Cardiac Drugs in ACHD Cardiovascular Medicine
Abstract
:1. Introduction
2. Cardiac Drugs in ACHD-Related Heart Failure
2.1. Subaortic Left Ventricle Failure
2.2. Sub-Pulmonary Right Ventricle Failure
2.3. Systemic Right Ventricle Failure
2.4. Failing Fontan
3. Anticoagulation Therapy in ACHD
3.1. Antithrombotic Therapy in ACHD
3.2. Fontan Circulation
3.3. Eisenmenger Syndrome
3.4. Atrial Arrythmia
3.5. Antiplatelet Agents after Device Implantation
3.6. Non-Vitamin K Antagonist Oral Anticoagulants
4. Antiarrhythmics Treatments
5. Cardiac Drugs in CHD-Related Pulmonary Arterial Hypertension
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sibbald, B.; Roland, M. Understanding controlled trials. Why are randomised controlled trials important? BMJ 1998, 316, 201. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Egbe, A.C.; Miranda, W.R.; Pellikka, P.A.; DeSimone, C.V.; Connolly, H.M. Prevalence and Prognostic Implications of Left Ventricular Systolic Dysfunction in Adults With Congenital Heart Disease. J. Am. Coll. Cardiol. 2022, 79, 1356–1365. [Google Scholar] [CrossRef] [PubMed]
- Ben Moussa, N.; Karsenty, C.; Pontnau, F.; Malekzadeh-Milani, S.; Boudjemline, Y.; Legendre, A.; Bonnet, D.; Iserin, L.; Ladouceur, M. Characteristics and outcomes of heart failure-related hospitalization in adults with congenital heart disease. Arch. Cardiovasc. Dis. 2017, 110, 283–291. [Google Scholar] [CrossRef]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Brunner–La Rocca, H.-P.; Choi, D.-J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; McMurray, J.J.V.; Claggett, B.; de Boer, R.A.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.; Martinez, F.; et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N. Engl. J. Med. 2022, 387, 1089–1098. [Google Scholar] [CrossRef]
- Krupickova, S.; Li, W.; Cheang, M.H.; Rigby, M.L.; Uebing, A.; Davlouros, P.; Dimopoulos, K.; Di Salvo, G.; Fraisse, A.; Swan, L.; et al. Ramipril and left ventricular diastolic function in stable patients with pulmonary regurgitation after repair of tetralogy of Fallot. Int. J. Cardiol. 2018, 272, 64–69. [Google Scholar] [CrossRef]
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Heart J. 2022, 43, 3618–3731. [Google Scholar] [CrossRef]
- Bokma, J.P.; Winter, M.M.; van Dijk, A.P.; Vliegen, H.W.; van Melle, J.P.; Meijboom, F.J.; Carlsen, J.; Coats, A.J.; Escribano-Subias, P.; Ferrari, P.; et al. Effect of Losartan on Right Ventricular Dysfunction: Results From the Double-Blind, Randomized REDEFINE Trial (Right Ventricular Dysfunction in Tetralogy of Fallot: Inhibition of the Renin-Angiotensin-Aldosterone System) in Adults With Repaired Tetralogy of Fallot. Circulation 2018, 137, 1463–1471. [Google Scholar]
- Broberg, C.S.; van Dissel, A.C.; Minnier, J.; Aboulhosn, J.; Kauling, R.M.; Ginde, S.; Krieger, E.V.; Rodriguez, F.; Gupta, T.; Shah, S.; et al. Long-Term Outcomes After Atrial Switch Operation for Transposition of the Great Arteries. J. Am. Coll. Cardiol. 2022, 80, 951–963. [Google Scholar] [CrossRef]
- Giardini, A.; Lovato, L.; Donti, A.; Formigari, R.; Gargiulo, G.; Picchio, F.M.; Fattori, R. A pilot study on the effects of carvedilol on right ventricular remodelling and exercise tolerance in patients with systemic right ventricle. Int. J. Cardiol. 2007, 114, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Bouallal, R.; Godart, F.; Francart, C.; Richard, A.; Foucher-Hossein, C.; Lions, C. Interest of β-blockers in patients with right ventricular systemic dysfunction. Cardiol. Young- 2010, 20, 615–619. [Google Scholar] [CrossRef]
- Doughan, A.R.K.; McConnell, M.E.; Book, W.M. Effect of Beta Blockers (Carvedilol or Metoprolol XL) in Patients With Transposition of Great Arteries and Dysfunction of the Systemic Right Ventricle. Am. J. Cardiol. 2007, 99, 704–706. [Google Scholar] [CrossRef]
- Pitt, B.; Zannad, F.; Remme, W.J.; Cody, R.; Castaigne, A.; Perez, A.; Palensky, J.; Wittes, J. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N. Engl. J. Med. 1999, 341, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Dos, L.; Pujadas, S.; Estruch, M.; Mas, A.; Ferreira-González, I.; Pijuan, A.; Serra, R.; Ordóñez-Llanos, J.; Subirana, M.; Pons-Lladó, G.; et al. Eplerenone in systemic right ventricle: Double blind randomized clinical trial. The evedes study. Int. J. Cardiol. 2013, 168, 5167–5173. [Google Scholar] [CrossRef]
- Sodhi, S.S.; Zhang, T.J.; McDonald, R.; Al Rashida, V.; Kondapalli, N.; Barger, P.; Ludbrook, P.; Cedars, A.M. Effects of eplerenone on markers of myocardial fibrosis, 6-minute walk distance, and quality of life in adults with tetralogy of Fallot and complete transposition of the great arteries. Bayl. Univ. Med. Cent. Proc. 2018, 31, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Cohn, J.N.; Tognoni, G.; Valsartan Heart Failure Trial Investigators. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N. Engl. J. Med. 2001, 345, 1667–1675. [Google Scholar] [CrossRef]
- Dore, A.; Houde, C.; Chan, K.L.; Ducharme, A.; Khairy, P.; Juneau, M.; Marcotte, F.; Mercier, L.A. Angiotensin receptor blockade and exercise capacity in adults with systemic right ventricles: A multicenter, randomized, placebo-controlled clinical trial. Circulation 2005, 112, 2411–2416. [Google Scholar] [CrossRef]
- van der Bom, T.; Winter, M.M.; Bouma, B.J.; Groenink, M.; Vliegen, H.W.; Pieper, P.G.; van Dijk, A.P.; Sieswerda, G.T.; Roos-Hesselink, J.W.; Zwinderman, A.H.; et al. Effect of valsartan on systemic right ventricular function: A double-blind, randomized, placebo-controlled pilot trial. Circulation 2013, 127, 322–330. [Google Scholar] [CrossRef]
- Therrien, J.; Provost, Y.; Harrison, J.; Connelly, M.; Kaemmerer, H.; Webb, G.D. Effect of angiotensin receptor blockade on systemic right ventricular function and size: A small, randomized, placebo-controlled study. Int. J. Cardiol. 2008, 129, 187–192. [Google Scholar] [CrossRef]
- van Dissel, A.C.; Winter, M.M.; van der Bom, T.; Vliegen, H.W.; van Dijk, A.P.J.; Pieper, P.G.; Sieswerda, G.T.; Roos-Hesselink, J.W.; Zwinderman, A.H.; Mulder, B.J.; et al. Long-term clinical outcomes of valsartan in patients with a systemic right ventricle: Follow-up of a multicenter randomized controlled trial. Int. J. Cardiol. 2019, 278, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Ladouceur, M.; Segura de la Cal, T.; Gaye, B.; Valentin, E.; Ly, R.; Iserin, L.; Legendre, A.; Mousseaux, E.; Li, W.; Rafiq, I.; et al. Effect of medical treatment on heart failure incidence in patients with a systemic right ventricle. Heart 2021, 107, 1384–1389. [Google Scholar] [CrossRef]
- Mcmurray, J.J.V.; Packer, M.; Desai, A.S.; Gong, J.; Lefkowitz, M.P.; Rizkala, A.R.; Rouleau, J.L.; Shi, V.C.; Solomon, S.D.; Swedberg, K.; et al. Angiotensin–Neprilysin Inhibition versus Enalapril in Heart Failure. N. Engl. J. Med. 2014, 371, 993–1004. [Google Scholar] [CrossRef]
- Appadurai, V.; Thoreau, J.; Malpas, T.; Nicolae, M. Sacubitril/Valsartan in Adult Congenital Heart Disease Patients With Chronic Heart Failure—A Single Centre Case Series and Call for an International Registry. Heart Lung Circ. 2020, 29, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Ephrem, G.; McCollum, J.C.; Green-Hess, D.; Guglin, M.E.; Sawada, S.G.; Rao, R.A. Subjective and Objective Impact of Angiotensin Receptor-Neprilysin Inhibitors on Systemic Right Ventricle Patients. Heart Lung Circ. 2022, 31, 964–973. [Google Scholar] [CrossRef] [PubMed]
- Fusco, F.; Scognamiglio, G.; Merola, A.; Iannuzzi, A.; Palma, M.; Grimaldi, N.; Sarubbi, B. Safety and Efficacy of Sacubitril/Valsartan in Patients With a Failing Systemic Right Ventricle: A Prospective Single-Center Study. Circ. Heart Fail. 2023, 16, e009848. [Google Scholar] [CrossRef]
- Zandstra, T.E.; Nederend, M.; Jongbloed, M.R.M.; Kiès, P.; Vliegen, H.W.; Bouma, B.J.; Tops, L.F.; Schalij, M.J.; Egorova, A.D. Sacubitril/valsartan in the treatment of systemic right ventricular failure. Heart 2021, 107, 1725–1730. [Google Scholar] [CrossRef] [PubMed]
- Maurer, S.J.; Salvador, C.P.; Schiele, S.; Hager, A.; Ewert, P.; Tutarel, O. Sacubitril/valsartan for heart failure in adults with complex congenital heart disease. Int. J. Cardiol. 2020, 300, 137–140. [Google Scholar] [CrossRef] [PubMed]
- Tobler, D.; Bouchardy, J.; Reto, E.; Heg, D.; Müller, C.; Frenk, A.; Gabriel, H.; Schwitter, J.; Rutz, T.; Buechel, R.R.; et al. Effect of phosphodiesterase-5 inhibition with Tadalafil on SystEmic Right VEntricular size and function—A multi-center, double-blind, randomized, placebo-controlled clinical trial—SERVE trial—Rational and design. Int. J. Cardiol. 2017, 243, 354–359. [Google Scholar] [CrossRef]
- Atz, A.M.; Zak, V.; Mahony, L.; Uzark, K.; D’agincourt, N.; Goldberg, D.J.; Williams, R.V.; Breitbart, R.E.; Colan, S.D.; Burns, K.M.; et al. Longitudinal outcomes of patients with single ventricle after the Fontan procedure. J. Am. Coll. Cardiol. 2017, 69, 2735–2744. [Google Scholar] [CrossRef]
- Sallmon, H.; Ovroutski, S.; Schleiger, A.; Photiadis, J.; Weber, S.C.; Nordmeyer, J.; Berger, F.; Kramer, P. Late Fontan failure in adult patients is predominantly associated with deteriorating ventricular function. Int. J. Cardiol. 2021, 344, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Ridderbos, F.-J.S.; Wolff, D.; Timmer, A.; van Melle, J.P.; Ebels, T.; Dickinson, M.G.; Timens, W.; Berger, R.M. Adverse pulmonary vascular remodeling in the Fontan circulation. J. Heart Lung Transplant. 2015, 34, 404–413. [Google Scholar] [CrossRef]
- Hays, B.S.; Baker, M.; Laib, A.; Tan, W.; Udholm, S.; Goldstein, B.H.; Sanders, S.P.; Opotowsky, A.R.; Veldtman, G.R. Histopathological abnormalities in the central arteries and veins of Fontan subjects. Heart 2018, 104, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Hu, X.; Liao, W.; Rutahoile, W.; Malenka, D.J.; Zeng, X.; Yang, Y.; Feng, P.; Wen, L.; Huang, W. The efficacy and safety of pulmonary vasodilators in patients with Fontan circulation: A meta-analysis of randomized controlled trials. Pulm. Circ. 2019, 9, 2045894018790450. [Google Scholar] [CrossRef] [PubMed]
- Hebert, A.; Mikkelsen, U.R.; Thilen, U.; Idorn, L.; Jensen, A.S.; Nagy, E.; Hanseus, K.; Sørensen, K.E.; Søndergaard, L. Bosentan improves exercise capacity in adolescents and adults after Fontan operation: The TEMPO (Treatment With Endothelin Receptor Antagonist in Fontan Patients, a Randomized, Placebo-Controlled, Double-Blind Study Measuring Peak Oxygen Consumption) study. Circulation 2014, 130, 2021–2030. [Google Scholar] [CrossRef]
- Goldberg, D.J.; Zak, V.; Goldstein, B.H.; Schumacher, K.R.; Rhodes, J.; Penny, D.J.; Petit, C.J.; Ginde, S.; Menon, S.C.; Kim, S.-H.; et al. Results of the FUEL Trial. Circulation 2020, 141, 641–651. [Google Scholar] [CrossRef]
- Constantine, A.; Dimopoulos, K.; Jenkins, P.; Tulloh, R.M.R.; Condliffe, R.; Jansen, K.; Chung, N.A.Y.; Oliver, J.; Parry, H.; Fitzsimmons, S.; et al. Use of Pulmonary Arterial Hypertension Therapies in Patients with a Fontan Circulation: Current Practice Across the United Kingdom. J. Am. Heart Assoc. 2022, 11, e023035. [Google Scholar] [CrossRef]
- Ovaert, C.; Thijs, D.; Dewolf, D.; Ottenkamp, J.; Dessy, H.; Moons, P.; Gewillig, M.; Mertens, L. The effect of bosentan in patients with a failing Fontan circulation. Cardiol. Young 2009, 19, 331–339. [Google Scholar] [CrossRef]
- Baumgartner, H.; De Backer, J.; Babu-Narayan, S.V.; Budts, W.; Chessa, M.; Diller, G.P.; Lung, B.; Kluin, J.; Lang, I.M.; Meijboom, F.; et al. 2020 ESC Guidelines for the management of adult congenital heart disease: The Task Force for the management of adult congenital heart disease of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Adult Congenital Heart Disease (ISACHD). Eur. Heart J. 2021, 42, 563–645. [Google Scholar]
- Kouatli, A.A.; Garcia, J.A.; Zellers, T.M.; Weinstein, E.M.; Mahony, L. Enalapril Does Not Enhance Exercise Capacity in Patients After Fontan Procedure. Circulation 1997, 96, 1507–1512. [Google Scholar] [CrossRef]
- Butts, R.; Atz, A.M.; BaezHernandez, N.; Sutcliffe, D.; Reisch, J.; Mahony, L. Carvedilol Does Not Improve Exercise Performance in Fontan Patients: Results of a Crossover Trial. Pediatr. Cardiol. 2021, 42, 934–941. [Google Scholar] [CrossRef]
- Schuuring, M.J.; Vis, J.C.; van Dijk, A.P.; van Melle, J.P.; Vliegen, H.W.; Pieper, P.G.; Sieswerda, G.T.; de Bruin-Bon, R.H.; Mulder, B.J.; Bouma, B.J. Impact of bosentan on exercise capacity in adults after the Fontan procedure: A randomized controlled trial. Eur. J. Heart Fail. 2013, 15, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Cedars, A.M.; Saef, J.; Peterson, L.R.; Coggan, A.R.; Novak, E.L.; Kemp, D.; Ludbrook, P.A. Effect of Ambrisentan on Exercise Capacity in Adult Patients After the Fontan Procedure. Am. J. Cardiol. 2016, 117, 1524–1532. [Google Scholar] [CrossRef]
- Giardini, A.; Balducci, A.; Specchia, S.; Gargiulo, G.; Bonvicini, M.; Picchio, F.M. Effect of sildenafil on haemodynamic response to exercise and exercise capacity in Fontan patients. Eur. Heart J. 2008, 29, 1681–1687. [Google Scholar] [CrossRef]
- Goldberg, D.J.; French, B.; McBride, M.G.; Marino, B.S.; Mirarchi, N.; Hanna, B.D.; Wernovsky, G.; Paridon, S.M.; Rychik, J. Impact of oral sildenafil on exercise performance in children and young adults after the fontan operation: A randomized, double-blind, placebo-controlled, crossover trial. Circulation 2011, 123, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Butts, R.J.; Chowdhury, S.M.; Baker, G.H.; Bandisode, V.; Savage, A.J.; Atz, A.M. Effect of Sildenafil on Pressure–Volume Loop Measures of Ventricular Function in Fontan Patients. Pediatr. Cardiol. 2016, 37, 184–191. [Google Scholar] [CrossRef]
- Van De Bruaene, A.; La Gerche, A.; Claessen, G.; De Meester, P.; Devroe, S.; Gillijns, H.; Bogaert, J.; Claus, P.; Heidbuchel, H.; Gewillig, M.; et al. Sildenafil improves exercise hemodynamics in Fontan patients. Circ. Cardiovasc. Imaging 2014, 7, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, J.; Ubeda-Tikkanen, A.; Clair, M.; Fernandes, S.M.; Graham, D.A.; Milliren, C.E.; Daly, K.P.; Mullen, M.P.; Landzberg, M.J. Effect of inhaled iloprost on the exercise function of Fontan patients: A demonstration of concept. Int. J. Cardiol. 2013, 168, 2435–2440. [Google Scholar] [CrossRef]
- Derk, G.; Houser, L.; Miner, P.; Williams, R.; Moriarty, J.; Finn, P.; Alejos, J.; Aboulhosn, J. Efficacy of Endothelin Blockade in Adults with Fontan Physiology. Congenit. Heart Dis. 2015, 10, E11–E16. [Google Scholar] [CrossRef]
- Hager, A.; Weber, R.; Müller, J.; Hess, J. Predictors of sildenafil effects on exercise capacity in adolescents and adults with Fontan circulation. Clin. Res. Cardiol. 2014, 103, 641–646. [Google Scholar] [CrossRef]
- Egorova, A.D.; Nederend, M.; Tops, L.F.; Vliegen, H.W.; Jongbloed, M.R.; Kiès, P. The first experience with sodium-glucose cotransporter 2 inhibitor for the treatment of systemic right ventricular failure. ESC Heart Fail. 2022, 9, 2007–2012. [Google Scholar] [CrossRef]
- Raissadati, A.; Nieminen, H.; Haukka, J.; Sairanen, H.; Jokinen, E. Late Causes of Death After Pediatric Cardiac Surgery: A 60-Year Population-Based Study. J. Am. Coll. Cardiol. 2016, 68, 487–498. [Google Scholar] [CrossRef] [PubMed]
- Engelfriet, P.; Boersma, E.; Oechslin, E.; Tijssen, J.; Gatzoulis, M.A.; Thilén, U.; Kaemmerer, H.; Moons, P.; Meijboom, F.; Popelová, J.; et al. The spectrum of adult congenital heart disease in Europe: Morbidity and mortality in a 5 year follow-up period. Eur. Heart J. 2005, 26, 2325–2333. [Google Scholar] [CrossRef]
- Hoffmann, A.; Chockalingam, P.; Balint, O.H.; Dadashev, A.; Dimopoulos, K.; Engel, R.; Schmid, M.; Schwerzmann, M.; Gatzoulis, M.A.; Mulder, B.; et al. Cerebrovascular accidents in adult patients with congenital heart disease. Heart 2010, 96, 1223–1226. [Google Scholar] [CrossRef]
- Karsenty, C.; Waldmann, V.; Mulder, B.; Hascoet, S.; Ladouceur, M. Thromboembolic complications in adult congenital heart disease: The knowns and the unknowns. Clin. Res. Cardiol. 2021, 110, 1380–1391. [Google Scholar] [CrossRef]
- Lanz, J.; Brophy, J.M.; Therrien, J.; Kaouache, M.; Guo, L.; Marelli, A.J. Stroke in Adults with Congenital Heart Disease: Incidence, Cumulative Risk, and Predictors. Circulation 2015, 132, 2385–2394. [Google Scholar] [CrossRef] [PubMed]
- Stout, K.K.; Daniels, C.J.; Aboulhosn, J.A.; Bozkurt, B.; Broberg, C.S.; Colman, J.M.; Crumb, S.R.; Dearani, J.A.; Fuller, S.; Gurvitz, M.; et al. 2018 AHA/ACC Guideline for the Management of Adults With Congenital Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2019, 73, e81–e192. [Google Scholar] [CrossRef] [PubMed]
- Freisinger, E.; Gerß, J.; Makowski, L.; Marschall, U.; Reinecke, H.; Baumgartner, H.; Koeppe, J.; Diller, G.-P. Current use and safety of novel oral anticoagulants in adults with congenital heart disease: Results of a nationwide analysis including more than 44 000 patients. Eur. Heart J. 2020, 41, 4168–4177. [Google Scholar] [CrossRef]
- Alsaied, T.; Bokma, J.P.; E Engel, M.; Kuijpers, J.M.; Hanke, S.P.; Zuhlke, L.; Zhang, B.; Veldtman, G.R. Factors associated with long-term mortality after Fontan procedures: A systematic review. Heart 2017, 103, 104–110. [Google Scholar] [CrossRef]
- Van den Eynde, J.; Possner, M.; Alahdab, F.; Veldtman, G.; Goldstein, B.H.; Rathod, R.H.; Hoskoppal, A.K.; Saraf, A.; Feingold, B.; Alsaied, T. Thromboprophylaxis in Patients With Fontan Circulation. J. Am. Coll. Cardiol. 2023, 81, 374–389. [Google Scholar] [CrossRef]
- Alsaied, T.; Alsidawi, S.; Allen, C.C.; Faircloth, J.; Palumbo, J.S.; Veldtman, G.R. Strategies for thromboprophylaxis in Fontan circulation: A meta-analysis. Heart 2015, 101, 1731–1737. [Google Scholar] [CrossRef] [PubMed]
- Tomkiewicz-Pajak, L.; Wojcik, T.; Chłopicki, S.; Olszowska, M.; Pajak, J.; Podolec, J.; Sitek, B.; Musiałek, P.; Rubis, P.; Komar, M.; et al. Aspirin resistance in adult patients after Fontan surgery. Int. J. Cardiol. 2015, 181, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Silversides, C.K.; Granton, J.T.; Konen, E.; A Hart, M.; Webb, G.D.; Therrien, J. Pulmonary thrombosis in adults with Eisenmenger syndrome. J. Am. Coll. Cardiol. 2003, 42, 1982–1987. [Google Scholar] [CrossRef] [PubMed]
- Kevane, B.; Allen, S.; Walsh, K.; Egan, K.; Maguire, P.B.; Galligan, M.C.; Kenny, D.; Savage, R.; Doran, E.; Lennon, Á.; et al. Dual endothelin-1 receptor antagonism attenuates platelet-mediated derangements of blood coagulation in Eisenmenger syndrome. J. Thromb. Haemost. 2018, 16, 1572–1579. [Google Scholar] [CrossRef]
- Lopes, A.A.; Caramurú, L.H.; Maeda, N.Y. Endothelial dysfunction associated with chronic intravascular coagulation in secondary pulmonary hypertension. Clin. Appl. Thromb. Hemost. 2002, 8, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Jensen, A.; Johansson, P.; Bochsen, L.; Idorn, L.; Sørensen, K.; Thilén, U.; Nagy, E.; Furenäs, E.; Søndergaard, L. Fibrinogen function is impaired in whole blood from patients with cyanotic congenital heart disease. Int. J. Cardiol. 2013, 167, 2210–2214. [Google Scholar] [CrossRef] [PubMed]
- Jensen, A.; Johansson, P.; Idorn, L.; Sørensen, K.; Thilén, U.; Nagy, E.; Furenäs, E.; Søndergaard, L. The haematocrit—An important factor causing impaired haemostasis in patients with cyanotic congenital heart disease. Int. J. Cardiol. 2013, 167, 1317–1321. [Google Scholar] [CrossRef]
- Yang, H.; Bouma, B.; Dimopoulos, K.; Khairy, P.; Ladouceur, M.; Niwa, K.; Greutmann, M.; Schwerzmann, M.; Egbe, A.; Scognamiglio, G.; et al. Non-vitamin K antagonist oral anticoagulants (NOACs) for thromboembolic prevention, are they safe in congenital heart disease? Results of a worldwide study. Int. J. Cardiol. 2020, 299, 123–130. [Google Scholar] [CrossRef]
- Rodés-Cabau, J.; Horlick, E.; Ibrahim, R.; Cheema, A.N.; Labinaz, M.; Nadeem, N.; Osten, M.; Côté, M.; Marsal, J.R.; Rivest, D.; et al. Effect of Clopidogrel and Aspirin vs Aspirin Alone on Migraine Headaches After Transcatheter Atrial Septal Defect Closure: The CANOA Randomized Clinical Trial. JAMA 2015, 314, 2147–2154. [Google Scholar] [CrossRef]
- Wintzer-Wehekind, J.; Horlick, E.; Ibrahim, R.; Cheema, A.N.; Labinaz, M.; Nadeem, N.; Osten, M.; Côté, M.; Marsal, J.R.; Rivest, D.; et al. Effect of Clopidogrel and Aspirin vs Aspirin Alone on Migraine Headaches After Transcatheter Atrial Septal Defect Closure: One-Year Results of the CANOA Randomized Clinical Trial. JAMA Cardiol. 2021, 6, 209–213. [Google Scholar] [CrossRef]
- Ebeid, M.R.; Prieto, L.R.; A Latson, L. Use of Balloon-Expandable Stents for Coarctation of the Aorta: Initial Results and Intermediate-Term Follow-Up. J. Am. Coll. Cardiol. 1997, 30, 1847–1852. [Google Scholar] [CrossRef] [PubMed]
- Hwang, T.W.; Kim, S.O.; Lee, S.Y.; Kim, S.H.; Choi, E.Y.; Jang, S.I.; Park, S.J.; Kwon, H.W.; Lim, H.B.; Lee, C.H.; et al. Impact of postoperative duration of Aspirin use on longevity of bioprosthetic pulmonary valve in patients who underwent congenital heart disease repair. Korean J. Pediatr. 2016, 59, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Gallet, J.; Waldmann, V.; Le Gloan, L.; Guérin, P.; Gourraud, J.B.; Amet, D.; Laredo, M.; Iserin, L.; Marijon, E.; Ladouceur, M. Impact of atrial tachycardia management on outcomes in adult patients with congenital heart disease. Int. J. Cardiol. 2021, 6, 100229. [Google Scholar] [CrossRef]
- Koyak, Z.; Kroon, B.; de Groot, J.R.; Wagenaar, L.J.; van Dijk, A.P.; Mulder, B.A.; Van Gelder, I.C.; Post, M.C.; Mulder, B.J.; Bouma, B.J. Efficacy of antiarrhythmic drugs in adults with congenital heart disease and supraventricular tachycardias. Am. J. Cardiol. 2013, 112, 1461–1467. [Google Scholar] [CrossRef]
- Iwasawa, S.; Uyeda, T.; Saito, M.; Ishii, T.; Inage, A.; Hamamichi, Y.; Yazaki, S.; Yoshikawa, T. Efficacy and Safety of Low-Dose Amiodarone Therapy for Tachyarrhythmia in Congenital Heart Disease. Pediatr. Cardiol. 2018, 39, 1016–1022. [Google Scholar] [CrossRef]
- Khairy, P.; Silka, M.J.; Moore, J.P.; A DiNardo, J.; Vehmeijer, J.T.; Sheppard, M.N.; van de Bruaene, A.; Chaix, M.-A.; Brida, M.; Moore, B.M.; et al. Sudden cardiac death in congenital heart disease. Eur. Heart J. 2022, 43, 2103–2115. [Google Scholar] [CrossRef]
- Moak, J.P.; Smith, R.T.; Garson, A. Mexiletine: An effective antiarrhythmic drug for treatment of ventricular arrhythmias in congenital heart disease. J. Am. Coll. Cardiol. 1987, 10, 824–829. [Google Scholar] [CrossRef]
- Kavey, R.-E.W.; Blackman, M.S.; Sondheimer, H.M. Phenytoin therapy for ventricular arrhythmias occurring late after surgery for congenital heart disease. Am. Heart J. 1982, 104, 794–798. [Google Scholar] [CrossRef]
- Furushima, H.; Chinushi, M.; Sugiura, H.; Komura, S.; Tanabe, Y.; Watanabe, H.; Washizuka, T.; Aizawa, Y. Ventricular tachycardia late after repair of congenital heart disease: Efficacy of combination therapy with radiofrequency catheter ablation and class III antiarrhythmic agents and long-term outcome. J. Electrocardiol. 2006, 39, 219–224. [Google Scholar] [CrossRef]
- Dimopoulos, K.; Inuzuka, R.; Goletto, S.; Giannakoulas, G.; Swan, L.; Wort, S.J.; Gatzoulis, M.A. Improved Survival Among Patients With Eisenmenger Syndrome Receiving Advanced Therapy for Pulmonary Arterial Hypertension. Circulation 2010, 121, 20–25. [Google Scholar] [CrossRef]
- Engelfriet, P.M.; Duffels, M.G.J.; Möller, T.; Boersma, E.; Tijssen, J.G.P.; Thaulow, E.; A Gatzoulis, M.; Mulder, B.J.M. Pulmonary arterial hypertension in adults born with a heart septal defect: The Euro Heart Survey on adult congenital heart disease. Heart 2007, 93, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Hjortshøj, C.M.S.; Kempny, A.; Jensen, A.S.; Sørensen, K.; Nagy, E.; Dellborg, M.; Johansson, B.; Rudiene, V.; Hong, G.; Opotowsky, A.R.; et al. Past and current cause-specific mortality in Eisenmenger syndrome. Eur. Heart J. 2017, 38, 2060–2067. [Google Scholar] [CrossRef]
- Diller, G.-P.; Kempny, A.; Alonso-Gonzalez, R.; Swan, L.; Uebing, A.; Li, W.; Babu-Narayan, S.; Wort, S.J.; Dimopoulos, K.; Gatzoulis, M.A. Survival Prospects and Circumstances of Death in Contemporary Adult Congenital Heart Disease Patients Under Follow-Up at a Large Tertiary Centre. Circulation 2015, 132, 2118–2125. [Google Scholar] [CrossRef] [PubMed]
- Humbert, M.; Lau, E.M.T.; Montani, D.; Jaïs, X.; Sitbon, O.; Simonneau, G. Advances in therapeutic interventions for patients with pulmonary arterial hypertension. Circulation 2014, 130, 2189–2208. [Google Scholar] [CrossRef] [PubMed]
- Hascoet, S.; Fournier, E.; Jais, X.; Le Gloan, L.; Dauphin, C.; Houeijeh, A.; Godart, F.; Iriart, X.; Richard, A.; Radojevic, J.; et al. Outcome of adults with Eisenmenger syndrome treated with drugs specific to pulmonary arterial hypertension: A French multicentre study. Arch. Cardiovasc. Dis. 2017, 110, 303–316. [Google Scholar] [CrossRef] [PubMed]
- Hascoët, S.; Baruteau, A.-E.; Humbert, M.; Simonneau, G.; Jais, X.; Petit, J.; Laux, D.; Sitbon, O.; Lambert, V.; Capderou, A. Long-term outcomes of pulmonary arterial hypertension under specific drug therapy in Eisenmenger syndrome. J. Heart Lung Transplant. 2017, 36, 386–398. [Google Scholar] [CrossRef]
- Arvanitaki, A.; Ntiloudi, D.; Giannakoulas, G.; Dimopoulos, K. Prediction Models and Scores in Adult Congenital Heart Disease. Curr. Pharm. Des. 2021, 27, 1232–1244. [Google Scholar] [CrossRef]
- Galiè, N.; Beghetti, M.; Gatzoulis, M.A.; Granton, J.; Berger, R.M.F.; Lauer, A.; Chiossi, E.; Landzberg, M. Bosentan therapy in patients with Eisenmenger syndrome: A multicenter, double-blind, randomized, placebo-controlled study. Circulation 2006, 114, 48–54. [Google Scholar] [CrossRef]
- Gatzoulis, M.A.; Landzberg, M.; Beghetti, M.; Berger, R.M.; Efficace, M.; Gesang, S.; He, J.G.; Papadakis, K.; Pulido, T.; Galiè; et al. Evaluation of Macitentan in Patients With Eisenmenger Syndrome. Circulation 2019, 139, 51–63. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Nathani, S.; Yusuf, J.; Shrimal, D.; Tyagi, S. Clinical efficacy of phosphodiesterase-5 inhibitor tadalafil in Eisenmenger syndrome--a randomized, placebo-controlled, double-blind crossover study. Congenit. Heart Dis. 2011, 6, 424–431. [Google Scholar] [CrossRef]
- Zhang, Z.-N.; Jiang, X.; Zhang, R.; Li, X.-L.; Wu, B.-X.; Zhao, Q.-H.; Wang, Y.; Dai, L.-Z.; Pan, L.; Gomberg-Maitland, M.; et al. Oral sildenafil treatment for Eisenmenger syndrome: A prospective, open-label, multicentre study. Heart 2011, 97, 1876–1881. [Google Scholar] [CrossRef] [PubMed]
- Chau, E.M.; Fan, K.Y.; Chow, W. Effects of chronic sildenafil in patients with Eisenmenger syndrome versus idiopathic pulmonary arterial hypertension. Int. J. Cardiol. 2007, 120, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.P.; Rohit, M.; Grover, A.; Malhotra, S.; Vijayvergiya, R. A randomized, placebo-controlled, double-blind, crossover study to evaluate the efficacy of oral sildenafil therapy in severe pulmonary artery hypertension. Am. Heart J. 2006, 151, 851.e1–851.e5. [Google Scholar] [CrossRef] [PubMed]
- Thomas, I.C.; Glassner-Kolmin, C.; Gomberg-Maitland, M. Long-term effects of continuous prostacyclin therapy in adults with pulmonary hypertension associated with congenital heart disease. Int. J. Cardiol. 2013, 168, 4117–4121. [Google Scholar] [CrossRef]
- Chon, M.K.; Cho, K.I.; Cha, K.S.; Seo, J.S.; Kim, D.S. Effects of long-term iloprost treatment on right ventricular function in patients with Eisenmenger syndrome. J. Cardiol. 2017, 69, 741–746. [Google Scholar] [CrossRef]
- Cha, K.S.; Cho, K.I.; Seo, J.S.; Choi, J.H.; Park, Y.H.; Yang, D.H.; Hong, G.R.; Kim, D.S. Effects of Inhaled Iloprost on Exercise Capacity, Quality of Life, and Cardiac Function in Patients With Pulmonary Arterial Hypertension Secondary to Congenital Heart Disease (the Eisenmenger Syndrome) (from the EIGER Study). Am. J. Cardiol. 2013, 112, 1834–1839. [Google Scholar] [CrossRef]
- Nashat, H.; Kempny, A.; Harries, C.; Dormand, N.; Alonso-Gonzalez, R.; Price, L.C.; Gatzoulis, M.A.; Dimopoulos, K.; Wort, S.J. A single-centre, placebo-controlled, double-blind randomised cross-over study of nebulised iloprost in patients with Eisenmenger syndrome: A pilot study. Int. J. Cardiol. 2020, 299, 131–135. [Google Scholar] [CrossRef]
- Fernandes, S.M.; Newburger, J.W.; Lang, P.; Pearson, D.D.; Feinstein, J.A.; Gauvreau, K.; Landzberg, M.J. Usefulness of epoprostenol therapy in the severely ill adolescent/adult with Eisenmenger physiology. Am. J. Cardiol. 2003, 91, 632–635. [Google Scholar] [CrossRef]
- Zuckerman, W.A.; Leaderer, D.; Rowan, C.A.; Mituniewicz, J.D.; Rosenzweig, E.B. Ambrisentan for Pulmonary Arterial Hypertension Due to Congenital Heart Disease. Am. J. Cardiol. 2011, 107, 1381–1385. [Google Scholar] [CrossRef]
- Sitbon, O.; Channick, R.; Chin, K.M.; Frey, A.; Gaine, S.; Galiè, N.; Ghofrani, H.-A.; Hoeper, M.M.; Lang, I.M.; Preiss, R.; et al. Selexipag for the Treatment of Pulmonary Arterial Hypertension. N. Engl. J. Med. 2015, 373, 2522–2533. [Google Scholar] [CrossRef]
- Rosenkranz, S.; Ghofrani, A.; Beghetti, M.; Ivy, D.D.; Frey, R.; Fritsch, A.; Weimann, G.; Saleh, S.; Apitz, C. Riociguat for pulmonary arterial hypertension associated with congenital heart disease. Heart 2015, 101, 1792–1799. [Google Scholar] [CrossRef]
- Iversen, K.; Jensen, A.S.; Jensen, T.V.; Vejlstrup, N.G.; Søndergaard, L. Combination therapy with bosentan and sildenafil in Eisenmenger syndrome: A randomized, placebo-controlled, double-blinded trial. Eur. Heart J. 2010, 31, 1124–1131. [Google Scholar] [CrossRef]
- D’Alto, M.; Romeo, E.; Argiento, P.; Sarubbi, B.; Santoro, G.; Grimaldi, N.; Correra, A.; Scognamiglio, G.; Russo, M.G.; Calabrò, R. Bosentan–sildenafil association in patients with congenital heart disease-related pulmonary arterial hypertension and Eisenmenger physiology. Int. J. Cardiol. 2012, 155, 378–382. [Google Scholar] [CrossRef] [PubMed]
- D’Alto, M.; Constantine, A.; Balint, O.H.; Romeo, E.; Argiento, P.; Ablonczy, L.; Skoro-Sajer, N.; Giannakoulas, G.; Dimopoulos, K. The effects of parenteral prostacyclin therapy as add-on treatment to oral compounds in Eisenmenger syndrome. Eur. Respir. J. 2019, 54, 1901401. [Google Scholar] [CrossRef]
- Gorter, T.M.; Van Veldhuisen, D.J.; Bauersachs, J.; Borlaug, B.; Celutkiene, J.; Coats, A.J.; Crespo-Leiro, M.G.; Guazzi, M.; Harjola, V.-P.; Heymans, S.; et al. Right heart dysfunction and failure in heart failure with preserved ejection fraction: Mechanisms and management. Position statement on behalf of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2018, 20, 16–37. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Vyas, C.; Kothari, S.S.; Bhargava, B.; Kukreti, B.B.; Kalaivani, M.; Juneja, R.; Seth, S.; Saxena, A.; Bahl, V.K. Acute and short-term hemodynamic effects of metoprolol in Eisenmenger syndrome: A preliminary observational study. Am. Heart J. 2011, 161, 938–943. [Google Scholar] [CrossRef] [PubMed]
- Kempny, A.; Hjortshøj, C.S.; Gu, H.; Li, W.; Opotowsky, A.R.; Landzberg, M.J.; Jensen, A.S.; Søndergaard, L.; Estensen, M.E.; Thilén, U.; et al. Predictors of Death in Contemporary Adult Patients With Eisenmenger Syndrome: A Multicenter Study. Circulation 2017, 135, 1432–1440. [Google Scholar] [CrossRef] [PubMed]
Study Design | Subaortic LV Failure | Sub-Pulmonary RV Failure | Subaortic RV Failure | Failing Fontan |
---|---|---|---|---|
RCT or Meta-analysis | Ramipril in ToF (post-hoc analysis of APPROPRIATE study): stabilization of LV and RV function [7] | Losartan in ToF (REDEFINE): no effect on RVEF [9] PAH therapies (Section 3) | Eplerenone: no effect on sRV mass and EF, neurohormonal and collagen turnover biomarkers [15] Losartan [18], valsartan [19]: no effect on sRVEF, exercise capacity, and NT-proBNP Ramipril: no changes in sRV volumes and EF [20] Tadalafil (SERVE): no change in sRV volume or sRVEF (results communicated at ESC congress 2022, not yet published) SGLT2i (ongoing studies: NCT05580510) | Bosentan: conflictual effect on peakVO2 and NYHA, no effect on NTproBNP and QoL [35,42] Ambrisentan: improvement of peak VO2 [43] Macitentan (not yet published) Udenafil (FUEL): no improvement in peak VO2 [36] Sildenafil: conflictual results on peak VO2 [44,45]; no change in pressure-volume loop [46]; increase in cardiac index [47] Iloprost: improvement of peak VO2 [48] Meta-analysis [34]: significant improvements in hemodynamics, functional class, and 6 min walk distance but no changes in mortality or NT-proBNP Enalapril in asymptomatic patients: decrease in cardiac index [40] Carvedilol: no change in exercise performance and mild increase in NT-proBNP level [41] |
Open label trial | No data | No data | Eplerenone: no effect on collagen biomarkers, 6MWD, or QoL [16] | Bosentan: no changes in saturations of oxygen, exercise performance, and QoL [38]; improvement of 6MWD and MRI-derived resting cardiac output [49] Sildenafil: improvement of peak VO2 [50] |
Prospective observational studies | Guideline-directed medical therapy would improve LVEF [3] | Β-blockers may improve NYHA, QoL, +/− sRVEF [12] ACEi or ARBs: no association with a reduced HF incidence or mortality [22] ARNI: conflicting data but seem to be associated with improvement of NT-proBNP level, sRV function, NYHA, 6MWD, and QoL [24,25,26,27,28] SGLT2 i: one clinical case with functional and echocardiographic improvement [51] | PAH therapy: improvement of NYHA functional class in patients with PAH therapies [37] | |
Recommendations | Diuretics, ACE inhibitors, ARBs, angiotensin receptor/neprilysin inhibitors, mineralocorticoid receptor antagonists, βblockers, and SGLT2i should be used | Losartan should not be prescribed routinely in ToF to prevent the progression of RV dysfunction and RV HF | No evidence for eplerenone, ACEi, ARBs, βblockers, sacubitril/valsartan effects in sRV Valsartan or sacubitril/valsartan should be considered in symptomatic patients No data yet on SGLT2i use | Considering PAH therapy in selected Fontan patients with elevated PVR (>2 indexed Wood units) in the absence of high ventricular end diastolic pressure Avoiding βblockers and ACEi specifically in patients without systolic ventricular dysfunction and increased end-diastolic ventricular pressure No data yet on ARNI and SGLT2i use |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ladouceur, M.; Valdeolmillos, E.; Karsenty, C.; Hascoet, S.; Moceri, P.; Le Gloan, L. Cardiac Drugs in ACHD Cardiovascular Medicine. J. Cardiovasc. Dev. Dis. 2023, 10, 190. https://doi.org/10.3390/jcdd10050190
Ladouceur M, Valdeolmillos E, Karsenty C, Hascoet S, Moceri P, Le Gloan L. Cardiac Drugs in ACHD Cardiovascular Medicine. Journal of Cardiovascular Development and Disease. 2023; 10(5):190. https://doi.org/10.3390/jcdd10050190
Chicago/Turabian StyleLadouceur, Magalie, Estibaliz Valdeolmillos, Clément Karsenty, Sébastien Hascoet, Pamela Moceri, and Laurianne Le Gloan. 2023. "Cardiac Drugs in ACHD Cardiovascular Medicine" Journal of Cardiovascular Development and Disease 10, no. 5: 190. https://doi.org/10.3390/jcdd10050190
APA StyleLadouceur, M., Valdeolmillos, E., Karsenty, C., Hascoet, S., Moceri, P., & Le Gloan, L. (2023). Cardiac Drugs in ACHD Cardiovascular Medicine. Journal of Cardiovascular Development and Disease, 10(5), 190. https://doi.org/10.3390/jcdd10050190