Perioperative Application of Levosimendan Optimizes Postoperative Renal Function and Organ Perfusion in Patients with Severe Heart Failure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Definition of Renal Failure
- Stage 1: mild kidney damage and normal or near-normal GFR (>90 mL/min/1.73 m2);
- Stage 2: mild to moderate kidney damage and a slightly reduced GFR (60–89 mL/min/1.73 m2);
- Stage 3:
- ○
- Stage 3A: moderate reduction in GFR (45–59 mL/min/1.73 m2);
- ○
- Stage 3B: severe reduction in GFR (30–44 mL/min/1.73 m2);
- Stage 4: severe kidney damage and a significant decline in GFR (15–29 mL/min/1.73 m2);
- Stage 5: end-stage renal, GFR is severely reduced (<15 mL/min/1.73 m2) or dialysis is required.
2.3. Surgical Procedure, Postoperative Course, and Application of Levosimendan
2.4. Patients’ Follow-Up
2.5. Data Collection
2.6. Inclusion Criteria
2.7. Exclusion Criteria
2.8. Antifibrinolytic Therapy
2.9. Ethics
2.10. Measured Parameters
2.11. Statistical Analysis
3. Results
3.1. Demographic Characteristics of the Study Population
3.2. Intraoperative Data
3.3. Impact of Application of Levosimendan on Renal Function and Need for Renal Replacement Therapy
3.4. Other Biochemical Parameters
3.5. Hemoglobin and Need for Transfusion of Blood Products
3.6. Other Postoperative Complications
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baraki, H.; Gohrbandt, B.; Del Bagno, B.; Haverich, A.; Boethig, D.; Kutschka, I. Does pulsatile perfusion improve outcome after cardiac surgery? A propensity-matched analysis of 1959 patients. Perfusion 2012, 27, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Sear, J.W. Kidney dysfunction in the postoperative period. Br. J. Anaesth. 2005, 95, 20–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nohria, A.; Hasselblad, V.; Stebbins, A.; Pauly, D.F.; Fonarow, G.C.; Shah, M.; Yancy, C.W.; Califf, R.M.; Stevenson, L.W.; Hill, J.A. Cardiorenal interactions: Insights from the ESCAPE trial. J. Am. Coll. Cardiol. 2008, 51, 1268–1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobson, C.E.; Yavas, S.; Segal, M.S.; Schold, J.D.; Tribble, C.G.; Layon, A.J.; Bihorac, A. Acute kidney injury is associated with increased long-term mortality after cardiothoracic surgery. Circulation 2009, 119, 2444–2453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chawla, L.S.; Eggers, P.W.; Star, R.A.; Kimmel, P.L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 2014, 371, 58–66. [Google Scholar] [CrossRef]
- Ronco, C.; Haapio, M.; House, A.A.; Anavekar, N.; Bellomo, R. Cardiorenal syndrome. J. Am. Coll. Cardiol. 2008, 52, 1527–1539. [Google Scholar] [CrossRef] [Green Version]
- Zima, E.; Farmakis, D.; Pollesello, P.; Parissis, J.T. Differential effects of inotropes and inodilators on renal function in acute cardiac care. Eur. Heart J. Suppl. 2020, 22 (Supp. D), D12–D19. [Google Scholar] [CrossRef]
- Rafouli-Stergiou, P.; Parissis, J.T.; Anastasiou-Nana, M. Inotropes for the management of acute heart failure patients with renal dysfunction. Still an option? Expert. Opin. Pharmacother. 2012, 13, 2637–2647. [Google Scholar] [CrossRef]
- Lannemyr, L.; Bragadottir, G.; Krumbholz, V.; Redfors, B.; Sellgren, J.; Ricksten, S.E. Effects of cardiopulmonary bypass on renal perfusion, filtration, and oxygenation in patients undergoing cardiac surgery. Anesthesiology 2017, 126, 205–213. [Google Scholar] [CrossRef]
- Salmasi, V.; Maheshwari, K.; Yang, D.; Mascha, E.J.; Singh, A.; Sessler, D.I.; Kurz, A. Relationship between intraoperative hypotension, defined by either reduction from baseline or absolute thresholds, and acute kidney and myocardial injury after noncardiac surgery: A retrospective cohort analysis. Anesthesiology 2017, 126, 47–65. [Google Scholar] [CrossRef]
- Thompson, D.; Pepys, M.B.; Wood, S.P. The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure 1999, 7, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Griselli, M.; Herbert, J.; Hutchinson, W.L.; Taylor, K.M.; Sohail, M.; Krausz, T.; Pepys, M.B. C-reactive protein and complement are important mediators of tissue damage in acute myocardial infarction. J. Exp. Med. 1999, 190, 1733–1740. [Google Scholar] [CrossRef] [PubMed]
- Hamm, L.L.; Nakhoul, N.; Hering-Smith, K.S. Acid-Base Homeostasis. Clin. J. Am. Soc. Nephrol. 2015, 10, 2232–2242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinlay, S.; Libby, P.; Ganz, P. Endothelial function and coronary artery disease. Curr. Opin. Lipidol. 2001, 12, 383–389. [Google Scholar] [CrossRef]
- Gimbrone, M.A., Jr.; García-Cardena, G. Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovasc. Pathol. 2013, 22, 9–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giuseppe, M.C.R.; Fini, M.; Caminiti, G.; Barbaro, G. Cardiac Metabolism in Myocardial Ischemia. Curr. Pharm. Des. 2008, 14, 2551–2562. [Google Scholar]
- Ketelhuth, D.F.J.; Back, M. The role of matrix metalloproteinases in atherothrombosis. Curr. Atheroscler. Rep. 2011, 13, 162–169. [Google Scholar] [CrossRef]
- Nicoll, R.; Henein, M. Arterial calcification: A new perspective? Int. J. Cardiol. 2016, 228, 11–22. [Google Scholar] [CrossRef]
- Larsen, S.B.; Grove, E.L.; Wurtz, M.; Neergaard-Petersen, S.; Hvas, A.M.; Kristensen, S.D. The influence of low-grade inflammation on platelets in patients with stable coronary artery disease. Thromb. Haemost. 2015, 114, 519–529. [Google Scholar] [CrossRef]
- Musunuru, K.; Kathiresan, S. Surprises from genetic analyses of lipid risk factors for atherosclerosis. Circ. Res. 2016, 118, 579–585. [Google Scholar] [CrossRef]
- McPherson, R.; Tybjaerg-Hansen, A. Genetics of coronary artery disease. Circ. Res. 2016, 118, 564–578. [Google Scholar] [CrossRef] [PubMed]
- Yakut, N.; Yasa, H.; Bahriye Lafci, B.; Ortac, R.; Tulukoglu, E.; Aksun, M.; Ozbek, C.; Gurbuz, A. The influence of levosimendan and iloprost on renal ischemia-reperfusion: An experimental study. Interact. Cardiovasc. Thorac. Surg. 2008, 7, 235–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bragadottir, G.; Redfors, B.; Ricksten, S.E. Effects of levosimendan on glomerular filtration rate, renal blood flow, and renal oxygenation after cardiac surgery with cardiopulmonary bypass: A randomized placebo-controlled study. Crit. Care Med. 2013, 41, 2328–2335. [Google Scholar] [CrossRef] [PubMed]
- Baysal, A.; Yanartas, M.; Dogukan, M.; Gundogus, N.; Kocak, T.; Koksal, C. Levosimendan Improves Renal Outcome in Cardiac Surgery: A Randomized Trial. J. Carioth. Vasc. Anesth. 2014, 28, 586–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tholén, M.; Ricksten, S.E.; Lannemyr, L. Effects of levosimendan on renal blood flow and glomerular filtration in patients with acute kidney injury after cardiac surgery: A double blind, randomized placebo-controlled study. Cri. T. Care 2021, 25, 207. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.Y.; Deo, S.V.; Rababa’h, A.; Altarabsheh, S.E.; Cho, Y.H.; Hang, D.; McGraw, M.; Avery, E.G.; Markowitz, A.H.; Park, S.J. Levosimendan Reduces Mortality in Adults with Left Ventricular Dysfunction Undergoing Cardiac Surgery: A Systematic Review and Meta-analysis. J. Card. Surg. 2015, 30, 547–554. [Google Scholar] [CrossRef]
- Landoni, G.; Mizzi, A.; Biondi-Zoccai, G.; Bruno, G.; Bignami, E.; Corno, L.; Zambon, M.; Gerli, C.; Zangrillo, A. Reducing mortality in cardiac surgery with levosimendan: A meta-analysis of randomized controlled trials. J. Cardiothorac. Vasc. Anesth. 2010, 24, 51–57. [Google Scholar] [CrossRef]
- Landoni, G.; Rodseth, R.N.; Santini, F.; Ponschab, M.; Ruggeri, L.; Székely, A.; Pasero, D.; Augoustides, J.G.; Del Sarto, P.A.; Krzych, L.J.; et al. Randomized evidence for reduction of perioperative mortality. J. Cardiothorac. Vasc. Anesth. 2012, 26, 764–772. [Google Scholar] [CrossRef]
- Tritapepe, L.; De Santis, V.; Vitale, D.; Guarracino, F.; Pellegrini, F.; Pietropaoli, P.; Singer, M. Levosimendan pre-treatment improves outcomes in patients undergoing coronary artery bypass graft surgery. Br. J. Anaesth. 2009, 102, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Ristikankare, A.; Pöyhiä, R.; Eriksson, H.; Valtonen, M.; Leino, K.; Salmenperä, M. Effects of levosimendan on renal function in patients undergoing coronary artery surgery. J. Cardiothorac. Vasc. Anesth. 2012, 26, 591–595. [Google Scholar] [CrossRef]
- Guerrero Orriach, J.L.; Navarro Arce, I.; Hernandez Rodriguez, P.; Raigón Ponferrada, A.; Malo Manso, A.; Ramirez Aliaga, M.; Ramirez Fernandez, A.; Escalona Belmonte, J.J.; Bellido Estevez, I.; Gomez Luque, A.; et al. Preservation of renal function in cardiac surgery patients with low cardiac output syndrome: Levosimendan vs beta agonists. BMC Anesthesiol. 2019, 19, 212. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, M.B.; Grossini, E.; Silva Cardoso, J.C.; Édes, I.; Fedele, F.; Pollesello, P.; Kivikko, M.; Harjola, V.P.; Hasslacher, J.; Mebazaa, A.; et al. Renal effects of levosimendan: A consensus report. Cardiovasc. Drugs Ther. 2013, 27, 581–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.; Gong, J.; Chen, D.; Wang, W.; Liu, M.; Liu, B. Levosimendan for Prevention of Acute Kidney Injury After Cardiac Surgery: A Meta-analysis of Randomized Controlled Trials. Am. J. Kidney Dis. 2016, 67, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.H.; Hur, M.; Park, S.K.; Jung, D.E.; Kang, P.; Yoo, S.; Bahk, J.H. Pharmacological interventions for protecting renal function after cardiac surgery: A Bayesian network meta-analysis of comparative effectiveness. Anaesthesia 2018, 73, 1019–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiang, H.; Luo, X.; Huo, J.H.; Wang, Z.Q. Perioperative Use of Levosimendan Improves Clinical Outcomes in Patients after Cardiac Surgery: A Systematic Review and Meta-Analysis. J. Cardiovasc. Pharmacol. 2018, 72, 11–18. [Google Scholar] [CrossRef]
- Long, Y.X.; Cui, D.Y.; Kuang, X.; Hu, Y.; Hu, S.; Wang, C.P.; Liu, Z.Z. Effect of levosimendan on renal function in background of left ventricular dysfunction: A meta-analysis of randomized trials. Expert. Opin. Drug Saf. 2021, 20, 1411–1420. [Google Scholar] [CrossRef]
- Jawitz, O.K.; Stebbins, A.S.; Raman, V.; Alhanti, B.; van Diepen, S.; Heringlake, M.; Fremes, S.; Whitlock, R.; Meyer, S.R.; Mehta, R.H.; et al. Association between levosimendan, postoperative AKI, and mortality in cardiac surgery: Insights from the LEVO-CTS trial. Am. Heart J. 2021, 231, 18–24. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, L.; Fu, R.; Qin, P.; Zhang, X.; Tian, T.; Feng, G.X.; Yang, Y.M. Impact of levosimendan on efficacy and renal function in acute heart failure according to renal function: A perspective, multi-center, real-world registry. Front. Cardiovasc. Med. 2022, 9, 986039. [Google Scholar] [CrossRef]
- Varan, B.; Tokel, K.; Mercan, S.; Dönmez, A.; Aslamaci, S. Systemic inflammatory response related to cardiopulmonary bypass and its modification by methyl prednisolone: High dose versus low dose. Pediatr. Cardiol. 2002, 23, 437–441. [Google Scholar] [CrossRef]
- Li, S.; Price, R.; Phiroz, D.; Swan, K.; Crane, T.A. Systemic inflammatory response during cardiopulmonary bypass and strategies. J. Extra Corpor. Technol. 2005, 37, 180–188. [Google Scholar]
- Adamopoulos, S.; Parissis, J.T.; Iliodromitis, E.K.; Paraskevaidis, I.; Tsiapras, D.; Farmakis, D.; Karatzas, D.; Gheorghiade, M.; Filippatos, G.S.; Kremastinos, D.T. Effects of levosimendan versus dobutamine on inflammatory and apoptotic pathways in acutely decompensated chronic heart failure. Am. J. Cardiol. 2006, 98, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Trikas, A.; Antoniades, C.; Latsios, G.; Vasiliadou, K.; Karamitros, I.; Tousoulis, D.; Tentolouris, C.; Stefanadis, C. Long-term effects of levosimendan infusion on inflammatory processes and sFas in patients with severe heart failure. Eur. J. Heart Fail. 2006, 8, 804–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, M.; Dong, S. Effects of levosimendan on hemodynamics and cardiac function in patients with septic shock. Zhonghua Wei Zhong Bing. Ji Jiu Yi Xue. 2014, 26, 692–696. [Google Scholar] [PubMed]
- Xu, C.X.; Li, L.; Gong, S.J.; Yu, Y.H.; Yan, J. The effects of levosimendan on the cardiac function and prognosis in elderly patients with septic shock and myocardial contractility impairment. Zhonghua Nei Ke Za Zhi. 2018, 57, 423–428. [Google Scholar] [PubMed]
Control (N: 130) | Levosimendan (N: 184) | p-Value | |
---|---|---|---|
Gender (N, %) | 0.551 | ||
Males | 106 (81.5) | 145 (78.8) | |
Females | 24 (18.5) | 39 (21.2) | |
Age (years) | |||
Median (IQR) | 71 (63, 76) | 69 (63, 76.5) | 0.703 |
Body mass index (BMI) | |||
Median (IQR) | 26.8 (25.4, 28.7) | 27.6 (25.5, 30.4) | 0.072 |
Body surface area (BSA) | |||
Median (IQR) | 2.0 (1.9, 2.1) | 2.0 (1.9, 2.1) | 0.096 |
Control (N: 130) | Levosimendan (N: 184) | p-Value | |
---|---|---|---|
Euroscore 1 | |||
Median (IQR) | 15.7 (8.1, 27.9) | 22.8 (11.6, 42.5) | <0.001 |
Euroscore 2 | |||
Median (IQR) | 5.4 (3.4, 10.5) | 8.8 (5.1, 17.1) | <0.001 |
Type of surgery (N, %) | |||
Elective/regular surgery | 96 (73.9) | 133 (72.3) | 0.759 |
Emergency surgery | 34 (26.2) | 51 (27.7) | |
Simple/combination surgery (N, %) | |||
Simple surgery | 95 (73.1) | 118 (64.1) | 0.095 |
Combination surgery | 35 (26.9) | 66 (35.9) | |
Severe renal failure (GFR < 45 mL/min/1.73m2) (N, %) | |||
No | 112 (86.2) | 137 (74.5) | 0.012 |
Yes | 18 (13.9) | 47 (25.5) | |
Stage 3b | 12 (66.7) | 28 (59.6) | 0.599 |
Stage 4 | 4 (22.2) | 13 (27.7) | 0.655 |
Stage 5 | 2 (11.1) | 6 (12.8) | 0.856 |
Ejection fraction (EF) | |||
Median (IQR) | 30 (25, 30) | 20 (18.5, 30) | <0.001 |
Control (N: 130) | Levosimendan (N: 184) | p-Value | |
---|---|---|---|
Duration of surgery (min) | |||
Median (IQR) | 218.0 (177.5, 262.8) | 227.5 (184.0, 283.8) | 0.220 |
Bypass time (min) | |||
Median (IQR) | 113.0 (91.0, 154.0) | 111.0 (82.0, 153.3) | 0.313 |
Aortic cross-clamp time (min) | |||
Median (IQR) | 78.0 (56.8, 103.3) | 71.0 (54.0, 92.0) | 0.041 |
Control (N: 130) | Levosimendan (N: 184) | p-Value | |
---|---|---|---|
Creatinine (mg/dL); median (IQR) | |||
0 days prior to surgery | 1.1 (0.8, 1.3) | 1.1 (0.9,1.5) | 0.050 |
1 day of surgery | 1.3 (1.0, 1.7) | 1.1 (0.9, 1.5) | 0.002 |
2 1st postop. day | 1.5 (1.1, 1.9) | 1.2 (0.9, 1.8) | 0.005 |
3 2nd postop. day | 1.7 (1.1, 2.8) | 1.2 (0.8, 2.0) | <0.001 |
4 3rd postop. day | 1.9 (1.1, 3.4) | 1.2 (0.8, 2.1) | <0.001 |
5 4th postop. day | 1.8 (1.1, 3.5) | 1.2 (0.8, 2.2) | <0.001 |
6 5th postop. day | 1.9 (1.2, 3.3) | 1.1 (0.8, 1.9) | <0.001 |
Creatinine clearance (mL/min); median (IQR) | |||
0 days prior to surgery | 72.6 (54.6, 91.3) | 71.6 (48.0, 100.6) | 0.506 |
1 day of surgery | 56.2 (43.3, 76.5) | 70.2 (47.4, 102.2) | 0.001 |
2 1st postop. day | 49.8 (40.3, 69.8) | 63.8 (44.4, 97.1) | 0.002 |
3 2nd postop. day | 43.3 (26.5, 73.3) | 64.6 (35.6, 106.7) | <0.001 |
4 3rd postop. day | 38.9 (20.7, 65.8) | 65.1 (36.5, 102.8) | <0.001 |
5 4th postop. day | 42.3 (19.4, 69.2) | 64.0 (32.2, 107.8) | <0.001 |
6 5th postop. day | 39.8 (20.9, 66.4) | 69.1 (37.0, 104.6) | <0.001 |
Glomerular filtration rate (GFR) (mL/min); median (IQR) | |||
0 days prior to surgery | 68.4 (55.0, 82.3) | 63.3 (46, 83.0) | 0.061 |
1 day of surgery | 52.2 (38.9, 72.0) | 65.0 (43.7, 86.3) | 0.002 |
2 1st postop. day | 47.6 (33.2, 66.7) | 57.5 (38.3, 83.6) | 0.004 |
3 2nd postop. day | 42.0 (20.8, 66.4) | 59.3 (32.5, 90.6) | <0.001 |
4 3rd postop. day | 33.3 (15.5, 63.2) | 58.9 (29.8, 88.0) | <0.001 |
5 4th postop. day | 34.4 (15.2, 63.0) | 61.9 (28.6, 91.7) | <0.001 |
6 5th postop. day | 33.1 (18.1, 65.7) | 65.6 (35.7, 89.9) | <0.001 |
Control (N: 130) | Levosimendan (N: 184) | p Value | |
---|---|---|---|
C Reactive Protein (CRP) (mg/L); median (IQR) | |||
0 days prior to surgery | 6.8 (3.6, 17.3) | 9.3 (4.0, 22.3) | 0.158 |
1 day of surgery | 68.7 (34.7, 88.1) | 40.3 (22.7, 72.7) | <0.001 |
2 1st postop. day | 114.2 (78.4, 156.3) | 106.1 (56.1, 186.3) | 0.555 |
3 2nd postop. day | 199.3 (159.1, 243.8) | 194.3 (151.8, 239.9) | 0.422 |
4 3rd postop. day | 190.0 (147.2, 273.9) | 171.7 (133.9, 227.8) | 0.047 |
5 4th postop. day | 148.8 (109.9, 236.0) | 130.4 (90.3, 173.0) | <0.001 |
6 5th postop. day | 120.4 (76.0, 192.7) | 89.7 (55.5, 131.2) | <0.001 |
Blood pH; median (IQR) | |||
0 days prior to surgery | 7.42 (7.41, 7.43) | 7.41 (7.39, 7.43) | <0.001 |
1 day of surgery | 7.33 (7.27, 7.37) | 7.33 (7.29, 7.36) | 0.942 |
2 1st postop. day | 7.36 (7.32, 7.40) | 7.39 (7.36, 7.42) | <0.001 |
3 2nd postop. day | 7.40 (7.36, 7.43) | 7.42 (7.39, 7.44) | 0.001 |
4 3rd postop. day | 7.40 (7.36, 7.43) | 7.42 (7.39, 7.44) | 0.003 |
5 4th postop. day | 7.40 (7.37, 7.42) | 7.42 (7.39, 7.44) | 0.002 |
6 5th postop. day | 7.40 (7.38, 7.42) | 7.41 (7.40, 7.43) | 0.001 |
Lactic acid (mmol/L); median (IQR) | |||
0 days prior to surgery | 0.9 (0.7, 1.2) | 1.1 (0.9, 1.3) | <0.001 |
1 day of surgery | 3.1 (2.0, 6.2) | 2.2 (1.4, 3.9) | <0.001 |
2 1st postop. day | 3.2 (2.1, 5.1) | 2.3 (1.6, 4.3) | 0.001 |
3 2nd postop. day | 2.3 (1.6, 3.2) | 1.6 (1.2, 2.4) | <0.001 |
4 3rd postop. day | 2.1 (1.4, 3.2) | 1.4 (1.0, 2.0) | <0.001 |
5 4th postop. day | 1.8 (1.2, 2.4) | 1.2 (1.0, 1.7) | <0.001 |
6 5th postop. day | 1.6 (1.2, 2.2) | 1.1 (0.9, 1.5) | <0.001 |
Control (N: 130) | Levosimendan (N: 184) | p-Value | |
---|---|---|---|
Units of red blood cells (RBC) transfused | |||
Median (IQR) | 8.0 (4.0, 12.0) | 4.0 (2.0, 11.5) | <0.001 |
Fresh-frozen plasma (FFP) units transfused | |||
Median (IQR) | 8.0 (4.0, 12.0) | 4.0 (0.0, 8.0) | <0.001 |
Total platelet (PLT) units transfused | |||
Median (IQR) | 0.0 (0.0, 2.0) | 0.0 (0.0, 2.0) | 0.179 |
Control (N: 130) | Levosimendan (N: 184) | p-Value | |
---|---|---|---|
Hemoglobin (g/dL); median (IQR) | |||
0 days prior to surgery | 14.3 (12.5, 15.4) | 13.4 (11.7, 15.0) | 0.003 |
1 day of surgery | 9.3 (8.6, 10.0) | 9.8 (9.9, 10.7) | <0.001 |
2 1st postop. day | 9.5 (8.6, 10.5) | 9.8 (8.9, 10.8) | 0.047 |
3 2nd postop. day | 9.6 (8.9, 10.4) | 9.6 (8.9, 10.4) | 0.956 |
4 3rd postop. day | 9.7 (9.0, 10.4) | 9.5 (8.8, 10.3) | 0.315 |
5 4th postop. day | 10.0 (9.2, 10.8) | 9.7 (8.9, 10.7) | 0.082 |
6 5th postop. day | 10.4 (9.4, 11.3) | 9.9 (9.1, 10.9) | 0.028 |
Complications (N, %) | Control (N: 130) | Levosimendan (N: 184) | p-Value |
---|---|---|---|
Major bleeding requiring surgical revision | 3 (2.3) | 4 (2.2) | <0.999 |
Stroke | 2 (1.5) | 3 (1.6) | <0.999 |
Pneumonia | 7 (5.4) | 9 (4.9) | 0.845 |
Urinary tract infection | 8 (6.2) | 11 (6.0) | 0.949 |
Wound infection | 3 (2.3) | 4 (2.2) | <0.999 |
Mediastinitis | 1 (0.8) | 1 (0.5) | <0.999 |
Sternal instability | 3 (2.3) | 4 (2.2) | <0.999 |
Deep venous thrombosis | 2 (1.5) | 2 (1.1) | <0.999 |
Sepsis | 5 (3.9) | 7 (3.8) | 0.985 |
Multiple organ dysfunction | 4 (3.0) | 5 (2.7) | 0.851 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leivaditis, V.; Dahm, M.; Papaporfyriou, A.; Galanis, M.; Koletsis, E.; Charokopos, N.; Ehle, B.; Papatriantafyllou, A.; Haussmann, E.; Kaplunov, V.; et al. Perioperative Application of Levosimendan Optimizes Postoperative Renal Function and Organ Perfusion in Patients with Severe Heart Failure. J. Cardiovasc. Dev. Dis. 2023, 10, 312. https://doi.org/10.3390/jcdd10070312
Leivaditis V, Dahm M, Papaporfyriou A, Galanis M, Koletsis E, Charokopos N, Ehle B, Papatriantafyllou A, Haussmann E, Kaplunov V, et al. Perioperative Application of Levosimendan Optimizes Postoperative Renal Function and Organ Perfusion in Patients with Severe Heart Failure. Journal of Cardiovascular Development and Disease. 2023; 10(7):312. https://doi.org/10.3390/jcdd10070312
Chicago/Turabian StyleLeivaditis, Vasileios, Manfred Dahm, Anastasia Papaporfyriou, Michail Galanis, Efstratios Koletsis, Nikolaos Charokopos, Benjamin Ehle, Athanasios Papatriantafyllou, Erich Haussmann, Vladislav Kaplunov, and et al. 2023. "Perioperative Application of Levosimendan Optimizes Postoperative Renal Function and Organ Perfusion in Patients with Severe Heart Failure" Journal of Cardiovascular Development and Disease 10, no. 7: 312. https://doi.org/10.3390/jcdd10070312
APA StyleLeivaditis, V., Dahm, M., Papaporfyriou, A., Galanis, M., Koletsis, E., Charokopos, N., Ehle, B., Papatriantafyllou, A., Haussmann, E., Kaplunov, V., & Grapatsas, K. (2023). Perioperative Application of Levosimendan Optimizes Postoperative Renal Function and Organ Perfusion in Patients with Severe Heart Failure. Journal of Cardiovascular Development and Disease, 10(7), 312. https://doi.org/10.3390/jcdd10070312