6 | 2.3 ± 1.8 | 34 | 27.7 ± 2.5 | n/a | ND | ND | |
Control: 175 | 67.6 ± 9.1 | 104/71 | n/a | n/a | 3 | 28.5 ± 1.5 | n/a | n/a | ND | |
6. Latt et al. 2009 | Parkinson falling: 51 | 68.3 ± 2.1 | 29/22 | 7 (stage 1) 11 (stage 2) 33 (stage 3) | <2: n = 18 2–4: n = 13 5–7: n = 12 >7: n = 8 | 40 | >24 (including n = 25 pour ≤ 27) | <500: 8 500–750: 18> 750:25 | Dyskinesia: n = 15 Freezing: n = 31 | Ø Walking aid Mean TUG score ± SD: 12 ± 3 s |
Parkinson’s non-falling: 62 | 64.4 ± 2.7 | 35/27 | 32 (stage 1) 22 (stage 2) 8 (stage 3) | <2: n = 33 2–4: n = 15 5–7: n = 9 >7: n = 5 | 21 | <500: 16 500–750: 33>750: 13 | Dyskinesia: n = 17 Freezing: n = 13 | Ø Walking aid Mean TUG score ± SD: 9 ± 1 s | ||
7. Rochester et al. 2004 | Parkinson: 20 | 64.6 ± 7.96 | 12/8 | Mean 2.7 ± 0.69 | 10 ± 6.2 | ND | 27.15 ± 1.98 | ND | Dyskinesia: ND Freezing gait questionnaire/24: 10.7 ± 6.23 | Mean score BBS ± SD: 49.4 ± 6.33 |
Control: 10 | 63.5 ± 7.03 | 6/4 | n/a | n/a | ND | 28.9 ± 0.73 | n/a | n/a | Mean score BBS ± SD: 55.9 ± 0.31 | |
8. Marchese et al. 2002 | Parkinson: 24 | 66.4 ± 7.9 | 16/8 | Mean 2.5 | 106.8 ± 39.8 months | ND | >26 | ND (all with L-Dopa) | Dyskinesia: n = 0 Freezing: ND | ND |
Control: 20 | 60.9 ± 7.4 | 13/7 | n/a | n/a | ND | ND | n/a | n/a | ND | |
9. Viitasalo et al. 2002 | Parkinson: 28 | 64.9 | 14/14 | Mean 2.4 ± 0.8 | Mean: 7.1 ≤5: n = 18 >5: n = 10 | ND | ND | ND (all with L-Dopa) | Dyskinesia: n = 14 Freezing: ND | ND |
Control: 32 | 63.1 | 16/16 | n/a | n/a | ND | ND | n/a | n/a | ND | |
10. Morris et al. 2000 | Parkinson falling: 15 | 67.5 ± 8.6 | 7/8 | >4 | 12.3 ± 4.9 | 15 | ND | ND | ND | Ø Walking aid |
Parkinson non-falling: 15 | 68.5 ± 7.2 | 7/8 | >4 | 7.5 ± 5.6 | 0 | ND | ND | ND | Ø Walking aid | |
Control: 15 | 68.6 ± 7.7 | 7/8 | n/a | n/a | ND | ND | ND | n/a | Ø Walking aid |
Article | Groups | Measures | Objective | Resume |
---|---|---|---|---|
1. Fritz et al. 2016 | Gr. 1: Lewy body Dementia (LBD) Gr. 2: Alzheimer (AD) Gr. 3: Parkinson (PD) Gr. 4: Dementia + Lewy bodies (DLB) Gr. 5: Parkinson + dementia (PDD) | Gait analysis with GAITrite Tests: Tinetti mobility test (TMT), Berg Balance Scale (BBS), Timed Up and Go (TUG), Figure of 8 Walk Test (F8W test). | To compare the motor function of different neurodegenerative diseases | LBD vs. PD: For LBD, ↓ speed, ↓ step length and ↑ support time. ↑ variability of spatial parameters at high speed. ↓ balance: TMT, BBS, TUG and cognitive TUG, F8W. AD vs. PD: For AD, ↑ walking speed, ↑ step length, ↑ time in the oscillatory phase of walking, ↑ performance in TMT, ↓ motor impacts, (advanced motor impacts in PD and more pronounced in LBD). PDD vs. DLB: For PDD, ↓ TMT performance and ↓ oscillation time during backward walking indicates that PDD: ↓ dynamic and anticipatory balance during functional activities. For LBD and PD, ↑ performance in TUG, cognitive TUG, TMT, BBS and F8W is associated with better gait parameters. |
2. Tassorelli et al. 2017 | Gr. 1: PD Gr. 2: control | Bone density (BTD), Ultrasound Bone Profile Index (UBPI), stabilometric platform, functional independence measure (FIM), UPDRS, BBS, falls efficacy scale (FES), blood test, number of falls in the last year and reading of the medical file. | Assessment of clinical and biomechanical characteristics associated with falls, fractures and bone health in the PD population. | Stabilometry: ↑ length of the oscillations. No difference according to sex, age, stage of disease and UPDRS. Female PD vs. Male PD: For women, ↓ FIM, ↓ balance, ↑ fear of falling, ↑ falls. For men and women, the same risk of fracture among PD fallers. Age-associated and sex-associated comparison: ↓ bone density and ↑ postural instability. For PD, ↑ FIM and ↓ instabilities correlate with better bone health. |
3. Galna et al. 2013 | Gr. 1: PD Gr. 2: control | Center of mass (CoM) and center of pressure (COP) displacement parameters calculated by the VICON system | Find out if people with Parkinson’s (mild to moderate severity) have abnormal disruption of the center of mass as a result of stepping over obstacles while walking on level ground. | PD vs. Control: For PD, ↑ 21% lateral sway (↑ 12% at equal walking speed), ↑ lateral sway speed (↑ over obstacle). ↑ 13% incline angle before step-over, ↑ CoM medial vs. CoP during step-over. In both groups, ↑ medio-lateral sway while crossing over an obstacle compared to flat terrain. For PD, ↑ medial sway associated with ↑ motor severity when the foot straddling the obstacle is over the obstacle. ↑ swing speed with ↑ PD severity. |
4. Hiorth et al. 2013 | Gr. 1: control Gr. 2: PD | UPDRS Fall frequency during the year | To examine the clinical characteristics of falling and non-falling patients in a clientele with different stages of Parkinson’s disease. | An elevated UPDRS activity of daily living and UPDRS therapy complication score as well as the presence of postural instability and gait instability increase the risk of falling. |
5. Galna et al. 2010 | Gr. 1: control Gr. 2: PD | Foot movement parameters with the VICON motion analysis system when climbing over an obstacle | To investigate the effect of Parkinson’s disease on the walking trajectory and on the adaptation of the spatiotemporal gait when approaching and stepping over an obstacle on the ground. | Patient PD: ↓ walking speed, ↓ step length and ↑ time in bipodal position when compared with control. |
6. Latt et al. 2009 | Gr. 1: PD falling Gr. 2: PD non-falling | Timed Up and Go (TUG), UPDRS, H & Y, fall history. | To design a fall risk screening tool using measurement tools used in the clinic and to design a fall risk assessment tool to guide fall prevention interventions. | Indicators of a risk of falls: Frontal Assessment Battery ≤ 17/18 ↓ TUG score ↓ UPDRS score ↑ H & Y score Fall in the last year |
7. Rochester et al. 2004 | Gr. 1: control Gr. 2: PD | Analysis of the approach with the VAM (Vitaport Activity Monitor) during different tasks. | To assess the interference on walking of functional activities at home of people with Parkinson’s and the contribution of clinical symptoms on walking disorders. | Walking speed ↓ in the PD group (26.5% reduction). Speed significantly ↓ in the PD group during cognitive dual-task and multitasking, but not during dual motor task. Additionally, step length ↓ in the PD group compared to the control group. ↓ stride length in the PD group during cognitive dual task and multitasking and in the control group during multitasking. No difference between groups for step frequency. |
8. Marchese et al. 2003 | Gr. 1: control Gr. 2: PD | Force platform on 3 conditions: Basic, counting down and with a motor task. Each condition was performed with eyes open [2] and closed (YF). | To analyze the effect of concurrent motor or cognitive tasks on balance control. | No difference between the groups for the basic condition (both YO and YF), more variations in the PD group (YO and YF) than in the control group during the countdown and the concomitant motor task. |
9. Viitasalo et al. 2002 | Gr. 1: control Gr. 2: PD | Postural swing by inclinometry. | To test a new method of assessing balance control in people with Parkinson’s. | ↑ sway in group PD vs. control. Swing speed influenced by stage of disease (UPDRS) and time since disease onset. Age or gender does not matter. |
10. Morris et al. 2000 | Gr. 1: control Gr. 2: PD non-falling Gr. 3: PD falling | Time held in different conditions (separate feet, tandem, etc.). | To determine the effect of double tasking on postural instability in people with Idiopathic Parkinson’s compared to healthy subjects. | Group control holds 30 s. for all positions even in double task. Group Non-falling PD and falling PD did not hold the 30 s in the tandem and one leg stance positions. Some people from group PD falling could not hold in tandem or one leg stance. In a double task, the falling and non-falling PD groups did not last 30 s. in the step, tandem and one leg stance positions. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dallaire, M.; Gagnon, G.; Fortin, É.; Nepton, J.; Severn, A.-F.; Côté, S.; Smaili, S.M.; Gonçalves de Oliveira Araújo, H.A.; de Oliveira, M.R.; Ngomo, S.; et al. The Impact of Parkinson’s Disease on Postural Control in Older People and How Sex can Mediate These Results: A Systematic Review. Geriatrics 2021, 6, 105. https://doi.org/10.3390/geriatrics6040105
Dallaire M, Gagnon G, Fortin É, Nepton J, Severn A-F, Côté S, Smaili SM, Gonçalves de Oliveira Araújo HA, de Oliveira MR, Ngomo S, et al. The Impact of Parkinson’s Disease on Postural Control in Older People and How Sex can Mediate These Results: A Systematic Review. Geriatrics. 2021; 6(4):105. https://doi.org/10.3390/geriatrics6040105
Chicago/Turabian StyleDallaire, Mathieu, Guillaume Gagnon, Émilie Fortin, Josée Nepton, Anne-France Severn, Sharlène Côté, Suhaila Mahmoud Smaili, Hayslenne Andressa Gonçalves de Oliveira Araújo, Márcio Rogério de Oliveira, Suzy Ngomo, and et al. 2021. "The Impact of Parkinson’s Disease on Postural Control in Older People and How Sex can Mediate These Results: A Systematic Review" Geriatrics 6, no. 4: 105. https://doi.org/10.3390/geriatrics6040105
APA StyleDallaire, M., Gagnon, G., Fortin, É., Nepton, J., Severn, A.-F., Côté, S., Smaili, S. M., Gonçalves de Oliveira Araújo, H. A., de Oliveira, M. R., Ngomo, S., Bouchard, J., & da Silva, R. A. (2021). The Impact of Parkinson’s Disease on Postural Control in Older People and How Sex can Mediate These Results: A Systematic Review. Geriatrics, 6(4), 105. https://doi.org/10.3390/geriatrics6040105