Interventricular Septal Involvement Is Associated with More Impaired Ventricular Function and Mechanics in Apical Hypertrophic Cardiomyopathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection and Definitions
2.2. Two-Dimensional and Speckle-Tracking Echocardiography
2.3. Statistical Analyses
3. Results
3.1. Patient Demographics and Clinical Characteristics
3.2. Two-Dimensional and Speckle-Tracking Echocardiographic Analyses
3.3. Clinical Outcomes
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ommen, S.R.; Mital, S.; Burke, M.A.; Day, S.M.; Deswal, A.; Elliott, P.; Evanovich, L.L.; Hung, J.; Joglar, J.A.; Kantor, P.; et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: Executive summary: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2020, 76, 3022–3055. [Google Scholar] [CrossRef] [PubMed]
- Hughes, R.K.; Knott, K.D.; Malcolmson, J.; Augusto, J.B.; Mohiddin, S.A.; Kellman, P.; Moon, J.C.; Captur, G. Apical hypertrophic cardiomyopathy: The variant less known. J. Am. Hear. Assoc. 2020, 9, e015294. [Google Scholar] [CrossRef] [PubMed]
- Jan, M.F.; Todaro, M.C.; Oreto, L.; Tajik, A.J. Apical hypertrophic cardiomyopathy: Present status. Int. J. Cardiol. 2016, 222, 745–759. [Google Scholar] [CrossRef] [PubMed]
- Klarich, K.W.; Jost, C.H.A.; Binder, J.; Connolly, H.M.; Scott, C.G.; Freeman, W.K.; Ackerman, M.J.; Nishimura, R.A.; Tajik, A.J.; Ommen, S.R. Risk of death in long-term follow-up of patients with apical hypertrophic cardiomyopathy. Am. J. Cardiol. 2013, 111, 1784–1791. [Google Scholar] [CrossRef]
- Moon, J.; Shim, C.Y.; Ha, J.-W.; Cho, I.J.; Kang, M.K.; Yang, W.-I.; Jang, Y.; Chung, N.; Cho, S.-Y. Clinical and echocardiographic predictors of outcomes in patients with apical hypertrophic cardiomyopathy. Am. J. Cardiol. 2011, 108, 1614–1619. [Google Scholar] [CrossRef]
- Gjergjindreaj, M.; Escolar, E.; Papadopoulos, K.; Mihos, C.G. Assessment of left ventricular global longitudinal strain in patients with hypertrophic cardiomyopathy and coronary artery disease. Int. J. Cardiovasc. Imaging 2023, 1–12. [Google Scholar] [CrossRef]
- Peters, M.; Jan, M.F.; Ashraf, M.; Sanders, H.; Roemer, S.; Schweitzer, M.; Adefisoye, J.; Galazka, P.; Jain, R.; Jahangir, A.; et al. Myocardial work in apical hypertrophic cardiomyopathy. J. Am. Soc. Echocardiogr. 2023, 36, 1043–1054. [Google Scholar] [CrossRef]
- Mihos, C.G.; Horvath, S.A.; Fernandez, R.; Escolar, E. Left ventricular strain and myocardial work in apical hypertrophic cardiomyo-pathy. J. Thorac. Dis. 2023, 15, 3197–3207. [Google Scholar] [CrossRef]
- Buckberg, G.D.; Hoffman, J.I.; Coghlan, H.C.; Nanda, N.C. Ventricular structure-function relations in health and disease: Part I. The normal heart. Eur. J. Cardiothorac. Surg. 2015, 47, 587–601. [Google Scholar] [CrossRef]
- Buckberg, G.D.; Coghlan, H.C.; Hoffman, J.I.; Torrent-Guasp, F. The structure and function of the helical heart and its buttress wrapping. VII. Critical importance of septum for right ventricular function. Semin. Thorac. Cardiovasc. Surg. 2001, 13, 402–416. [Google Scholar] [CrossRef]
- Chen, C.; Lei, M.; Hsu, Y.; Chung, S.; Sung, Y. Apical hypertrophic cardiomyopathy: Correlations between echocardiographic parameters, angiographic left ventricular morphology, and clinical outcomes. Clin. Cardiol. 2011, 34, 233–238. [Google Scholar] [CrossRef]
- Rouskas, P.; Zegkos, T.; Ntelios, D.; Gossios, T.; Parcharidou, D.; Papanastasiou, C.A.; Karamitsos, T.; Vassilikos, V.; Kouskouras, K.; Efthimiadis, G.K. Prevalence, characteristics, and natural history of apical phenotype in a large cohort of patients with hypertrophic cardiomyopathy. Hell. J. Cardiol. 2023, 73, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Khoury, S.; Bhatia, R.T.; Marwaha, S.; Miles, C.; Kasiakogias, A.; Bunce, N.; Behr, E.; Papadakis, M.; Sharma, S.; Tome, M. Ethnic and sex-related differences at presentation in apical hypertrophic cardiomyo-pathy: An observational cross-sectional study. Int. J. Cardiol. 2023, 391, 131265. [Google Scholar] [CrossRef] [PubMed]
- Weyman, A.E.; Peskoe, S.M.; Williams, E.S.; Dillon, J.C.; Feigenbaum, H. Detection of left ventricular aneurysms by cross-sectional echocardiography. Circulation 1976, 54, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American society of echocardiography and the European association of cardiovascular imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: An update from the American society of echocardiography and the European association of cardiovascular imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef]
- Zoghbi, W.A.; Adams, D.; Bonow, R.O.; Enriquez-Sarano, M.; Foster, E.; Grayburn, P.A.; Hahn, R.T.; Han, Y.; Hung, J.; Lang, R.M.; et al. Recommendations for noninvasive evaluation of native valvular regurgitation: A report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance. J. Am. Soc. Echocardiogr. 2017, 30, 303–371. [Google Scholar] [CrossRef]
- Mor-Avi, V.; Lang, R.M.; Badano, L.P.; Belohlavek, M.; Cardim, N.M.; Derumeaux, G.; Galderisi, M.; Marwick, T.; Nagueh, S.F.; Sengupta, P.P.; et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese society of echocardiography. J. Am. Soc. Echocardiogr. 2011, 24, 277–313. [Google Scholar] [CrossRef]
- Voigt, J.-U.; Pedrizzetti, G.; Lysyansky, P.; Marwick, T.H.; Houle, H.; Baumann, R.; Pedri, S.; Ito, Y.; Abe, Y.; Metz, S.; et al. Definitions for a common standard for 2D speckle tracking echocardiography: Consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. J. Am. Soc. Echocardiogr. 2015, 28, 183–193. [Google Scholar] [CrossRef]
- Roemer, S.; Jaglan, A.; Santos, D.; Umland, M.; Jain, R.; Tajik, A.J.; Khandheria, B.K. The utility of myocardial work in clinical practice. J. Am. Soc. Echocardiogr. 2021, 34, 807–818. [Google Scholar] [CrossRef]
- Truong, V.T.; Vo, H.Q.; Ngo, T.N.; Mazur, J.; Nguyen, T.T.; Pham, T.T.; Le, T.K.; Phan, H.; Palmer, C.; Nagueh, S.F.; et al. Normal ranges of global left ventricular myocardial work indices in adults: A meta-analysis. J. Am. Soc. Echocardiogr. 2022, 35, 369–377.e8. [Google Scholar] [CrossRef]
- Olsen, F.J.; Skaarup, K.G.; Lassen, M.C.H.; Johansen, N.D.; Sengeløv, M.; Jensen, G.B.; Schnohr, P.; Marott, J.L.; Søgaard, P.; Gislason, G.; et al. Normal values for myocardial work indices derived from pressure-strain loop analyses: From the CCHS. Circ. Cardiovasc. Imaging 2022, 15, e013712. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, J.C.; Gluud, C.; Wetterslev, J.; Winkel, P. When and how should multiple imputation be used for handling missing data in randomised clinical trials—A practical guide with flowcharts. BMC Med. Res. Methodol. 2017, 17, 162. [Google Scholar] [CrossRef] [PubMed]
- Hiemstra, Y.L.; van der Bijl, P.; El Mahdiui, M.; Bax, J.J.; Delgado, V.; Marsan, N.A. Myocardial work in nonobstructive hypertrophic cardiomyopathy: Implications for outcome. J. Am. Soc. Echocardiogr. 2020, 33, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.B.; Raina, A.; Katz, D.; Szerlip, M.; Wiegers, S.E.; Forfia, P.R. Longitudinal shortening accounts for the majority of right ventricular contraction and improves after pulmonary vasodilator therapy in normal subjects and patients with pulmonary arterial hypertension. Chest 2011, 140, 27–33. [Google Scholar] [CrossRef]
- D’Andrea, A.; Caso, P.; Bossone, E.; Scarafile, R.; Riegler, L.; Di Salvo, G.; Gravino, R.; Cocchia, R.; Castaldo, F.; Salerno, G.; et al. Right ventricular myocardial involvement in either physiological or pathological left ventricular hypertrophy: An ultrasound speckle-tracking two-dimensional strain analysis. Eur. J. Echocardiogr. 2010, 11, 492–500. [Google Scholar] [CrossRef]
- Seo, J.; Hong, Y.J.; Kim, Y.J.; Lkhagvasuren, P.; Cho, I.; Shim, C.Y.; Ha, J.-W.; Hong, G.-R. Prevalence, functional characteristics, and clinical significance of right ventricular involvement in patients with hypertrophic cardiomyopathy. Sci. Rep. 2020, 10, 21908. [Google Scholar] [CrossRef]
- Mihos, C.G.; Escolar, E.; Fernandez, R. Right ventricular hypertrophy in apical hypertrophic cardiomyopathy. Echocardiography 2023, 40, 515–523. [Google Scholar] [CrossRef]
- Xiao, C.; Zhao, X.; Sun, L.; Zhang, F. Evaluation of global and regional myocardial work in hypertrophic cardiomyopathy patients by left ventricular pressure-strain loop. BMC Cardiovasc. Disord. 2023, 23, 479. [Google Scholar] [CrossRef]
- Garcia Brás, P.; Rosa, S.A.; Cardoso, I.; Branco, L.M.; Galrinho, A.; Gonçalves, A.V.; Thomas, B.; Viegas, J.M.; Fiarresga, A.; Branco, G.; et al. Microvascular dysfunction is associated with impaired myocardial work in obstructive and nonobstructive hypertrophic cardiomyopathy: A multimodality study. J. Am. Heart Assoc. 2023, 12, e028857. [Google Scholar] [CrossRef]
Variable | Apical-Pure N = 36 | Apical-Mixed N = 36 | p-Value |
---|---|---|---|
Age | 65 ± 17 | 67 ± 13 | 0.66 |
Female | 21 (58%) | 14 (39%) | 0.1 |
Body surface area (m2) | 1.82 ± 0.26 | 1.92 ± 0.23 | 0.08 |
Heart rate (beats/minute) | 69 ± 10 | 75 ± 18 | 0.08 |
Systolic blood pressure (mmHg) | 128 ± 17 | 133 ± 20 | 0.24 |
Diastolic blood pressure (mmHg) | 70 ± 12 | 75 ± 11 | 0.11 |
Serum creatinine (mg/dL) | 1.11 ± 0.49 | 1.12 ± 0.66 | 0.96 |
African American | 7 (19%) | 6 (17%) | 0.76 |
Smoking | 8 (22%) | 13 (36%) | 0.2 |
Family history of hypertrophic cardiomyopathy | 0 | 1 (3%) | 1 |
Clinical signs and symptoms | |||
Angina | 14 (39%) | 18 (50%) | 0.34 |
Dyspnea | 11 (31%) | 10 (28%) | 0.8 |
Palpitations | 10 (28%) | 9 (25%) | 0.79 |
Syncope | 7 (19%) | 3 (8%) | 0.31 |
Non-sustained ventricular tachycardia | 6 (17%) | 2 (6%) | 0.26 |
Hypertension | 31 (86%) | 33 (92%) | 0.45 |
Diabetes mellitus | 11 (31%) | 9 (25%) | 0.6 |
Coronary artery disease | 9 (25%) | 12 (33%) | 0.44 |
Congestive heart failure | 3 (8%) | 8 (22%) | 0.19 |
New York Heart Association functional class ≥ II | 11 (31%) | 11 (31%) | 1 |
Cerebrovascular accident | 3 (8%) | 7 (19%) | 0.31 |
Atrial fibrillation | 9 (25%) | 15 (42%) | 0.13 |
Implantable cardioverter defibrillator | 1 (3%) | 3 (8%) | 0.61 |
Medications | |||
Aspirin | 15 (42%) | 22 (61%) | 0.1 |
ACEi/angiotensin receptor blocker | 21 (58%) | 14 (39%) | 0.1 |
Beta-blocker | 20 (56%) | 24 (67%) | 0.33 |
Calcium-channel blocker | 8 (22%) | 17 (47%) | 0.03 |
Direct oral anticoagulant | 8 (22%) | 8 (22%) | 1 |
Diuretics | 8 (22%) | 11 (31%) | 0.42 |
P2Y12 inhibitor | 6 (17%) | 6 (17%) | 1 |
Statin | 20 (56%) | 23 (64%) | 0.47 |
Variable | ||||||
---|---|---|---|---|---|---|
Left Ventricular Structure and Function | ApHCM-Pure N = 36 | ApHCM-Mixed N = 36 | p-Value | ApHCM-Pure N = 36 | ApHCM-Mixed N = 36 | p-Value |
LV ejection fraction (%) | 67 ± 10 | 69 ± 12 | 0.44 | 63 ± 10 | 65 ± 19 | 0.54 |
LV internal diastolic diameter index (mm/m2) | 25 ± 3 | 23 ± 4 | 0.01 | 25 ± 4 | 23 ± 3 | 0.05 |
LV internal systolic diameter index (mm/m2) | 15 ± 4 | 14 ± 4 | 0.26 | 16 ± 4 | 14 ± 4 | 0.04 |
LV mass index (g/m2) | 111 ± 30 | 141 ± 39 | <0.001 | 110 ± 28 | 144 ± 38 | <0.001 |
Septal wall thickness (mm) | 1.2 ± 0.2 * | 1.8 ± 0.2 | <0.001 | 1.3 ± 0.2 * | 1.8 ± 0.3 | <0.001 |
Posterior wall thickness (mm) | 1.1 ± 0.2 | 1.2 ± 0.2 | 0.08 | 1.1 ± 0.2 | 1.2 ± 0.2 | 0.18 |
Apical wall thickness (mm) | 1.8 ± 0.3 | 1.9 ± 0.3 | 0.05 | 1.8 ± 0.3 | 2.0 ± 0.4 | 0.12 |
Relative wall thickness | 0.51 ± 0.1 | 0.56 ± 0.1 | 0.06 | 0.52 ± 0.1 | 0.55 ± 0.1 | 0.23 |
Left ventricular apical aneurysm | 3 (8%) | 4 (11%) | 1 | 4 (11%) | 5 (14%) | 0.72 |
Left ventricular mechanics | ||||||
Global longitudinal strain (%) | −14.4 ± 3.4 † | −9.6 ± 3.1 | <0.001 | −12.0 ± 3.2 † | −9.5 ± 2.9 | 0.001 |
Global work index (mmHg%) | 1272 ± 339 † | 938 ± 306 | <0.001 | 1086 ± 316 † | 891 ± 345 | 0.02 |
Global constructive work (mmHg%) | 1654 ± 453 † | 1211 ± 383 | <0.001 | 1444 ± 329 † | 1180 ± 370 | 0.002 |
Global wasted work (mmHg%) | 208 ± 153 * | 288 ± 178 # | 0.05 | 262 ± 136 * | 224 ± 86 # | 0.17 |
Global work efficiency (%) | 85 ± 6 * | 79 ± 8 | 0.001 | 82 ± 6 * | 80 ± 8 | 0.28 |
Left ventricular diastology | ||||||
Peak transmitral E-wave velocity (m/s) | 0.79 ± 0.21 | 0.77 ± 0.24 | 0.7 | 0.78 ± 0.18 | 0.82 ± 0.25 | 0.48 |
Average mitral annular velocity (m/s) | 0.07 ± 0.02 † | 0.06 ± 0.02 | 0.22 | 0.06 ± 0.01 † | 0.05 ± 0.02 | 0.26 |
Average E/e’ ratio | 12 ± 3 † | 14 ± 6 # | 0.25 | 14 ± 4 † | 17 ± 9 # | 0.06 |
Right ventricular structure and function | ||||||
Right ventricular basal diameter (mm) | 33 ± 5 | 33 ± 4 | 0.74 | 33 ± 6 | 34 ± 6 | 0.54 |
Tricuspid annular plane systole excursion (mm) | 18 ± 3 † | 16 ± 3 ‡ | 0.15 | 15 ± 4 † | 14 ± 4 ‡ | 0.55 |
Right ventricular hypertrophy | 5 (14%) | 12 (33%) | 0.05 | |||
Right ventricular systolic pressure (mmHg) | 32 ± 13 | 34 ± 11 | 0.56 | 35 ± 14 | 35 ± 16 | 1 |
Right ventricular mechanics | ||||||
Global longitudinal strain (%) | −19.2 ± 5.2 | −14.3 ± 6.7 | 0.001 | −17.9 ± 4.4 | −15.5 ± 4.3 | 0.02 |
Free wall strain (%) | −22.4 ± 6.3 | −18.5 ± 7.4 | 0.02 | −21.7 ± 4.9 | −19.5 ± 5.5 | 0.08 |
Left atrial volume index (mL/m2) | 34 ± 12 | 39 ± 12 | 0.13 | 38 ± 14 | 39 ± 12 | 0.64 |
Mitral valve | ||||||
Systolic anterior motion | 3 (8%) | 6 (17%) | 0.29 | 2 (6%) | 4 (11%) | 0.39 |
Moderate or severe mitral regurgitation | 3 (8%) | 2 (6%) | 0.64 | 6 (17%) | 2 (6%) | 0.26 |
Variable | ApHCM-Pure N = 36 | ApHCM-Mixed N = 36 | p-Value |
---|---|---|---|
All-cause mortality | 0 | 5 (14%) | 0.05 |
Sudden death | 0 | 2 (6%) | 0.15 |
Myocardial infarction | 2 (6%) | 4 (11%) | 0.39 |
Cerebrovascular accident | 3 (8%) | 4 (11%) | 0.69 |
Any cardiovascular hospitalization | 14 (39%) | 14 (39%) | 1 |
Heart failure hospitalization | 6 (17%) | 8 (22%) | 0.55 |
N | Gender | Age (Years) | CHF | CAD | AF | LVEF (%) | IVS (mm) | Apex (mm) | LVEDDi (mm/m2) | E/e’ | GLS (%) | GWI (mmHg%) | RVFWS (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | F | 75 | 1 | 0 | 1 | 37 | 17 | 23 | 23 | 16 | −3.6 | 329 | −2.7 |
2 | M | 72 | 0 | 1 | 0 | 61 | 15 | 15 | 22 | 8 | −13.2 | 1167 | −23.9 |
3 | M | 69 | 0 | 0 | 1 | 69 | 15 | 15 | 19 | 10 | −15.3 | 1405 | −23.5 |
4 | M | 81 | 1 | 0 | 1 | 76 | 15 | 15 | 20 | 15 | −5.6 | 1006 | −8.7 |
5 | F | 86 | 0 | 1 | 0 | 70 | 23 | 23 | 19 | 19 | −5.9 | 468 | −20.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihos, C.G.; Elajami, T.K.; Misra, D.; Venkataraman, P.; Gosdenovich, N.; Fernandez, R. Interventricular Septal Involvement Is Associated with More Impaired Ventricular Function and Mechanics in Apical Hypertrophic Cardiomyopathy. J. Cardiovasc. Dev. Dis. 2024, 11, 74. https://doi.org/10.3390/jcdd11030074
Mihos CG, Elajami TK, Misra D, Venkataraman P, Gosdenovich N, Fernandez R. Interventricular Septal Involvement Is Associated with More Impaired Ventricular Function and Mechanics in Apical Hypertrophic Cardiomyopathy. Journal of Cardiovascular Development and Disease. 2024; 11(3):74. https://doi.org/10.3390/jcdd11030074
Chicago/Turabian StyleMihos, Christos G., Tarec K. Elajami, Deepika Misra, Pranav Venkataraman, Nicholas Gosdenovich, and Rafle Fernandez. 2024. "Interventricular Septal Involvement Is Associated with More Impaired Ventricular Function and Mechanics in Apical Hypertrophic Cardiomyopathy" Journal of Cardiovascular Development and Disease 11, no. 3: 74. https://doi.org/10.3390/jcdd11030074
APA StyleMihos, C. G., Elajami, T. K., Misra, D., Venkataraman, P., Gosdenovich, N., & Fernandez, R. (2024). Interventricular Septal Involvement Is Associated with More Impaired Ventricular Function and Mechanics in Apical Hypertrophic Cardiomyopathy. Journal of Cardiovascular Development and Disease, 11(3), 74. https://doi.org/10.3390/jcdd11030074