Pharmaceutical Therapies for Necroptosis in Myocardial Ischemia–Reperfusion Injury
Abstract
:1. Introduction
2. Roles of Necroptosis during Myocardial Ischemia or I/R Injury
3. Relationship between Necroptosis and Other Associated Mechanisms of MI–RI
4. Potential Interventions of Necroptosis in Myocardial Ischemia/Reperfusion Injury
4.1. Necroptosis Inhibitor
4.2. Chinese Medicine
4.3. Clinical Medication
4.4. Enzymes That Regulate Necroptosis
4.5. Other
4.6. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef]
- Tang, D.; Kang, R.; Berghe, T.V.; Vandenabeele, P.; Kroemer, G. The Molecular Machinery of Regulated Cell Death. Cell Res. 2019, 29, 347–364. [Google Scholar] [CrossRef] [Green Version]
- Amani, H.; Habibey, R.; Hajmiresmail, S.J.; Latifi, S.; Pazoki-Toroudi, H.; Akhavan, O. Antioxidant Nanomaterials in Advanced Diagnoses and Treatments of Ischemia Reperfusion Injuries. J. Mater. Chem. B 2017, 5, 9452–9476. [Google Scholar] [CrossRef] [PubMed]
- Baines, C.P.; Kaiser, R.A.; Purcell, N.H.; Blair, N.S.; Osinska, H.; Hambleton, M.A.; Brunskill, E.W.; Sayen, M.R.; Gottlieb, R.A.; Dorn, G.W.; et al. Loss of Cyclophilin D Reveals a Critical Role for Mitochondrial Permeability Transition in Cell Death. Nature 2005, 434, 658–662. [Google Scholar] [CrossRef] [PubMed]
- Karch, J.; Kwong, J.Q.; Burr, A.R.; Sargent, M.A.; Elrod, J.W.; Peixoto, P.M.; Martinez-Caballero, S.; Osinska, H.; Cheng, E.H.-Y.; Robbins, J.; et al. Bax and Bak Function as the Outer Membrane Component of the Mitochondrial Permeability Pore in Regulating Necrotic Cell Death in Mice. elife 2013, 2, e00772. [Google Scholar] [CrossRef]
- Li, N.; Huang, Y.; He, Q. Vital Role of RIP3 in the Mechanism of Myocardial Cell Necroptosis. Chin. Crit. Care Med. 2019, 31, 1045–1047. [Google Scholar] [CrossRef]
- Hotchkiss, R.S.; Strasser, A.; McDunn, J.E.; Swanson, P.E. Cell Death. N. Engl. J. Med. 2009, 361, 1570–1583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalogeris, T.; Baines, C.P.; Krenz, M.; Korthuis, R.J. Cell Biology of Ischemia/Reperfusion Injury. Int. Rev. Cell Mol. Biol. 2012, 298, 229–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergsbaken, T.; Fink, S.L.; Cookson, B.T. Pyroptosis: Host Cell Death and Inflammation. Nat. Rev. Microbiol. 2009, 7, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, J.; Zhang, D.; Yu, P.; Zhang, J.; Yu, S. Research Progress on the Role of Pyroptosis in Myocardial Ischemia-Reperfusion Injury. Cells 2022, 11, 3271. [Google Scholar] [CrossRef]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell 2017, 171, 273–285. [Google Scholar] [CrossRef] [Green Version]
- Hong, M.; Rong, J.; Tao, X.; Xu, Y. The Emerging Role of Ferroptosis in Cardiovascular Diseases. Front. Pharmacol. 2022, 13, 822083. [Google Scholar] [CrossRef] [PubMed]
- Edinger, A.L.; Thompson, C.B. Death by Design: Apoptosis, Necrosis and Autophagy. Curr. Opin. Cell Biol. 2004, 16, 663–669. [Google Scholar] [CrossRef]
- Inserte, J.; Cardona, M.; Poncelas-Nozal, M.; Hernando, V.; Vilardosa, Ú.; Aluja, D.; Parra, V.M.; Sanchis, D.; Garcia-Dorado, D. Studies on the Role of Apoptosis after Transient Myocardial Ischemia: Genetic Deletion of the Executioner Caspases-3 and -7 Does Not Limit Infarct Size and Ventricular Remodeling. Basic Res. Cardiol. 2016, 111, 18. [Google Scholar] [CrossRef] [PubMed]
- Adameova, A.; Goncalvesova, E.; Szobi, A.; Dhalla, N.S. Necroptotic Cell Death in Failing Heart: Relevance and Proposed Mechanisms. Heart Fail Rev. 2016, 21, 213–221. [Google Scholar] [CrossRef]
- Hausenloy, D.J.; Yellon, D.M. Myocardial Ischemia-Reperfusion Injury: A Neglected Therapeutic Target. J. Clin. Investig. 2013, 123, 92–100. [Google Scholar] [CrossRef] [Green Version]
- DeRoo, E.; Zhou, T.; Liu, B. The Role of RIPK1 and RIPK3 in Cardiovascular Disease. Int. J. Mol. Sci. 2020, 21, 8174. [Google Scholar] [CrossRef]
- Szobi, A.; Farkašová-Ledvényiová, V.; Lichý, M.; Muráriková, M.; Čarnická, S.; Ravingerová, T.; Adameová, A. Cardioprotection of Ischaemic Preconditioning Is Associated with Inhibition of Translocation of MLKL within the Plasma Membrane. J. Cell. Mol. Med. 2018, 22, 4183–4196. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Yousif, A.; Chesnokov, M.; Hong, L.; Chefetz, I. A Decade of Cell Death Studies: Breathing New Life into Necroptosis. Pharmacol. Ther. 2021, 220, 107717. [Google Scholar] [CrossRef]
- Cao, L.; Mu, W. Necrostatin-1 and Necroptosis Inhibition: Pathophysiology and Therapeutic Implications. Pharmacol. Res. 2021, 163, 105297. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ren, Z.; Xu, W.; Jiang, Z. Necroptosis in Atherosclerosis. Clin. Chim. Acta 2022, 534, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Grootjans, S.; Vanden Berghe, T.; Vandenabeele, P. Initiation and Execution Mechanisms of Necroptosis: An Overview. Cell Death Differ. 2017, 24, 1184–1195. [Google Scholar] [CrossRef] [Green Version]
- Koshinuma, S.; Miyamae, M.; Kaneda, K.; Kotani, J.; Figueredo, V.M. Combination of Necroptosis and Apoptosis Inhibition Enhances Cardioprotection against Myocardial Ischemia-Reperfusion Injury. J. Anesth. 2014, 28, 235–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharifi, M.; Nazarinia, D.; Ramezani, F.; Azizi, Y.; Naderi, N.; Aboutaleb, N. Necroptosis and RhoA/ROCK Pathways: Molecular Targets of Nesfatin-1 in Cardioprotection against Myocardial Ischemia/Reperfusion Injury in a Rat Model. Mol. Biol. Rep. 2021, 48, 2507–2518. [Google Scholar] [CrossRef]
- Ying, L.; Benjanuwattra, J.; Chattipakorn, S.C.; Chattipakorn, N. The Role of RIPK3-Regulated Cell Death Pathways and Necroptosis in the Pathogenesis of Cardiac Ischaemia-Reperfusion Injury. Acta Physiol. 2021, 231, e13541. [Google Scholar] [CrossRef]
- Choi, M.E.; Price, D.R.; Ryter, S.W.; Choi, A.M.K. Necroptosis: A Crucial Pathogenic Mediator of Human Disease. JCI Insight 2019, 4, e128834. [Google Scholar] [CrossRef] [Green Version]
- Khoury, M.K.; Gupta, K.; Franco, S.R.; Liu, B. Necroptosis in the Pathophysiology of Disease. Am. J. Pathol. 2020, 190, 272–285. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Kos, R.; Garssen, J.; Redegeld, F. Molecular Insights into the Mechanism of Necroptosis: The Necrosome as a Potential Therapeutic Target. Cells 2019, 8, 1486. [Google Scholar] [CrossRef] [Green Version]
- Fritsch, M.; Günther, S.D.; Schwarzer, R.; Albert, M.-C.; Schorn, F.; Werthenbach, J.P.; Schiffmann, L.M.; Stair, N.; Stocks, H.; Seeger, J.M.; et al. Caspase-8 Is the Molecular Switch for Apoptosis, Necroptosis and Pyroptosis. Nature 2019, 575, 683–687. [Google Scholar] [CrossRef]
- Shi, Z.-W.; Ge, L.-S.; Li, Y.-C. The Role of Necroptosis in Cardiovascular Disease. Front. Pharmacol. 2018, 9, 721. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef] [Green Version]
- Zhai, X.; Wang, W.; Sun, S.; Han, Y.; Li, J.; Cao, S.; Li, R.; Xu, T.; Yuan, Q.; Wang, J.; et al. 4-Hydroxy-2-Nonenal Promotes Cardiomyocyte Necroptosis via Stabilizing Receptor-Interacting Serine/Threonine-Protein Kinase 1. Front. Cell Dev. Biol. 2021, 9, 721795. [Google Scholar] [CrossRef] [PubMed]
- Moerke, C.; Jaco, I.; Dewitz, C.; Müller, T.; Jacobsen, A.V.; Gautheron, J.; Fritsch, J.; Schmitz, J.; Bräsen, J.H.; Günther, C.; et al. The Anticonvulsive Phenhydan(®) Suppresses Extrinsic Cell Death. Cell Death Differ. 2019, 26, 1631–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, P.; Hu, S.; Jin, Q.; Li, D.; Tian, F.; Toan, S.; Li, Y.; Zhou, H.; Chen, Y. Ripk3 Promotes ER Stress-Induced Necroptosis in Cardiac IR Injury: A Mechanism Involving Calcium Overload/XO/ROS/MPTP Pathway. Redox Biol. 2018, 16, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Li, T. Ripk3 Mediates Cardiomyocyte Necrosis through Targeting Mitochondria and the JNK-Bnip3 Pathway under Hypoxia-Reoxygenation Injury. J. Recept. Signal Transduct. Res. 2019, 39, 331–340. [Google Scholar] [CrossRef]
- Lichý, M.; Szobi, A.; Hrdlička, J.; Horváth, C.; Kormanová, V.; Rajtík, T.; Neckář, J.; Kolář, F.; Adameová, A. Different Signalling in Infarcted and Non-Infarcted Areas of Rat Failing Hearts: A Role of Necroptosis and Inflammation. J. Cell. Mol. Med. 2019, 23, 6429–6441. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Mu, N.; Gu, C.; Liu, M.; Yang, Z.; Yin, Y.; Chen, M.; Wang, Y.; Han, Y.; Yu, L.; et al. Metformin Mediates Cardioprotection against Aging-Induced Ischemic Necroptosis. Aging Cell 2020, 19, e13096. [Google Scholar] [CrossRef] [Green Version]
- Horvath, C.; Young, M.; Jarabicova, I.; Kindernay, L.; Ferenczyova, K.; Ravingerova, T.; Lewis, M.; Suleiman, M.S.; Adameova, A. Inhibition of Cardiac RIP3 Mitigates Early Reperfusion Injury and Calcium-Induced Mitochondrial Swelling without Altering Necroptotic Signalling. Int. J. Mol. Sci. 2021, 22, 7983. [Google Scholar] [CrossRef]
- She, L.; Tu, H.; Zhang, Y.-Z.; Tang, L.-J.; Li, N.-S.; Ma, Q.-L.; Liu, B.; Li, Q.; Luo, X.-J.; Peng, J. Inhibition of Phosphoglycerate Mutase 5 Reduces Necroptosis in Rat Hearts Following Ischemia/Reperfusion Through Suppression of Dynamin-Related Protein 1. Cardiovasc. Drugs Ther. 2019, 33, 13–23. [Google Scholar] [CrossRef]
- Fang, X.; Wang, H.; Han, D.; Xie, E.; Yang, X.; Wei, J.; Gu, S.; Gao, F.; Zhu, N.; Yin, X.; et al. Ferroptosis as a Target for Protection against Cardiomyopathy. Proc. Natl. Acad. Sci. USA 2019, 116, 2672–2680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Algieri, C.; Trombetti, F.; Pagliarani, A.; Ventrella, V.; Nesci, S. Phenylglyoxal Inhibition of the Mitochondrial F1FO-ATPase Activated by Mg2+ or by Ca2+ Provides Clues on the Mitochondrial Permeability Transition Pore. Arch. Biochem. Biophys. 2020, 681, 108258. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Ding, W.; Xu, T.; Ao, X.; Yu, T.; Li, M.; Liu, Y.; Zhang, X.; Hou, L.; Wang, J. Parkin Regulates Programmed Necrosis and Myocardial Ischemia/Reperfusion Injury by Targeting Cyclophilin-D. Antioxid. Redox Signal. 2019, 31, 1177–1193. [Google Scholar] [CrossRef] [PubMed]
- Hamacher-Brady, A.; Brady, N.R.; Gottlieb, R.A. Enhancing Macroautophagy Protects against Ischemia/Reperfusion Injury in Cardiac Myocytes. J. Biol. Chem. 2006, 281, 29776–29787. [Google Scholar] [CrossRef] [Green Version]
- Ogasawara, M.; Yano, T.; Tanno, M.; Abe, K.; Ishikawa, S.; Miki, T.; Kuno, A.; Tobisawa, T.; Muratsubaki, S.; Ohno, K.; et al. Suppression of Autophagic Flux Contributes to Cardiomyocyte Death by Activation of Necroptotic Pathways. J. Mol. Cell. Cardiol. 2017, 108, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, C.; Zhang, C.; Li, J.; Guo, W.; Yan, D.; Yang, C.; Zhao, J.; Xia, T.; Wang, Y.; et al. Heat Shock Protein 70 Inhibits Cardiomyocyte Necroptosis through Repressing Autophagy in Myocardial Ischemia/Reperfusion Injury. In Vitro Cell. Dev. Biol. Anim. 2016, 52, 690–698. [Google Scholar] [CrossRef]
- Luo, Y.; Apaijai, N.; Liao, S.; Maneechote, C.; Chunchai, T.; Arunsak, B.; Benjanuwattra, J.; Yanpiset, P.; Chattipakorn, S.C.; Chattipakorn, N. Therapeutic Potentials of Cell Death Inhibitors in Rats with Cardiac Ischaemia/Reperfusion Injury. J. Cell. Mol. Med. 2022, 26, 2462–2476. [Google Scholar] [CrossRef]
- Adameova, A.; Horvath, C.; Abdul-Ghani, S.; Varga, Z.V.; Suleiman, M.S.; Dhalla, N.S. Interplay of Oxidative Stress and Necrosis-like Cell Death in Cardiac Ischemia/Reperfusion Injury: A Focus on Necroptosis. Biomedicines 2022, 10, 127. [Google Scholar] [CrossRef]
- Zhao, J.; Jitkaew, S.; Cai, Z.; Choksi, S.; Li, Q.; Luo, J.; Liu, Z.-G. Mixed Lineage Kinase Domain-like Is a Key Receptor Interacting Protein 3 Downstream Component of TNF-Induced Necrosis. Proc. Natl. Acad. Sci. USA 2012, 109, 5322–5327. [Google Scholar] [CrossRef]
- He, S.; Wang, L.; Miao, L.; Wang, T.; Du, F.; Zhao, L.; Wang, X. Receptor Interacting Protein Kinase-3 Determines Cellular Necrotic Response to TNF-Alpha. Cell 2009, 137, 1100–1111. [Google Scholar] [CrossRef] [Green Version]
- Tait, S.W.G.; Oberst, A.; Quarato, G.; Milasta, S.; Haller, M.; Wang, R.; Karvela, M.; Ichim, G.; Yatim, N.; Albert, M.L.; et al. Widespread Mitochondrial Depletion via Mitophagy Does Not Compromise Necroptosis. Cell Rep. 2013, 5, 878–885. [Google Scholar] [CrossRef] [PubMed]
- Bae, Y.S.; Oh, H.; Rhee, S.G.; Yoo, Y.D. Regulation of Reactive Oxygen Species Generation in Cell Signaling. Mol. Cells 2011, 32, 491–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.; Jiang, H.; Yang, J.; Chen, J.; Yang, J.; Ding, J.-W.; Li, S.; Wu, H.; Ding, H.-S. Radioprotective 105 KDa Protein Attenuates Ischemia/Reperfusion-Induced Myocardial Apoptosis and Autophagy by Inhibiting the Activation of the TLR4/NF-ΚB Signaling Pathway in Rats. Int. J. Mol. Med. 2016, 38, 885–893. [Google Scholar] [CrossRef] [Green Version]
- Hernández, G.; Lal, H.; Fidalgo, M.; Guerrero, A.; Zalvide, J.; Force, T.; Pombo, C.M. A Novel Cardioprotective P38-MAPK/MTOR Pathway. Exp. Cell Res. 2011, 317, 2938–2949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.-Y.; Yiang, G.-T.; Liao, W.-T.; Tsai, A.P.-Y.; Cheng, Y.-L.; Cheng, P.-W.; Li, C.-Y.; Li, C.-J. Current Mechanistic Concepts in Ischemia and Reperfusion Injury. Cell Physiol. Biochem. 2018, 46, 1650–1667. [Google Scholar] [CrossRef]
- Shulga, N.; Pastorino, J.G. Retraction: GRIM-19-Mediated Translocation of STAT3 to Mitochondria Is Necessary for TNF-Induced Necroptosis. J. Cell Sci. 2016, 129, 2686. [Google Scholar] [CrossRef] [Green Version]
- Wen, Z.; Hou, W.; Wu, W.; Zhao, Y.; Dong, X.; Bai, X.; Peng, L.; Song, L. 6’-O-Galloylpaeoniflorin Attenuates Cerebral Ischemia Reperfusion-Induced Neuroinflammation and Oxidative Stress via PI3K/Akt/Nrf2 Activation. Oxid. Med. Cell. Longev. 2018, 2018, 8678267. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Yin, X.; Chen, Y.-H.; Chen, Y.; Jiang, W.; Zheng, H.; Huang, F.-Q.; Liu, B.; Zhou, W.; Qi, L.-W.; et al. Proteomic Analysis Reveals Ginsenoside Rb1 Attenuates Myocardial Ischemia/Reperfusion Injury through Inhibiting ROS Production from Mitochondrial Complex I. Theranostics 2021, 11, 1703–1720. [Google Scholar] [CrossRef]
- Duan, J.-S.; Chen, S.; Sun, X.-Q.; Du, J.; Chen, Z.-W. Urotensin-#receptor Antagonist SB-706375 Protected Isolated Rat Heart from Ischaemia-Reperfusion Injury by Attenuating Myocardial Necrosis via RhoA/ROCK/RIP3 Signalling Pathway. Inflammopharmacology 2019, 27, 1309–1318. [Google Scholar] [CrossRef]
- Dong, M.; Yan, B.P.; Liao, J.K.; Lam, Y.-Y.; Yip, G.W.K.; Yu, C.-M. Rho-Kinase Inhibition: A Novel Therapeutic Target for the Treatment of Cardiovascular Diseases. Drug Discov. Today 2010, 15, 622–629. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Zhang, Y.; Cui, M.; Jin, L.; Wang, Y.; Lv, F.; Liu, Y.; Zheng, W.; Shang, H.; Zhang, J.; et al. CaMKII Is a RIP3 Substrate Mediating Ischemia- and Oxidative Stress-Induced Myocardial Necroptosis. Nat. Med. 2016, 22, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Jiang, K.; Liu, X.; Qin, M.; Xiang, Y. CaMKII in Regulation of Cell Death During Myocardial Reperfusion Injury. Front. Mol. Biosci. 2021, 8, 668129. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Zhou, L.-Y.; Xu, H.-J.; Chen, X.-Y.; Tong, Z.-S.; Liu, X.-D.; Jia, Y.-S.; Chen, Y. RIP3 Overexpression Sensitizes Human Breast Cancer Cells to Parthenolide in Vitro via Intracellular ROS Accumulation. Acta Pharmacol. Sin. 2014, 35, 929–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Zhang, F.; Shi, H.; Gao, Y.; Dong, Z.; Ma, L.; Sun, X.; Li, X.; Chang, S.; Wang, Z.; et al. Neutrophil-Derived Advanced Glycation End Products-N Epsilon-(Carboxymethyl) Lysine Promotes RIP3-Mediated Myocardial Necroptosis via RAGE and Exacerbates Myocardial Ischemia/Reperfusion Injury. FASEB J. 2019, 33, 14410–14422. [Google Scholar] [CrossRef] [Green Version]
- Zaafan, M.A.; Abdelhamid, A.M. The Cardioprotective Effect of MicroRNA-103 Inhibitor against Isoprenaline-Induced Myocardial Infarction in Mice through Targeting FADD/RIPK Pathway. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 837–844. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, Z.; Zhou, X.; Sun, X.; Cao, J.; Liu, Y.; Wang, X. Dexmedetomidine Preconditioning Protects Cardiomyocytes Against Hypoxia/Reoxygenation-Induced Necroptosis by Inhibiting HMGB1-Mediated Inflammation. Cardiovasc. Drugs Ther. 2019, 33, 45–54. [Google Scholar] [CrossRef]
- Ma, F.; Zhu, Y.; Chang, L.; Gong, J.; Luo, Y.; Dai, J.; Lu, H. Hydrogen Sulfide Protects Against Ischemic Heart Failure by Inhibiting RIP1/RIP3/MLKL-Mediated Necroptosis. Physiol. Res. 2022, 71, 771–781. [Google Scholar] [CrossRef]
- Tu, H.; Zhou, Y.-J.; Tang, L.-J.; Xiong, X.-M.; Zhang, X.-J.; Sheikh, M.S.A.; Zhang, J.-J.; Luo, X.-J.; Yuan, C.; Peng, J. Combination of Ponatinib with Deferoxamine Synergistically Mitigates Ischemic Heart Injury via Simultaneous Prevention of Necroptosis and Ferroptosis. Eur. J. Pharmacol. 2021, 898, 173999. [Google Scholar] [CrossRef]
- Wang, L.; Lv, X.; Tian, J.; Wang, X.; Wu, Y.; Liu, H.R. Cardioprotective Effect of Nec-1 in Rats Subjected to MI/R: Downregulation of Autophagy-Like Cell Death. Cardiovasc. Ther. 2021, 2021, 9956814. [Google Scholar] [CrossRef]
- Dmitriev, Y.; Minasian, S.; Dracheva, A.; Karpov, A.; Chefu, S.; Demchenko, E.; Galagudza, M. Necrostatin 7 Limits Myocardial Infarct Size and Reduces Cardiac Remodeling After Permanent Coronary Occlusion in Rats. Circulation 2014, 130, A17348. [Google Scholar] [CrossRef]
- Wiscovitch-Russo, R.; Ibáñez-Prada, E.D.; Serrano-Mayorga, C.C.; Sievers, B.L.; Engelbride, M.A.; Padmanabhan, S.; Tan, G.S.; Vashee, S.; Bustos, I.G.; Pachecho, C.; et al. Major Adverse Cardiovascular Events Are Associated with Necroptosis during Severe COVID-19. Crit. Care 2023, 27, 155. [Google Scholar] [CrossRef] [PubMed]
- Dmitriev, Y.V.; Minasian, S.M.; Demchenko, E.A.; Galagudza, M.M. Study of Cardioprotective Effects of Necroptosis Inhibitors on Isolated Rat Heart Subjected to Global Ischemia-Reperfusion. Bull. Exp. Biol. Med. 2013, 155, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Mao, X.; Li, L.; Tong, Y.; Huang, Y.; Lan, Y.; Jiang, H. Necrostatin-1 Inhibits Hmgb1-IL-23/IL-17 Pathway and Attenuates Cardiac Ischemia Reperfusion Injury. Transpl. Int. 2014, 27, 1077–1085. [Google Scholar] [CrossRef]
- Koudstaal, S.; Oerlemans, M.I.F.J.; Van der Spoel, T.I.G.; Janssen, A.W.F.; Hoefer, I.E.; Doevendans, P.A.; Sluijter, J.P.G.; Chamuleau, S.A.J. Necrostatin-1 Alleviates Reperfusion Injury Following Acute Myocardial Infarction in Pigs. Eur. J. Clin. Investig. 2015, 45, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Lukenaite, B.; Griciune, E.; Leber, B.; Strupas, K.; Stiegler, P.; Schemmer, P. Necroptosis in Solid Organ Transplantation: A Literature Overview. Int. J. Mol. Sci. 2022, 23, 3677. [Google Scholar] [CrossRef]
- Apaijai, N.; Moisescu, D.M.; Palee, S.; McSweeney, C.M.; Saiyasit, N.; Maneechote, C.; Boonnag, C.; Chattipakorn, N.; Chattipakorn, S.C. Pretreatment with PCSK9 Inhibitor Protects the Brain Against Cardiac Ischemia/Reperfusion Injury Through a Reduction of Neuronal Inflammation and Amyloid Beta Aggregation. J. Am. Heart Assoc. 2019, 8, e010838. [Google Scholar] [CrossRef] [Green Version]
- Benjanuwattra, J.; Apaijai, N.; Chunchai, T.; Kerdphoo, S.; Jaiwongkam, T.; Arunsak, B.; Wongsuchai, S.; Chattipakorn, N.; Chattipakorn, S.C. Metformin Preferentially Provides Neuroprotection Following Cardiac Ischemia/Reperfusion in Non-Diabetic Rats. Biochim. Biophys. Acta. Mol. Basis Dis. 2020, 1866, 165893. [Google Scholar] [CrossRef]
- Liao, S.; Apaijai, N.; Luo, Y.; Wu, J.; Chunchai, T.; Singhanat, K.; Arunsak, B.; Benjanuwattra, J.; Chattipakorn, N.; Chattipakorn, S.C. Cell Death Inhibitors Protect against Brain Damage Caused by Cardiac Ischemia/Reperfusion Injury. Cell Death Discov. 2021, 7, 312. [Google Scholar] [CrossRef]
- Dmitriev, Y.V.; Karpov, A.A.; Dracheva, A.V.; Minasian, S.M.; Chefu, S.G.; Vasina, L.V.; Demchenko, E.A.; Galagudza, I.M.M. Cardioprotfetive Effects of Necrostatin-7 in the Rat Model of Permanent Coronary Occlusion. Ross. Fiziol. Zh. Im. I. M. Sechenova 2015, 101, 408–414. [Google Scholar]
- Peters, M.C.; Neef, K.; Markovska, A.; Oerlemans, M.I.F.; Chamuleau, S.A.J.; Sluijter, J.P.G. A Novel Receptor-Interacting Protein-1 (RIP1) Inhibitor (547) Protects Human Cardiac Cells from Ischemia/Reperfusion-Triggered Necroptotic Cell Death. Cardiovasc. Res. 2022, 118, cvac066-055. [Google Scholar] [CrossRef]
- Yang, P.; Feng, J.; Peng, Q.; Liu, X.; Fan, Z. Advanced Glycation End Products: Potential Mechanism and Therapeutic Target in Cardiovascular Complications under Diabetes. Oxid. Med. Cell. Longev. 2019, 2019, 9570616. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Qian, J.; Cao, J.; Wang, X.; Zhang, W.; Zhang, J. Ca2+/Calmodulin-Dependent Protein Kinase II Regulation by Inhibitor of Receptor Interacting Protein Kinase 3 Alleviates Necroptosis in Glycation End Products-Induced Cardiomyocytes Injury. Int. J. Mol. Sci. 2022, 23, 6988. [Google Scholar] [CrossRef] [PubMed]
- Tekin, T.; Cicek, B.; Konyaligil, N. Regulatory Peptide Nesfatin-1 and Its Relationship with Metabolic Syndrome. Eurasian J. Med. 2019, 51, 18420. [Google Scholar] [CrossRef] [PubMed]
- Angelone, T.; Filice, E.; Pasqua, T.; Amodio, N.; Galluccio, M.; Montesanti, G.; Quintieri, A.M.; Cerra, M.C. Nesfatin-1 as a Novel Cardiac Peptide: Identification, Functional Characterization, and Protection against Ischemia/Reperfusion Injury. Cell. Mol. Life Sci. 2013, 70, 495–509. [Google Scholar] [CrossRef]
- Qiao, S.; Zhao, W.J.; Li, H.Q.; Ao, G.Z.; An, J.Z.; Wang, C.; Zhang, H.L. Necrostatin-1 Analog DIMO Exerts Cardioprotective Effect against Ischemia Reperfusion Injury by Suppressing Necroptosis via Autophagic Pathway in Rats. Pharmacology 2021, 106, 189–201. [Google Scholar] [CrossRef]
- Singh, A.P.; Singh, R.; Verma, S.S.; Rai, V.; Kaschula, C.H.; Maiti, P.; Gupta, S.C. Health Benefits of Resveratrol: Evidence from Clinical Studies. Med. Res. Rev. 2019, 39, 1851–1891. [Google Scholar] [CrossRef]
- Tian, B.; Liu, J. Resveratrol: A Review of Plant Sources, Synthesis, Stability, Modification and Food Application. J. Sci. Food Agric. 2020, 100, 1392–1404. [Google Scholar] [CrossRef]
- Hu, Y.; Pan, H.; Peng, J.; He, J.; Tang, M.; Yan, S.; Rong, J.; Li, J.; Zheng, Z.; Wang, H.; et al. Resveratrol Inhibits Necroptosis by Mediating the TNF-Alpha/RIP1/RIP3/MLKL Pathway in Myocardial Hypoxia/Reoxygenation Injury. Acta Biochim. Biophys. Sin. 2021, 53, 430–437. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, H.; Huang, J.; Yao, Z.; Yu, J.; Zhang, W.; Zhang, L.; Wang, Z.; Zhuang, C. Discovery of Bardoxolone Derivatives as Novel Orally Active Necroptosis Inhibitors. Eur. J. Med. Chem. 2021, 212, 113030. [Google Scholar] [CrossRef]
- Zhu, K.; Guo, J.; Yu, X.; Wang, Q.; Yan, C.; Qiu, Q.; Tang, W.; Huang, X.; Mu, H.; Dou, L.; et al. Polypeptide Globular Adiponectin Ameliorates Hypoxia/Reoxygenation-Induced Cardiomyocyte Injury by Inhibiting Both Apoptosis and Necroptosis. J. Immunol. Res. 2021, 2021, 1815098. [Google Scholar] [CrossRef]
- Ren, J.; Fu, L.; Nile, S.H.; Zhang, J.; Kai, G. Salvia Miltiorrhiza in Treating Cardiovascular Diseases: A Review on Its Pharmacological and Clinical Applications. Front. Pharmacol. 2019, 10, 753. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Liu, Y.; Dong, Z. Tanshinone I Alleviates Motor and Cognitive Impairments via Suppressing Oxidative Stress in the Neonatal Rats after Hypoxic-Ischemic Brain Damage. Mol. Brain 2017, 10, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuo, Y.; Yuan, R.; Chen, X.; He, J.; Chen, Y.; Zhang, C.; Sun, K.; Yang, S.; Liu, Z.; Gao, H. Tanshinone I Exerts Cardiovascular Protective Effects in Vivo and in Vitro through Inhibiting Necroptosis via Akt/Nrf2 Signaling Pathway. Chin. Med. 2021, 16, 48. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, C.; Lee, J.; Um, J.-Y.; Sethi, G.; Ahn, K.S. Arctiin Is a Pharmacological Inhibitor of STAT3 Phosphorylation at Tyrosine 705 Residue and Potentiates Bortezomib-Induced Apoptotic and Anti-Angiogenic Effects in Human Multiple Myeloma Cells. Phytomedicine 2019, 55, 282–292. [Google Scholar] [CrossRef]
- Li, J.; Yuan, Y.-P.; Xu, S.-C.; Zhang, N.; Xu, C.-R.; Wan, C.-X.; Ren, J.; Zeng, X.-F.; Tang, Q.-Z. Arctiin Protects against Cardiac Hypertrophy through Inhibiting MAPKs and AKT Signaling Pathways. J. Pharmacol. Sci. 2017, 135, 97–104. [Google Scholar] [CrossRef]
- Chen, H.; Tang, L.-J.; Tu, H.; Zhou, Y.-J.; Li, N.-S.; Luo, X.-J.; Peng, J. Arctiin Protects Rat Heart against Ischemia/Reperfusion Injury via a Mechanism Involving Reduction of Necroptosis. Eur. J. Pharmacol. 2020, 875, 173053. [Google Scholar] [CrossRef]
- Xu, W.; Huang, M.; Zhang, Y.; Li, H.; Zheng, H.; Yu, L.; Chu, K.; Lin, Y.; Chen, L. Extracts of Bauhinia championii (Benth.) Benth. Attenuate the Inflammatory Response in a Rat Model of Collagen-Induced Arthritis. Mol. Med. Rep. 2016, 13, 4167–4174. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.M.; Lin, C.C.; Chen, M.F.; Ujiie, T.; Takada, A. Studies on Taiwan Folk Medicine, Thang-Kau-Tin (II): Measurement of Active Oxygen Scavenging Activity Using an ESR Technique. Am. J. Chin. Med. 1995, 23, 43–51. [Google Scholar] [CrossRef]
- Chen, Y.-F.; Chen, W.-Y.; Chung, C.-H.; Kuo, C.-L.; Lee, A.-S. Cardiac Protection of Bauhinia Championii against Reperfusion Injury. Environ. Toxicol. 2020, 35, 774–782. [Google Scholar] [CrossRef]
- Liu, X.; Gu, J.; Fan, Y.; Shi, H.; Jiang, M. Baicalin Attenuates Acute Myocardial Infarction of Rats via Mediating the Mitogen-Activated Protein Kinase Pathway. Biol. Pharm. Bull. 2013, 36, 988–994. [Google Scholar] [CrossRef] [Green Version]
- Liou, S.-F.; Hsu, J.-H.; Liang, J.-C.; Ke, H.-J.; Chen, I.-J.; Wu, J.-R.; Yeh, J.-L. San-Huang-Xie-Xin-Tang Protects Cardiomyocytes against Hypoxia/Reoxygenation Injury via Inhibition of Oxidative Stress-Induced Apoptosis. J. Nat. Med. 2012, 66, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Wang, Q.; Qi, J.; Yu, H.; Wang, C.; Wang, X.; Ren, Y.; Yang, F. Promoting Effect of Baicalin on Nitric Oxide Production in CMECs via Activating the PI3K-AKT-ENOS Pathway Attenuates Myocardial Ischemia-Reperfusion Injury. Phytomedicine 2019, 63, 153035. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hao, H.; Yu, H.; Yu, L.; Ma, H.; Zhang, H. Ginsenoside Rg2 Ameliorates Myocardial Ischemia/Reperfusion Injury by Regulating TAK1 to Inhibit Necroptosis. Front. Cardiovasc. Med. 2022, 9, 824657. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, H.; Wang, R.; Lu, X.; Wang, Y.; Duan, M.; Li, H.; Fan, X.; Wang, S. Pharmacokinetics, Tissue Distribution and Excretion of Saponins after Intravenous Administration of ShenMai Injection in Rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019, 1128, 121777. [Google Scholar] [CrossRef] [PubMed]
- Techiryan, G.; Weil, B.R.; Palka, B.A.; Canty, J.M. Effect of Intracoronary Metformin on Myocardial Infarct Size in Swine. Circ. Res. 2018, 123, 986–995. [Google Scholar] [CrossRef]
- Birnbaum, Y.; Ye, R.; Chen, H.; Carlsson, L.; Whatling, C.; Fjellström, O.; Ryberg, E.; Ye, Y. Recombinant Apyrase (AZD3366) Against Myocardial Reperfusion Injury. Cardiovasc. Drugs Ther. 2022; Online ahead of print. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.; Yu, S.; Luo, Z.; Chen, Y.; Liu, Q.; Hua, F.; Xu, G.; Yu, P. Sevoflurane Postconditioning Protects Rat Hearts against Ischemia-Reperfusion Injury via the Activation of PI3K/AKT/MTOR Signaling. Sci. Rep. 2014, 4, 7317. [Google Scholar] [CrossRef]
- Yu, P.; Zhang, J.; Yu, S.; Luo, Z.; Hua, F.; Yuan, L.; Zhou, Z.; Liu, Q.; Du, X.; Chen, S.; et al. Protective Effect of Sevoflurane Postconditioning against Cardiac Ischemia/Reperfusion Injury via Ameliorating Mitochondrial Impairment, Oxidative Stress and Rescuing Autophagic Clearance. PLoS ONE 2015, 10, e0134666. [Google Scholar] [CrossRef]
- Li, X.; Gong, W.; Wang, H.; Li, T.; Attri, K.S.; Lewis, R.E.; Kalil, A.C.; Bhinderwala, F.; Powers, R.; Yin, G.; et al. O-GlcNAc Transferase Suppresses Inflammation and Necroptosis by Targeting Receptor-Interacting Serine/Threonine-Protein Kinase 3. Immunity 2019, 50, 576–590.e6. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Yu, P.; Hua, F.; Hu, Y.; Xiao, F.; Liu, Q.; Huang, D.; Deng, F.; Wei, G.; Deng, W.; et al. Sevoflurane Postconditioning Reduces Myocardial Ischemia Reperfusion Injury-Induced Necroptosis by up-Regulation of OGT-Mediated O-GlcNAcylated RIPK3. Aging 2020, 12, 25452–25468. [Google Scholar] [CrossRef]
- Greco, M.; Landoni, G.; Biondi-Zoccai, G.; Cabrini, L.; Ruggeri, L.; Pasculli, N.; Giacchi, V.; Sayeg, J.; Greco, T.; Zangrillo, A. Remifentanil in Cardiac Surgery: A Meta-Analysis of Randomized Controlled Trials. J. Cardiothorac. Vasc. Anesth. 2012, 26, 110–116. [Google Scholar] [CrossRef]
- Lewinska, A.; Adamczyk-Grochala, J.; Bloniarz, D.; Horeczy, B.; Zurek, S.; Kurowicki, A.; Woloszczuk-Gebicka, B.; Widenka, K.; Wnuk, M. Remifentanil Preconditioning Protects against Hypoxia-Induced Senescence and Necroptosis in Human Cardiac Myocytes in Vitro. Aging 2020, 12, 13924–13938. [Google Scholar] [CrossRef] [PubMed]
- Weng, X.; Zhang, X.; Lu, X.; Wu, J.; Li, S. Reduced Mitochondrial Response Sensitivity Is Involved in the Anti-apoptotic Effect of Dexmedetomidine Pretreatment in Cardiomyocytes. Int. J. Mol. Med. 2018, 41, 2328–2338. [Google Scholar] [CrossRef] [Green Version]
- Yin, W.; Wang, C.; Peng, Y.; Yuan, W.; Zhang, Z.; Liu, H.; Xia, Z.; Ren, C.; Qian, J. Dexmedetomidine Alleviates H(2)O(2)-Induced Oxidative Stress and Cell Necroptosis through Activating of A2-Adrenoceptor in H9C2 Cells. Mol. Biol. Rep. 2020, 47, 3629–3639. [Google Scholar] [CrossRef] [PubMed]
- Ji, F.; Li, Z.; Nguyen, H.; Young, N.; Shi, P.; Fleming, N.; Liu, H. Perioperative Dexmedetomidine Improves Outcomes of Cardiac Surgery. Circulation 2013, 127, 1576–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibacache, M.; Sanchez, G.; Pedrozo, Z.; Galvez, F.; Humeres, C.; Echevarria, G.; Duaso, J.; Hassi, M.; Garcia, L.; Díaz-Araya, G.; et al. Dexmedetomidine Preconditioning Activates Pro-Survival Kinases and Attenuates Regional Ischemia/Reperfusion Injury in Rat Heart. Biochim. Biophys. Acta 2012, 1822, 537–545. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Cao, X.; Zhao, C.; Chen, L.; Chen, X. Empagliflozin Activates JAK2/STAT3 Signaling and Protects Cardiomyocytes from Hypoxia/Reoxygenation Injury under High Glucose Conditions. J. Thromb. Thrombolysis 2022, 55, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Nikolaou, P.E.; Efentakis, P.; Abu Qourah, F.; Femminò, S.; Makridakis, M.; Kanaki, Z.; Varela, A.; Tsoumani, M.; Davos, C.H.; Dimitriou, C.A.; et al. Chronic Empagliflozin Treatment Reduces Myocardial Infarct Size in Nondiabetic Mice Through STAT-3-Mediated Protection on Microvascular Endothelial Cells and Reduction of Oxidative Stress. Antioxid. Redox Signal. 2021, 34, 551–571. [Google Scholar] [CrossRef]
- Jones, S.P.; Trocha, S.D.; Lefer, D.J. Pretreatment with Simvastatin Attenuates Myocardial Dysfunction after Ischemia and Chronic Reperfusion. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 2059–2064. [Google Scholar] [CrossRef] [Green Version]
- Naseroleslami, M.; Niri, N.M.; Akbarzade, I.; Sharifi, M.; Aboutaleb, N. Simvastatin-Loaded Nano-Niosomes Confer Cardioprotection against Myocardial Ischemia/Reperfusion Injury. Drug Deliv. Transl. Res. 2022, 12, 1423–1432. [Google Scholar] [CrossRef]
- Zhu, H.; Tan, Y.; Du, W.; Li, Y.; Toan, S.; Mui, D.; Tian, F.; Zhou, H. Phosphoglycerate Mutase 5 Exacerbates Cardiac Ischemia-Reperfusion Injury through Disrupting Mitochondrial Quality Control. Redox Biol. 2021, 38, 101777. [Google Scholar] [CrossRef]
- Parks, R.J.; Menazza, S.; Holmström, K.M.; Amanakis, G.; Fergusson, M.; Ma, H.; Aponte, A.M.; Bernardi, P.; Finkel, T.; Murphy, E. Cyclophilin D-Mediated Regulation of the Permeability Transition Pore Is Altered in Mice Lacking the Mitochondrial Calcium Uniporter. Cardiovasc. Res. 2019, 115, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Kang, P.; Wang, J.; Fang, D.; Fang, T.; Yu, Y.; Zhang, W.; Shen, L.; Li, Z.; Wang, H.; Ye, H.; et al. Activation of ALDH2 Attenuates High Glucose Induced Rat Cardiomyocyte Fibrosis and Necroptosis. Free Radic. Biol. Med. 2020, 146, 198–210. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Ma, Q.; Toan, S.; Wang, J.; Zhou, H.; Liang, J. SERCA Overexpression Reduces Reperfusion-Mediated Cardiac Microvascular Damage through Inhibition of the Calcium/MCU/MPTP/Necroptosis Signaling Pathways. Redox Biol. 2020, 36, 101659. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, B.; Sun, S.; Cao, S.; Zhai, X.; Zhang, C.; Zhang, Q.; Yuan, Q.; Sun, Y.; Xue, M.; et al. Inhibition of Adenosine Kinase Attenuates Myocardial Ischaemia/Reperfusion Injury. J. Cell. Mol. Med. 2021, 25, 2931–2943. [Google Scholar] [CrossRef]
- Gao, X.-Q.; Liu, C.-Y.; Zhang, Y.-H.; Wang, Y.-H.; Zhou, L.-Y.; Li, X.-M.; Wang, K.; Chen, X.-Z.; Wang, T.; Ju, J.; et al. The CircRNA CNEACR Regulates Necroptosis of Cardiomyocytes through Foxa2 Suppression. Cell Death Differ. 2022, 29, 527–539. [Google Scholar] [CrossRef]
- Wang, Q.; Park, K.H.; Geng, B.; Chen, P.; Yang, C.; Jiang, Q.; Yi, F.; Tan, T.; Zhou, X.; Bian, Z.; et al. MG53 Inhibits Necroptosis Through Ubiquitination-Dependent RIPK1 Degradation for Cardiac Protection Following Ischemia/Reperfusion Injury. Front. Cardiovasc. Med. 2022, 9, 868632. [Google Scholar] [CrossRef]
- Zhang, D.-Y.; Wang, B.-J.; Ma, M.; Yu, K.; Zhang, Q.; Zhang, X.-W. MicroRNA-325-3p Protects the Heart after Myocardial Infarction by Inhibiting RIPK3 and Programmed Necrosis in Mice. BMC Mol. Biol. 2019, 20, 17. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, P.; Rajesh, M.; Bátkai, S.; Patel, V.; Kashiwaya, Y.; Liaudet, L.; Evgenov, O.V.; Mackie, K.; Haskó, G.; Pacher, P. CB1 Cannabinoid Receptors Promote Oxidative Stress and Cell Death in Murine Models of Doxorubicin-Induced Cardiomyopathy and in Human Cardiomyocytes. Cardiovasc. Res. 2010, 85, 773–784. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, D.; Dong, X.; Zhu, R.; Ye, Y.; Li, L.; Jiang, Y. Pharmacological Activation of CB2 Receptor Protects against Ethanol-Induced Myocardial Injury Related to RIP1/RIP3/MLKL-Mediated Necroptosis. Mol. Cell. Biochem. 2020, 474, 1–14. [Google Scholar] [CrossRef]
- Qiu, Q.; Shen, T.; Yu, X.; Jia, N.; Zhu, K.; Wang, Q.; Liu, B.; He, Q. Cardiac Shock Wave Therapy Alleviates Hypoxia/Reoxygenation-Induced Myocardial Necroptosis by Modulating Autophagy. Biomed. Res. Int. 2021, 2021, 8880179. [Google Scholar] [CrossRef]
- Li, L.; Lin, L.; Lei, S.; Shi, S.; Chen, C.; Xia, Z. Maslinic Acid Inhibits Myocardial Ischemia-Reperfusion Injury-Induced Apoptosis and Necroptosis via Promoting Autophagic Flux. DNA Cell Biol. 2022, 41, 487–497. [Google Scholar] [CrossRef]
- Afousi, A.G.; Gaeini, A.; Rakhshan, K.; Naderi, N.; Azar, A.D.; Aboutaleb, N. Targeting Necroptotic Cell Death Pathway by High-Intensity Interval Training (HIIT) Decreases Development of Post-Ischemic Adverse Remodelling after Myocardial Ischemia/Reperfusion Injury. J. Cell Commun. Signal. 2019, 13, 255–267. [Google Scholar] [CrossRef]
- Davidson, S.M.; Ferdinandy, P.; Andreadou, I.; Bøtker, H.E.; Heusch, G.; Ibáñez, B.; Ovize, M.; Schulz, R.; Yellon, D.M.; Hausenloy, D.J.; et al. Multitarget Strategies to Reduce Myocardial Ischemia/Reperfusion Injury: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2019, 73, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Li, D.; Zhu, P.; Ma, Q.; Toan, S.; Wang, J.; Hu, S.; Chen, Y.; Zhang, Y. Inhibitory Effect of Melatonin on Necroptosis via Repressing the Ripk3-PGAM5-CypD-MPTP Pathway Attenuates Cardiac Microvascular Ischemia-Reperfusion Injury. J. Pineal Res. 2018, 65, e12503. [Google Scholar] [CrossRef] [PubMed]
- Boisguérin, P.; Covinhes, A.; Gallot, L.; Barrère, C.; Vincent, A.; Busson, M.; Piot, C.; Nargeot, J.; Lebleu, B.; Barrère-Lemaire, S. A Novel Therapeutic Peptide Targeting Myocardial Reperfusion Injury. Cardiovasc. Res. 2020, 116, 633–644. [Google Scholar] [CrossRef] [PubMed]
Cell Death | Major Mediator | Morphological Characteristics | Inflammation Reaction |
---|---|---|---|
Necroptosis | Caspase-8, RIPKI, RIPK3, MLKL, CaMKII, PGAM5 | Cellular swelling, Plasma membrane rupture, Organelle dilation, Translucent cytoplasm, Abundant release of DAMP | Yes |
apoptosis | Caspase-9/8/3/6/7 | Cellular shrinkage, Membrane blebbing, Nucleus fragmentation, Chromatin condensation, Formation of apoptotic bodies, Low release of DAMP | No |
Ferroptosis | Fe, active oxvgen | Mitochondrial shrinkage, mitochondrial cristae reduction, mitochondrial membrane density increases, mitochondrial outer membrane rupture | No |
Pyroptosis | Caspase-1/4/5/11 | Cell membrane pores, Cellular swelling, pyknosis | No |
CypD-mediated necrosis | CypD, p53 | Loss of plasma membrane integorganelle swelling, massive intracellular vacuoles, lack of nuclear fragmentation, mitochondrial swelling and rupture of OMM | No |
Agent | Model | Cell or (and) Animals | Main Findings | Ref. |
---|---|---|---|---|
4-HNE | in vitro H/R, in vivo 30 min I/4 or 24 h R | H9C2 cells, C57BL/6 mice, ALDH2-Tg mice | 4-HNE increased RIPK1, RIPK3, MLKL, and CaMKII expression and activation. | [33] |
Metformin | Ripk3−/− mice | Male C57BL/6 mice | Metformin treatment disrupted p62–RIPK1–RIPK3 complexes and effectively repressed I/R-induced necroptosis in aged hearts. | [38] |
The inhibition of RIPK3 (GSK′872 or HS-1371) | in vivo 30 min I/4 or 10 min R | Adult male Wistar rats | RIPK3 regulated early reperfusion injury via oxidative stress and mitochondrial activity-related effects rather than cell loss due to necroptosis. RIPK3 inhibition prevented plasma membrane rupture and delayed mPTP opening. | [39] |
PGAM5 inhibitor | in vitro 10 h H/4 h R, in vivo 1 h I/3 h R, Knockdown of PGAM5 in H9C2 Cells | H9C2 cells, SD rat | The I/R-treated rat heart increased infarct size, CK release, upregulation of PGAM5, Drp1, p-Drp1-S616, RIPK1, RIPK3, and MLKL. These phenomena were attenuated by inhibition of PGAM5 or RIPK1. In H9C2 cells, H/R treatment elevated the levels of PGAM5, RIPK1, RIPK3, MLKL, Drp1, and p-Drp1-S616 and induced mitochondrial dysfunction. These effects were blocked by inhibition or knockdown of PGAM5. | [40] |
Parkin | in vivo 5 min I/1 h R | SD rats, adult C57BL/6 mice | Parkin mediated mitophagy, inhibited necroptosis under oxidative stress, and suppressed mPTP opening by catalyzing the ubiquitination of CypD in necrotic cascades. | [43] |
Z-vad (apoptosis inhibitors), Nec-1 and Fer-1 | in vivo 30 min I/2 h R | Male Wistar rats | Apoptosis and ferroptosis inhibitors exerted cardioprotective effects through the modulation of mitochondrial function and the inhibition of apoptosis and ferroptosis pathways, whereas necroptosis did not participate in the pathogenesis in this acute cardiac I/R setting. | [47] |
SB-706375 (a selective receptor antagonist of hU-II) | in vivo 30 min I/15, 30, 60 min R | Male and female SD rats | SB-706375 significantly inhibited the changes of haemodynamic parameters, reduced LDH and CK-MB activities, and decreased cTnI levels. | [59] |
CML, the major member of advanced glycation end products | in vivo 40 min I/24 h R, in vitro 12 h H/4 h R | Wild-type C57BL/6J male mice aged 7–8 wk, neonatal mice aged 1–3 d, homozygous RAGE knockout mice | CML increased the phosphorylation of RIPK3 and downstream proteins through RAGE. RAGE deficiency effectively blocked these effects. | [64] |
Nec-1 | in vivo 30 min I/12, 24, 48, 72 h R | Male SD rats | Nec-1 might reduce myocardial cell death, LV remodeling, and maintain myoarchitectonic integrity. The administration of Nec-1 (0.6 mg/kg) at the onset of reperfusion significantly reduced the release of CK and downregulation of autophagy. At higher concentrations (1.8 mg/kg), Nec-1 would increase the mortality rate of rats subjected to chronic myocardial ischemia. | [69] |
Nec-1 | in vivo 30 min I/2 h R | Male Wistar rats weighing between 400 and 500 g | Bax and Bcl-2 are potentially central regulators of apoptosis, necroptosis, and ferroptosis, as they serve as crosstalk between these cell death pathways. | [78] |
compound 547 | H2O2 stimulation for 24 h | hfCPCs | Compound 547 decreased the necrotic cell population, RIPK1, RIPK3, MLKL, and CAMKII, without decreasing mRNA levels. It also increased cell viability and reduced mitochondrial damage. | [80] |
GSK′872, a specific RIPK3 inhibitor, RIPK3 siRNA transfection | AGEs stimulation for 24 h | The cardiomyocytes were isolated from 1–3-day-old SD rats | AGEs increased the expression of RIPK3, aggravated the disorder of CaMKIIδ alternative splicing, promoted CaMKII activation, enhanced oxidative stress, induced necroptosis, and damaged cardiomyocytes. RIPK3 downregulation or RIPK3 inhibitor GSK′872 can improve the above phenomenon. | [82] |
DIMO | in vivo 30 min I/4 h R | Adult male SD rats | DIMO at doses of 1 or 2 mg/kg improved myocardial infarct size. The DIMO 4 mg/kg dose was ineffective. DIMO at a dose of 0.1 μM decreased LDH leakage and the ratio of PI-positive cells followed by OGD/R treatment. DIMO Inhibits RIP1K’s interaction with RIP3K.DIMO attenuated myocardial I/R- induced lysosome injury. | [85] |
RES | in vivo 30 min I/24 h R | Male SD rats (8–10 weeks old) | The expressions of TNF-α, RIP1, RIP3, and p-MLKL/MLKL in H/R myocardial cells treated with different concentrations of RES were significantly downregulated. | [88] |
CDDO | in vivo 2 h I/24 h R (left middle cerebral artery) | HT-29 cells, L929 cells, TNF-induced SIRS, female C57BL/6 J mice (6–8 weeks old), male SD rats | CDDO blocked necrosome formation by targeting Hsp90 to inhibit the phosphorylation of RIPK1 and RIPK3 in necroptotic cells. | [89] |
GAD | in vivo 45 min I/3 h R, in vitro H/R model | Female pregnant SD rats | GAD attenuates ROS production and oxidative damage, inhibits H/R induced MAPK/NF-κB signaling, and promotes antiapoptotic Bcl-2 expression. | [90] |
TI | in vivo 30 min I/2 h R | H9C2 cells, SD rat | TI pretreatment attenuated oxidative stress by mitigating ROS generation, reversing MMP loss, inhibiting the expression of p-RIP1, p-RIP3, and p-MLKL, and promoting the expression of antioxidant-related proteins such as phosphorylation of Akt, Nrf2, NQO-1, and HO-1. | [93] |
Arctiin | in vivo 1 h I/3 h R, in vitro H/R model | Male SD rats, H9C2 cells | Arctiin decreased myocardial infarct size, CK release, and the levels of RIPK1/p-RIPK1, RIPK3/p-RIPK3, and MLKL/p-MLKL in I/R-treated rat hearts. Arctiin reduced ROS production and improved mitochondrial function in H/R-treated H9C2 cells. Arctiin can interact with RIPK1 or MLKL but not RIPK3. | [96] |
BC | in vivo 30 min I/1 h R | Langendorff-perfused C57BL/6JNarl mice | BC reduced myocardial infarct size, myoglobin release, and oxidation of CaMKII, decreased different types of ventricular arrhythmias and action potential depolarization, and inhibited Na+ current density without changing the kinetics. | [99] |
Baicalin | in vivo 45 min I/6 h R, in vitro H/R model | Male Wistar rats | Baicalin promoted the production of NO and cGMP, inhibited myocardial cell apoptosis, improved cardiac function, and decreased the myocardial infarction area in the in vivo IR model. Baicalin suppressed the protein expression of RIPK1, RIPK3, and p-MLKL to interrupt CMEC necroptosis and improved cell activity and function in the in vitro H/R model. | [102] |
Rg2 | in vivo 30 min I/4 h R, in vitro H/R model | H9C2 cells, Male C57/BL6 mice | Rg2 increased TAK1 phosphorylation and enhanced TAK1 binding to RIPK1 while inhibiting the phosphorylation of RIPK1, RIPK3, MLKL, and RIPK1/RIPK3 complex (necrosome) formation, ultimately reducing MIRI-induced necroptosis. | [103] |
Recombinant apyrase, (AZD3366), Ticagrelor | in vivo 30 min I/24 h R | Male SD rats | AZD3366 attenuated the phosphorylation of RIPK1, RIPK3, and MLKL, ultimately reducing necroptosis, inflammation, necrosis, and pyroptosis. The effects of AZD3366 and ticagrelor were additive. | [106] |
SPC | in vivo 30 min I/2 h R | Male SD rats | SPC reduced the expression of RIPK3, MLKL, and myocardial infarction size, and improved cardiac function, hemodynamic performance. It also attenuated histopathological changes. | [110] |
Remifentanil and other opioids | a model of human cardiomyocytes treated with the hypoxia-mimetic agent cobalt chloride | HCM isolated from the ventricles of the adult heart | Remifentanil preconditioning attenuated hypoxia-induced senescence in HCM, decreased the phosphorylation of RIPK3 and MLKL, and diminished HIF-1α signaling upon cobalt chloride treatment. | [112] |
Dex, α2-AR, YOH | H9C2 cells were exposed to various concentrations (100 μM, 500 μM, and 1000 μM) of H2O2 for 12 h | H9C2 (embryonic rat heart-derived myoblast) cells | H2O2 decreased cell viability and increased LDH release and necroptotic and apoptotic cell death. Dex preconditioning alleviated these injuries induced by H2O2. Dex preconditioning increased expression of the protein HO-1 and decreased the expressions of the proteins RIPK1 and RIPK3 induced by H2O2. | [114] |
HMGB1 Knockdown by siRNA | in vitro 6 h H/4 h R | H9C2 (embryonic rat heart-derived myoblast) cells | H/R increased the protein levels of RIPK1, RIPK3, MLKL, CK-MB, cTnI, TNF-α, IL-1β, IL-6, and HMGB. The above indicators were ameliorated via dexmedetomidine preconditioning. Silencing expression of HMGB1 reinforced the protective effects of DEX preconditioning against H/R-induced necroptosis. | [66] |
EMPA | in vitro H/R | Rat H9C2 cardiomyocytes | H/R injury induced cell apoptosis, necroptosis, oxidative stress, and endoplasmic reticulum stress. EMPA protected against I/R-induced cardiomyocyte injury by activating JAK2/STAT3 signaling. | [117] |
Simvastatin (SIM) | in vivo 45 min I/R | Male Wistar rats | MI–RI gives rise to initiation of the Rho/ROCK pathway, which was reversed by SIM and nano-niosomes containing SIM. | [120] |
Phenhydan® | all cells were cultured in a humidified 5% CO2 atmosphere | L929, NIH3T3, HT-29, U937, and Jurkat cells, C57BL/6 | Phenhydan® treatment suppressed phosphorylation and activation of RIPK1 (p-S166), RIPK3 (p-S227 in human and p-T231/S232 in murine cells), and MLKL (p-S358 in human and p-S345 in murine cells) in these cells. | [34] |
Combination of ponatinib with deferoxamine | in vivo 1 h I/3 h R, in vitro 10 h H/4 h R | H9C2 cells, Male SD rats. | The combination of ponatinib with deferoxamine reduces myocardial infarct size and CK release, and the combination therapy is more efficient than single medication. | [68] |
PGAM5 | in vivo 45 min I/0–24 h R | Cardiac-specific PGAM5 knockout mice, | Cardiac-specific PGAM5 deletion reduced myocardial infarction area, improved cardiomyocyte mitochondrial function, and attenuated cardiac inflammation. Genetic ablation of PGAM5 sustained myocardial function upon I/R injury. | [121] |
ALDH2 | high glucose-induced cardiomyocyte injury | SD rats | Activation of ALDH2 prevented the happening of fibrosis, apoptosis, and necroptosis in the high-glucose-induced primary cardiomyocyte injury model. The protective effects were related to the inhibition of oxidative stress and inflammation and the changing of MMP14 and TIMP4. | [123] |
AAV9-mediated SERCA overexpression | in vivo 45 min I/4 h R | Male C57BL/6J mice | Overexpression of SERCA reduced luminal stenosis and vascular wall edema, attenuated intracellular calcium overload, suppressed MCU expression, and prevented the abnormal opening of mPTP. | [124] |
the ADK inhibitor ABT-702 intraperitoneally injected AAV9 (adeno-associated virus)-ADK-shRNA | in vivo 30 min I/4 and 24 h R | C57BL/6 mice | ABT-702 reduced the phosphorylation of RIPK3, MLKL, CaMKII, and infarct size and suppressed the activation of caspase-9, caspase-8, and caspase-3 but not caspase-12. It also prevented the opening of the mPTP in I/R-injured hearts. | [125] |
mmu_circ_000338, a CNEACR | in vivo I/R, in vitro H/R | Mice | CNEACR can regulate the cardiomyocyte-necroptosis-associated activity of HDACs, promote cell survival, and improve cardiac function in I/R-injured hearts. | [126] |
MG53 | in vivo 40 min I/R, in vitro H/R | Adult wild-type, mg53−/−, and tPA-MG53 mice, hiPSCs-derived cardiomyocytes | MG53 suppressed the activation of RIPK1, RIPK3, and MLKL. Upon injury, the generation of ROS in the infarct zone of the hearts promoted interactions between MG53 and RIPK1.The application of NAC disrupted the interaction between MG53 and RIPK1 and abolished MG53-mediated cardioprotective effects. | [127] |
ethanol, CB2R agonists | Ethanol induced myocardial injury | Male C57BL/6J mice | Chronic ethanol exposure induced myocardial injury. Nec-1 alleviates necroptosis and ethanol-induced myocardial injury, and CB2R agonists reduced the phosphorylation of RIPK1, RIPK3, and MLKL. | [130] |
SWT | in vitro 5 h H/12 h R | HL-1 cells (HL-1 cardiomyocytes, a cardiac cell line derived from the AT-1 mouse atrial myocyte tumor lineage) | SWT increased cell viability and cytotoxicity in the H/R model, decreased RIPK1, RIPK3, and Beclin1 expression, decreased ROS production, and decreased the ratio of LC3-II/LC3-I following H/R. In the tfLC3 assay, the SWT provoked a decrease in the cumulative autophagosome abundance. | [131] |
MA | in vivo 30 min I/R, in vitro H/R | Male SD rats, H9C2 cells | MA alleviated myocardial tissue injury, downregulated CK-MB and LDH levels, and reduced infarct size by promoting autophagic flux. | [132] |
HIIT | in vivo 30 min I/8 weeks R | Male Wistar rats | HIIT decreased the expression of MLKL, RIPK3, and RIPK1, reduced lipid peroxidation and infarct size, improved endogenous antioxidant system and heart function, and restored SOD activity. Long-term HIIT decreased MDA levels. HIIT preserved left ventricular function and prevented remodeling by restoring EF and FS. Long-term HIIT reduced the interstitial collagen deposition and scar formation in the myocardium. | [133] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, Y.; Zang, J.; Li, Y.; Wu, X. Pharmaceutical Therapies for Necroptosis in Myocardial Ischemia–Reperfusion Injury. J. Cardiovasc. Dev. Dis. 2023, 10, 303. https://doi.org/10.3390/jcdd10070303
Zhang Y, Zhang Y, Zang J, Li Y, Wu X. Pharmaceutical Therapies for Necroptosis in Myocardial Ischemia–Reperfusion Injury. Journal of Cardiovascular Development and Disease. 2023; 10(7):303. https://doi.org/10.3390/jcdd10070303
Chicago/Turabian StyleZhang, Yinchang, Yantao Zhang, Jinlong Zang, Yongnan Li, and Xiangyang Wu. 2023. "Pharmaceutical Therapies for Necroptosis in Myocardial Ischemia–Reperfusion Injury" Journal of Cardiovascular Development and Disease 10, no. 7: 303. https://doi.org/10.3390/jcdd10070303
APA StyleZhang, Y., Zhang, Y., Zang, J., Li, Y., & Wu, X. (2023). Pharmaceutical Therapies for Necroptosis in Myocardial Ischemia–Reperfusion Injury. Journal of Cardiovascular Development and Disease, 10(7), 303. https://doi.org/10.3390/jcdd10070303