Exploring the Correlation between Systemic Inflammatory Markers and Carotid Atherosclerosis Indices in Middle-Aged Adults: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Demographics and Anthropometrics
2.3. Systemic Inflammatory Markers and Laboratory Tests
2.4. Carotid Ultrasonography
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Carotid Atherosclerosis Indicators
3.3. Inflammatory Markers and Carotid Atherosclerosis Indicators
3.4. NLR and PLR as Atherosclerosis Risk Factors
3.5. Evaluating Systemic Inflammatory Markers as Predictors of Carotid Atherosclerosis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update from the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- Rafieian-Kopaei, M.; Setorki, M.; Doudi, M.; Baradaran, A.; Nasri, H. Atherosclerosis: Process, indicators, risk factors and new hopes. Int. J. Prev. Med. 2014, 5, 927. [Google Scholar]
- Gorelick, P.B.; Wong, K.S.; Bae, H.J.; Pandey, D.K. Large artery intracranial occlusive disease: A large worldwide burden but a relatively neglected frontier. Stroke 2008, 39, 2396–2399. [Google Scholar] [CrossRef]
- Geovanini, G.R.; Libby, P. Atherosclerosis and inflammation: Overview and updates. Clin. Sci. 2018, 132, 1243–1252. [Google Scholar] [CrossRef]
- Dąbrowska, E.; Narkiewicz, K. Hypertension and Dyslipidemia: The Two Partners in Endothelium-Related Crime. Curr. Atheroscler. Rep. 2023, 25, 605–612. [Google Scholar] [CrossRef]
- Hermida, N.; Balligand, J.L. Low-density lipoprotein-cholesterol-induced endothelial dysfunction and oxidative stress: The role of statins. Antioxid. Redox Signal. 2014, 20, 1216–1237. [Google Scholar] [CrossRef]
- Libby, P. What have we learned about the biology of atherosclerosis? The role of inflammation. Am. J. Cardiol. 2001, 88, 3J–6J. [Google Scholar] [CrossRef]
- Horne, B.D.; Anderson, J.L.; John, J.M.; Weaver, A.; Bair, T.L.; Jensen, K.R.; Renlund, D.G.; Muhlestein, J.B.; Intermountain Heart Collaborative Study, G. Which white blood cell subtypes predict increased cardiovascular risk? J. Am. Coll. Cardiol. 2005, 45, 1638–1643. [Google Scholar] [CrossRef]
- Akboga, M.K.; Canpolat, U.; Yayla, C.; Ozcan, F.; Ozeke, O.; Topaloglu, S.; Aras, D. Association of Platelet to Lymphocyte Ratio with Inflammation and Severity of Coronary Atherosclerosis in Patients with Stable Coronary Artery Disease. Angiology 2016, 67, 89–95. [Google Scholar] [CrossRef]
- Acet, H.; Ertaş, F.; Akıl, M.A.; Oylumlu, M.; Polat, N.; Yıldız, A.; Bilik, M.Z.; Yüksel, M.; Kaya, Z.; Ülgen, M.S. New inflammatory predictors for non-valvular atrial fibrillation: Echocardiographic epicardial fat thickness and neutrophil to lymphocyte ratio. Int. J. Cardiovasc. Imaging 2014, 30, 81–89. [Google Scholar] [CrossRef]
- Balta, S.; Celik, T.; Mikhailidis, D.P.; Ozturk, C.; Demirkol, S.; Aparci, M.; Iyisoy, A. The Relation between Atherosclerosis and the Neutrophil-Lymphocyte Ratio. Clin. Appl. Thromb./Hemost. 2016, 22, 405–411. [Google Scholar] [CrossRef]
- Ozcan Cetin, E.H.; Cetin, M.S.; Aras, D.; Topaloglu, S.; Temizhan, A.; Kisacik, H.L.; Aydogdu, S. Platelet to Lymphocyte Ratio as a Prognostic Marker of In-Hospital and Long-Term Major Adverse Cardiovascular Events in ST-Segment Elevation Myocardial Infarction. Angiology 2016, 67, 336–345. [Google Scholar] [CrossRef]
- Corriere, T.; Di Marca, S.; Cataudella, E.; Pulvirenti, A.; Alaimo, S.; Stancanelli, B.; Malatino, L. Neutrophil-to-Lymphocyte Ratio is a strong predictor of atherosclerotic carotid plaques in older adults. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 23–27. [Google Scholar] [CrossRef]
- Wang, J.C.; Bennett, M. Aging and atherosclerosis: Mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ. Res. 2012, 111, 245–259. [Google Scholar] [CrossRef]
- Song, P.G.; Fang, Z.; Wang, H.Y.; Cai, Y.T.; Rahimi, K.; Zhu, Y.J.; Fowkes, F.G.R.; Fowkes, F.J.I.; Rudan, I. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: A systematic review, meta-analysis, and modelling study. Lancet Glob. Health 2020, 8, E721–E729. [Google Scholar] [CrossRef]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef]
- Touboul, P.J.; Hennerici, M.G.; Meairs, S.; Adams, H.; Amarenco, P.; Bornstein, N.; Csiba, L.; Desvarieux, M.; Ebrahim, S.; Hernandez Hernandez, R.; et al. Mannheim carotid intima-media thickness and plaque consensus (2004–2006–2011). An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovasc. Dis. 2012, 34, 290–296. [Google Scholar]
- Grant, E.G.; Benson, C.B.; Moneta, G.L.; Alexandrov, A.V.; Baker, J.D.; Bluth, E.I.; Carroll, B.A.; Eliasziw, M.; Gocke, J.; Hertzberg, B.S.; et al. Carotid artery stenosis: Gray-scale and Doppler US diagnosis-Society of Radiologists in Ultrasound Consensus Conference. Radiology 2003, 229, 340–346. [Google Scholar] [CrossRef]
- Abbott, A.L.; Paraskevas, K.I.; Kakkos, S.K.; Golledge, J.; Eckstein, H.H.; Diaz-Sandoval, L.J.; Cao, L.; Fu, Q.; Wijeratne, T.; Leung, T.W.; et al. Systematic Review of Guidelines for the Management of Asymptomatic and Symptomatic Carotid Stenosis. Stroke 2015, 46, 3288–3301. [Google Scholar] [CrossRef]
- Kirişli, H.A.; Schaap, M.; Metz, C.T.; Dharampal, A.S.; Meijboom, W.B.; Papadopoulou, S.L.; Dedic, A.; Nieman, K.; de Graaf, M.A.; Meijs, M.F.L.; et al. Standardized evaluation framework for evaluating coronary artery stenosis detection, stenosis quantification and lumen segmentation algorithms in computed tomography angiography. Med. Image Anal. 2013, 17, 859–876. [Google Scholar] [CrossRef]
- Yerly, P.; Rodondi, N.; Viswanathan, B.; Riesen, W.; Vogt, P.; Bovet, P. Association between conventional risk factors and different ultrasound-based markers of atherosclerosis at carotid and femoral levels in a middle-aged population. Int. J. Cardiovasc. Imaging 2013, 29, 589–599. [Google Scholar] [CrossRef]
- Kawai, T.; Ohishi, M.; Takeya, Y.; Onishi, M.; Ito, N.; Oguro, R.; Yamamoto, K.; Kamide, K.; Rakugi, H. Carotid plaque score and intima media thickness as predictors of stroke and mortality in hypertensive patients. Hypertens. Res. 2013, 36, 902–909. [Google Scholar] [CrossRef]
- Song, B.; Bie, Y.; Feng, H.; Xie, B.; Liu, M.; Zhao, F. Inflammatory Factors Driving Atherosclerotic Plaque Progression New Insights. J. Transl. Intern. Med. 2022, 10, 36–47. [Google Scholar] [CrossRef]
- Libby, P.; Ridker, P.M.; Maseri, A. Inflammation and Atherosclerosis. Circulation 2002, 105, 1135–1143. [Google Scholar] [CrossRef]
- Yayan, J. Erythrocyte sedimentation rate as a marker for coronary heart disease. Vasc. Health Risk Manag. 2012, 8, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Madjid, M.; Willerson, J.T. Inflammatory markers in coronary heart disease. Br. Med. Bull. 2011, 100, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Afari, M.E.; Bhat, T. Neutrophil to lymphocyte ratio (NLR) and cardiovascular diseases: An update. Expert Rev. Cardiovasc. Ther. 2016, 14, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Kurtul, A.A.-O.; Ornek, E. Platelet to Lymphocyte Ratio in Cardiovascular Diseases: A Systematic Review. Angiology 2019, 70, 802–818. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Park, M.J.; Kim, M.Y.; Cho, J.J.; Yoon, J.L. The Correlation between Carotid Intima-Media Thickness and Neutrophil to Lymphocyte Ratio in Prediabetes Patients. Korean J. Fam. Med. 2021, 42, 464. [Google Scholar] [CrossRef]
- Hyun, S.; Kwon, S.; Cho, S.; Park, S.; Jung, W.; Moon, S.; Park, J.; Ko, C.; Cho, K. Can the Neutrophil-to-Lymphocyte Ratio Appropriately Predict Carotid Artery Stenosis in Patients with Ischemic Stroke?—A Retrospective Study. J. Stroke Cerebrovasc. Dis. 2015, 24, 2646–2651. [Google Scholar] [CrossRef]
- Yüksel, M.; Yildiz, A.; Oylumlu, M.; Akyüz, A.; Aydin, M.; Kaya, H.; Acet, H.; Polat, N.; Bilik, M.Z.; Alan, S. The association between platelet/lymphocyte ratio and coronary artery disease severity. Anatol. J. Cardiol. 2015, 15, 640. [Google Scholar] [CrossRef]
- Faint, R.W. Platelet—Neutrophil interactions: Their significance. Blood Rev. 1992, 6, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Nording, H.M.; Seizer, P.; Langer, H.F. Platelets in inflammation and atherogenesis. J. Clin. Investig. 2005, 115, 3378–3384. [Google Scholar] [CrossRef] [PubMed]
- Lindemann, S.; Krämer, B.; Seizer, P.; Gawaz, M. Platelets, inflammation and atherosclerosis. J. Thromb. Haemost. 2007, 5, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Leung, C.; Schindler, C. Lymphocytes are important in early atherosclerosis. J. Clin. Investig. 2001, 108, 251–259. [Google Scholar] [CrossRef]
- de Weerd, M.; Greving, J.P.; Hedblad, B.; Lorenz, M.W.; Mathiesen, E.B.; O’Leary, D.H.; Rosvall, M.; Sitzer, M.; Buskens, E.; Bots, M.L. Prevalence of Asymptomatic Carotid Artery Stenosis in the General Population. Stroke 2010, 41, 1294–1297. [Google Scholar] [CrossRef]
Total (n = 1264) | Male (n = 708) | Female (n = 556) | p-Value | |
---|---|---|---|---|
Age, years | 56.15 ± 6.31 | 55.92 ± 6.49 | 56.55 ± 5.98 | 0.136 |
Height, cm | 166.18 ± 8.22 | 170.93 ± 5.61 | 158.27 ± 5.23 | <0.001 |
Weight, cm | 67.53 ± 11.47 | 73.04 ± 9.53 | 58.36 ± 8.06 | <0.001 |
BMI, kg/m2 | 24.31 ± 3.11 | 24.91 ± 2.93 | 23.31 ± 3.15 | 0.039 |
SBP, mmHg | 125.00 ± 15.84 | 125.76 ± 15.17 | 123.72 ± 16.85 | 0.045 |
DBP, mmHg | 76.78 ± 11.35 | 78.16 ± 11.13 | 74.46 ± 11.36 | 0.011 |
Comorbidities | ||||
Hypertension | 294 (23.2) | 170 (24.0) | 124 (22.3) | 0.009 |
Diabetes | 158 (12.5) | 100 (14.1) | 58 (10.4) | <0.001 |
Dyslipidemia | 138 (10.9) | 65 (9.2) | 73 (13.1) | <0.001 |
Alcohol * | <0.001 | |||
None | 333 (26.3) | 82 (11.6) | 251 (45.1) | |
Drinker | 931 (73.7) | 626 (88.4) | 305 (54.9) | |
Smoking | <0.001 | |||
None | 668 (52.8) | 144 (20.3) | 524 (94.2) | |
Former | 386 (30.5) | 370 (52.3) | 16 (2.9) | |
Current | 210 (16.6) | 194 (27.4) | 16 (2.9) | |
Physical activity ** | <0.001 | |||
None | 597 (47.2) | 320 (45.2) | 277 (49.8) | |
Regular | 667 (52.8) | 388 (54.8) | 279 (50.2) | |
Total cholesterol | 191.86 ± 40.12 | 187.39 ± 39.82 | 199.32 ± 39.54 | <0.001 |
Triglyceride | 127.84 ± 88.68 | 143.63 ± 98.18 | 101.46 ± 61.61 | <0.001 |
LDL-cholesterol | 130.45 ± 38.52 | 127.52 ± 37.62 | 135.36 ± 39.52 | <0.001 |
HDL-cholesterol | 56.63 ± 14.48 | 52.42 ± 12.38 | 63.67 ± 15.00 | <0.001 |
FBS | 108.13 ± 24.67 | 111.87 ± 25.48 | 103.54 ± 22.54 | <0.001 |
HbA1c | 5.72 ± 0.76 | 5.75 ± 0.80 | 5.67 ± 0.68 | <0.001 |
NLR | 1.74 ± 0.75 | 1.82 ± 0.77 | 1.61 ± 0.68 | <0.001 |
PLR | 141.53 48.10 | 135.89 ± 45.50 | 150.38 ± 50.71 | <0.001 |
hsCRP | 0.118 ± 0.270 | 0.129 ± 0.316 | 0.100 ± 0.168 | 0.015 |
ESR | 11.75 ± 9.73 | 9.91 ± 8.72 | 14.79 ± 10.52 | <0.001 |
Total (n = 1264) | Male (n = 708) | Female (n = 556) | |
---|---|---|---|
cIMT | |||
Right, mm | 0.77 ± 0.16 | 0.77 ± 0.17 | 0.75 ± 0.16 |
Left, mm | 0.77 ± 0.17 | 0.78 ± 0.17 | 0.75 ± 0.15 |
PSV | |||
Right ICA, cm/s | 64.22 ± 16.89 | 60.96 ± 15.49 | 69.67 ± 17.71 |
Left ICA, cm/s | 63.72 ± 17.56 | 60.55 ± 16.73 | 69.02 ± 17.66 |
Plaque on CA | |||
Right | 411 (32.5) | 280 (39.5) | 131 (23.6) |
Left | 440 (34.8) | 297 (41.9) | 143 (25.7) |
Stenosis * | |||
Right ICA | 6 (0.5) | 5 (0.7) | 1 (0.2) |
Left ICA | 1 (0.1) | 1 (0.1) | 0 (0.0) |
Plaque number score (PN) | |||
0 | 688 (54.4) | 331 (46.8) | 357 (64.2) |
1 | 280 (22.2) | 166 (23.4) | 114 (20.5) |
2 | 194 (15.3) | 129 (18.2) | 65 (11.7) |
>3 | 102 (8.1) | 82 (11.6) | 20 (3.6) |
Plaque stenosis score (PSS) | |||
0 | 1142 (90.3) | 610 (86.2) | 532 (95.7) |
1 | 115 (9.1) | 94 (13.2) | 21 (3.7) |
2 | 6 (0.5) | 4 (0.6) | 2 (0.4) |
3 | 1 (0.1) | 0 (0.0) | 1 (0.2) |
Carotid artery plaque score (PS) ** | 1.53 ± 2.30 (min 0.00, max 20.70) | 1.91 ± 2.59 (min 0.00, max 20.70) | 0.89 ± 1.52 (min 0.00, max 10.70) |
hsCRP | ESR | NLR | PLR | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
β (S.E.) | R2 | p-Value | β (S.E.) | R2 | p-Value | β (S.E.) | R2 | p-Value | β (S.E.) | R2 | p-Value | |
cIMT MAX * | ||||||||||||
Male | 0.014 (0.019) | 0.435 | 0.025 | 0.002 (0.001) | 0.482 | 0.001 | 0.013 (0.010) | 0.555 | <0.001 | 0.025 (0.017) | 0.562 | 0.001 |
Female | −0.011 (0.040) | 0.521 | 0.793 | 0.001 (0.001) | 0.452 | 0.085 | 0.010 (0.010) | 0.525 | 0.038 | 0.035 (0.013) | 0.501 | 0.009 |
Plaque number score (PN) | ||||||||||||
Men | 0.179 (0.113) | 0.652 | 0.048 | 0.020 (0.004) | 0.399 | <0.001 | 0.023 (0.045) | 0.321 | 0.041 | 0.134 (0.030) | 0.589 | 0.021 |
Female | 0.313 (0.224) | 0.555 | 0.163 | 0.010 (0.003) | 0.378 | 0.004 | 0.020 (0.053) | 0.371 | 0.046 | 0.149 (0.045) | 0.600 | 0.018 |
Plaque stenosis score (PSS) | ||||||||||||
Men | −0.022 (0.014) | 0.351 | 0.585 | 0.001 (0.029) | 0.513 | 0.383 | 0.013 (0.016) | 0.557 | 0.422 | 0.002 (0.001) | 0.458 | 0.651 |
Female | 0.049 (0.068) | 0.306 | 0.477 | 0.001 (0.001) | 0.492 | 0.365 | 0.023 (0.016) | 0.528 | 0.356 | 0.009 (0.001) | 0.364 | 0.664 |
Plaque score (PS) | ||||||||||||
Men | 0.085 (0.035) | 0.685 | 0.012 | 0.010 (0.006) | 0.625 | 0.001 | 0.034 (0.022) | 0.699 | <0.001 | 0.055 (0.033) | 0.612 | 0.015 |
Female | 0.058 (0.026) | 0.565 | 0.037 | 0.009 (0.003) | 0.619 | 0.002 | 0.025 (0.013) | 0.682 | 0.015 | 0.070 (0.059) | 0.558 | 0.023 |
NLR | ||||
Male | Female | |||
Odds Ratio (95% CI) | p-Value * | Odds Ratio (95% CI) | p-Value | |
cIMT (≥0.9) | 1.15 (1.03–2.15) | 0.032 | 1.05 (1.01–1.29) | 0.009 |
PS (≥5) | 1.35 (1.08–1.70) | 0.008 | 1.68 (1.00–2.81) | 0.049 |
PN | ||||
0 | 1 (Ref) | 1 (Ref) | ||
1 | 1.01 (0.69–1.96) | 0.152 | 1.02 (0.51–1.64) | 0.352 |
2 | 1.09 (1.01–1.85) | 0.047 | 1.05 (0.85–2.66) | 0.139 |
3 | 1.47 (1.03–2.61) | 0.039 | 1.32 (1.07–3.25) | 0.045 |
PLR | ||||
Male | Female | |||
Odds Ratio (95% CI) | p-Value * | Odds Ratio (95% CI) | p-Value | |
cIMT (≥0.9) | 1.41 (1.12–3.15) | 0.041 | 1.53 (1.17–2.18) | 0.002 |
PS (≥5) | 1.65 (1.28–1.90) | <0.001 | 1.91 (1.05–2.81) | 0.032 |
PN | ||||
0 | 1 (Ref) | 1 (Ref) | ||
1 | 1.11 (0.51–1.36) | 0.121 | 1.19 (0.51–1.92) | 0.446 |
2 | 1.25 (0.99–1.92) | 0.054 | 1.24 (0.95–2.51) | 0.099 |
3 | 1.52 (1.09–2.41) | 0.021 | 1.64 (1.10–2.63) | 0.035 |
Male | Female | |||
---|---|---|---|---|
AUC (95% CI) | p-Value | AUC (95% CI) | p-Value | |
cIMT (≥0.9) | ||||
hsCRP | 0.518 (0.478–0.559) | 0.382 | 0.519 (0.463–0.575) | 0.509 |
ESR | 0.541 (0.482–0.599) | 0.178 | 0.545 (0.490–0.599) | 0.115 |
NLR | 0.518 (0.479–0.556) | 0.381 | 0.450 (0.395–0.504) | 0.072 |
PLR | 0.557 (0.439–0.612) | 0.189 | 0.525 (0.475–0.575) | 0.125 |
PN (≥1) | ||||
hsCRP | 0.529 (0.491–0.567) | 0.140 | 0.561 (0.510–0.613) | 0.019 |
ESR | 0.569 (0.532–0.606) | <0.001 | 0.542 (0.492–0.592) | 0.107 |
NLR | 0.488 (0.451–0.526) | 0.537 | 0.508 (0.458–0.558) | 0.752 |
PLR | 0.531 (0.476–0.571) | 0.338 | 0.527 (0.485–0.563) | 0.215 |
PS (≥5) | ||||
hsCRP | 0.541 (0.482–0.599) | 0.178 | 0.468 (0.328–0.609) | 0.674 |
ESR | 0.601 (0.540–0.662) | 0.001 | 0.567 (0.446–0.689) | 0.375 |
NLR | 0.556 (0.517–0.596) | 0.005 | 0.666 (0.542–0.790) | 0.028 |
PLR | 0.597 (0.524–0.624) | 0.002 | 0.635 (0.544–0.697) | 0.019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.-E.; Hwang, J.-I.; Ko, H.-J.; Park, J.-Y.; Hong, H.-E.; Kim, A.-S. Exploring the Correlation between Systemic Inflammatory Markers and Carotid Atherosclerosis Indices in Middle-Aged Adults: A Cross-Sectional Study. J. Cardiovasc. Dev. Dis. 2024, 11, 73. https://doi.org/10.3390/jcdd11030073
Song J-E, Hwang J-I, Ko H-J, Park J-Y, Hong H-E, Kim A-S. Exploring the Correlation between Systemic Inflammatory Markers and Carotid Atherosclerosis Indices in Middle-Aged Adults: A Cross-Sectional Study. Journal of Cardiovascular Development and Disease. 2024; 11(3):73. https://doi.org/10.3390/jcdd11030073
Chicago/Turabian StyleSong, Ji-Eun, Ji-In Hwang, Hae-Jin Ko, Ji-Yeon Park, Hee-Eun Hong, and A-Sol Kim. 2024. "Exploring the Correlation between Systemic Inflammatory Markers and Carotid Atherosclerosis Indices in Middle-Aged Adults: A Cross-Sectional Study" Journal of Cardiovascular Development and Disease 11, no. 3: 73. https://doi.org/10.3390/jcdd11030073
APA StyleSong, J. -E., Hwang, J. -I., Ko, H. -J., Park, J. -Y., Hong, H. -E., & Kim, A. -S. (2024). Exploring the Correlation between Systemic Inflammatory Markers and Carotid Atherosclerosis Indices in Middle-Aged Adults: A Cross-Sectional Study. Journal of Cardiovascular Development and Disease, 11(3), 73. https://doi.org/10.3390/jcdd11030073