Brugada Syndrome and Exercise: Is It Time for a Paradigm Change?
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Definition and Diagnosis
3.2. Risk Stratification and Mechanisms for SCD
3.3. Recommendations for Physical Activity and Exercise in BrS
3.4. Recommendations for Physical Activity and Exercise in BrS with ICD
3.5. Studies Involving Exercise in BrS Patients
3.6. Studies Ongoing About Exercise in BrS
4. Final Considerations and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hammond-Haley, M.; Patel, R.S.; Providência, R.; Lambiase, P.D. Exercise restrictions for patients with inherited cardiac conditions: Current guidelines, challenges and limitations. Int. J. Cardiol. 2016, 209, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Pelliccia, A.; Sharma, S.; Gati, S.; Bäck, M.; Börjesson, M.; Caselli, S.; Collet, J.P.; Corrado, D.; Drezner, J.A.; Halle, M.; et al. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur. Heart J. 2021, 42, 17–96. [Google Scholar] [CrossRef] [PubMed]
- Zeppenfeld, K.; Tfelt-Hansen, J.; de Riva, M.; Winkel, B.G.; Behr, E.R.; Blom, N.A.; Charron, P.; Corrado, D.; Dagres, N.; de Chillou, C.; et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur. Heart J. 2022, 43, 3997–4126. [Google Scholar] [CrossRef] [PubMed]
- Marrakchi, S.; Kammoun, I.; Bennour, E.; Laroussi, L.; Ben Miled, M.; Kachboura, S. Inherited primary arrhythmia disorders: Cardiac channelopathies and sports activity. Herz 2020, 45, 142–157. [Google Scholar] [CrossRef]
- Lampert, R.; Chung, E.H.; Ackerman, M.J.; Arroyo, A.R.; Darden, D.; Deo, R.; Dolan, J.; Etheridge, S.P.; Gray, B.R.; Harmon, K.G.; et al. 2024 HRS expert consensus statement on arrhythmias in the athlete: Evaluation, treatment, and return to play. Heart Rhythm 2024, 21, e151–e252. [Google Scholar] [CrossRef]
- Volpato, G.; Falanga, U.; Cipolletta, L.; Conti, M.A.; Grifoni, G.; Ciliberti, G.; Urbinati, A.; Barbarossa, A.; Stronati, G.; Fogante, M.; et al. Sports Activity and Arrhythmic Risk in Cardiomyopathies and Channelopathies: A Critical Review of European Guidelines on Sports Cardiology in Patients with Cardiovascular Diseases. Medicina 2021, 57, 308. [Google Scholar] [CrossRef]
- Fazio, G.; Schirò, P. Brugada syndrome and sports activity: From history to risk stratification. E-J. Cardiol. Pract. 2021, 19. Available online: https://www.escardio.org/Journals/E-Journal-of-Cardiology-Practice/Volume-19/brugada-syndrome-and-sports-activity-from-history-to-risk-stratification (accessed on 9 September 2024).
- Morita, H.; Asada, S.T.; Miyamoto, M.; Morimoto, Y.; Kimura, T.; Mizuno, T.; Nakagawa, K.; Watanabe, A.; Nishii, N.; Ito, H. Significance of Exercise-Related Ventricular Arrhythmias in Patients With Brugada Syndrome. J. Am. Heart Assoc. 2020, 9, e016907. [Google Scholar] [CrossRef]
- Mascia, G.; Arbelo, E.; Hernandez-Ojeda, J.; Solimene, F.; Brugada, R.; Brugada, J. Brugada Syndrome and Exercise Practice: Current Knowledge, Shortcomings and Open Questions. Int. J. Sports Med. 2017, 38, e2. [Google Scholar] [CrossRef]
- Pichara, N.L.; Sacilotto, L.; Scanavacca, M.I.; Cardoso, A.F.; Soares, B.; Falcochio, P.; Falcão, A.M.G.; Olivetti, N.; da Costa Darrieux, F.C.; Chalela, W.A. Evaluation of a new treadmill exercise protocol to unmask type 1 Brugada electrocardiographic pattern: Can we improve diagnostic yield? EP Europace 2023, 25, euad157. [Google Scholar] [CrossRef]
- Corrado, D.; Pelliccia, A.; Antzelevitch, C.; Leoni, L.; Schiavon, M.; Buja, G.; Maron, B.; Thiene, G.; Basso, C. ST segment elevation and sudden death in the athlete. In The Brugada Syndrome: From Bench to Bedside; Futura, O.B.-w., Ed.; Blackwell: Oxford, UK, 2005; pp. 119–129. [Google Scholar]
- Corrado, D.; Pelliccia, A.; Heidbuchel, H.; Sharma, S.; Link, M.; Basso, C.; Biffi, A.; Buja, G.; Delise, P.; Gussac, I.; et al. Recommendations for interpretation of 12-lead electrocardiogram in the athlete. Eur. Heart J. 2010, 31, 243–259. [Google Scholar] [CrossRef] [PubMed]
- Pospiech, T.; Jaussaud, J.; Sacher, F.; Hooks, D.A.; Haïssaguerre, M.; Douard, H. Characterization of repolarization in Brugada syndrome patients during exercise testing: Dynamic angle evaluation. J. Electrocardiol. 2015, 48, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Chevallier, S.; Forclaz, A.; Tenkorang, J.; Ahmad, Y.; Faouzi, M.; Graf, D.; Schlaepfer, J.; Pruvot, E. New electrocardiographic criteria for discriminating between Brugada types 2 and 3 patterns and incomplete right bundle branch block. J. Am. Coll. Cardiol. 2011, 58, 2290–2298. [Google Scholar] [CrossRef] [PubMed]
- Delise, P.; Mos, L.; Sciarra, L.; Basso, C.; Biffi, A.; Cecchi, F.; Colivicchi, F.; Corrado, D.; D’Andrea, A.; Di Cesare, E.; et al. Italian Cardiological Guidelines (COCIS) for Competitive Sport Eligibility in athletes with heart disease: Update 2020. J. Cardiovasc. Med. 2021, 22, 874–891. [Google Scholar] [CrossRef]
- Viskin, S.; Adler, A.; Rosso, R. Brugada burden in Brugada syndrome: The way to go in risk stratification? Heart Rhythm 2013, 10, 1019–1020. [Google Scholar] [CrossRef]
- Steinvil, A.; Chundadze, T.; Zeltser, D.; Rogowski, O.; Halkin, A.; Galily, Y.; Perluk, H.; Viskin, S. Mandatory electrocardiographic screening of athletes to reduce their risk for sudden death proven fact or wishful thinking? J. Am. Coll. Cardiol. 2011, 57, 1291–1296. [Google Scholar] [CrossRef]
- Heidbüchel, H.; Corrado, D.; Biffi, A.; Hoffmann, E.; Panhuyzen-Goedkoop, N.; Hoogsteen, J.; Delise, P.; Hoff, P.I.; Pelliccia, A. Recommendations for participation in leisure-time physical activity and competitive sports of patients with arrhythmias and potentially arrhythmogenic conditions. Part II: Ventricular arrhythmias, channelopathies and implantable defibrillators. Eur. J. Cardiovasc. Prev. Rehabil. 2006, 13, 676–686. [Google Scholar] [CrossRef]
- Heidbuchel, H.; Arbelo, E.; D’Ascenzi, F.; Borjesson, M.; Boveda, S.; Castelletti, S.; Miljoen, H.; Mont, L.; Niebauer, J.; Papadakis, M.; et al. Recommendations for participation in leisure-time physical activity and competitive sports of patients with arrhythmias and potentially arrhythmogenic conditions. Part 2: Ventricular arrhythmias, channelopathies, and implantable defibrillators. EP Europace 2021, 23, 147–148. [Google Scholar] [CrossRef]
- Chanavirut, R.; Makarawate, P.; Macdonald, I.A.; Leelayuwat, N. Autonomic and cardio-respiratory responses to exercise in Brugada Syndrome patients. J. Arrhythm. 2016, 32, 426–432. [Google Scholar] [CrossRef]
- Dores, H. Current scenario of evidence-based recommendations in sports cardiology. Rev. Port. Cardiol. 2023, 42, 677–678. [Google Scholar] [CrossRef]
- Lang, C.N.; Steinfurt, J.; Odening, K.E. Avoiding sports-related sudden cardiac death in children with congenital channelopathy: Recommendations for sports activities. Herz 2017, 42, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Pelliccia, A.; Fagard, R.; Bjørnstad, H.H.; Anastassakis, A.; Arbustini, E.; Assanelli, D.; Biffi, A.; Borjesson, M.; Carrè, F.; Corrado, D.; et al. Recommendations for competitive sports participation in athletes with cardiovascular disease: A consensus document from the Study Group of Sports Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and the Working Group of Myocardial and Pericardial Diseases of the European Society of Cardiology. Eur. Heart J. 2005, 26, 1422–1445. [Google Scholar] [CrossRef]
- Ackerman, M.J.; Zipes, D.P.; Kovacs, R.J.; Maron, B.J. Eligibility and Disqualification Recommendations for Competitive Athletes With Cardiovascular Abnormalities: Task Force 10: The Cardiac Channelopathies: A Scientific Statement From the American Heart Association and American College of Cardiology. J. Am. Coll. Cardiol. 2015, 66, 2424–2428. [Google Scholar] [CrossRef]
- Zipes, D.P.; Link, M.S.; Ackerman, M.J.; Kovacs, R.J.; Myerburg, R.J.; Estes, N.A.M. 3rd. Eligibility and Disqualification Recommendations for Competitive Athletes With Cardiovascular Abnormalities: Task Force 9: Arrhythmias and Conduction Defects: A Scientific Statement From the American Heart Association and American College of Cardiology. J. Am. Coll. Cardiol. 2015, 66, 2412–2423. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.J.; Silka, M.J.; Silva, J.N.A.; Balaji, S.; Beach, C.M.; Benjamin, M.N.; Berul, C.I.; Cannon, B.; Cecchin, F.; Cohen, M.I.; et al. 2021 PACES Expert Consensus Statement on the Indications and Management of Cardiovascular Implantable Electronic Devices in Pediatric Patients: Developed in collaboration with and endorsed by the Heart Rhythm Society (HRS), the American College of Cardiology (ACC), the American Heart Association (AHA), and the Association for European Paediatric and Congenital Cardiology (AEPC) Endorsed by the Asia Pacific Heart Rhythm Society (APHRS), the Indian Heart Rhythm Society (IHRS), and the Latin American Heart Rhythm Society (LAHRS). JACC Clin. Electrophysiol. 2021, 7, 1437–1472. [Google Scholar] [CrossRef] [PubMed]
- Boisson, A.; De La Villeon, G.; Huguet, H.; Abassi, H.; Pasquie, J.L.; Lavastre, K.; Matecki, S.; Guillaumont, S.; Requirand, A.; Calderon, J.; et al. Physical activity and aerobic fitness in children with inherited cardiac diseases. Arch. Cardiovasc. Dis. 2021, 114, 727–736. [Google Scholar] [CrossRef]
- Amedro, P.; Werner, O.; Abassi, H.; Boisson, A.; Souilla, L.; Guillaumont, S.; Calderon, J.; Requirand, A.; Vincenti, M.; Pommier, V.; et al. Health-related quality of life and physical activity in children with inherited cardiac arrhythmia or inherited cardiomyopathy: The prospective multicentre controlled QUALIMYORYTHM study rationale, design and methods. Health Qual. Life Outcomes 2021, 19, 187. [Google Scholar] [CrossRef]
- Romero, D.; Behar, N.; Petit, B.; Probst, V.; Sacher, F.; Mabo, P.; Hernández, A.I. Dynamic changes in ventricular depolarization during exercise in patients with Brugada syndrome. PLoS ONE 2020, 15, e0229078. [Google Scholar] [CrossRef]
- Subramanian, M.; Prabhu, M.A.; Harikrishnan, M.S.; Shekhar, S.S.; Pai, P.G.; Natarajan, K. The Utility of Exercise Testing in Risk Stratification of Asymptomatic Patients With Type 1 Brugada Pattern. J. Cardiovasc. Electrophysiol. 2017, 28, 677–683. [Google Scholar] [CrossRef]
- Calvo, M.; Romero, D.; Le Rolle, V.; Béhar, N.; Gomis, P.; Mabo, P.; Hernández, A.I. Multivariate classification of Brugada syndrome patients based on autonomic response to exercise testing. PLoS ONE 2018, 13, e0197367. [Google Scholar] [CrossRef]
- Makimoto, H.; Nakagawa, E.; Takaki, H.; Yamada, Y.; Okamura, H.; Noda, T.; Satomi, K.; Suyama, K.; Aihara, N.; Kurita, T.; et al. Augmented ST-segment elevation during recovery from exercise predicts cardiac events in patients with Brugada syndrome. J. Am. Coll. Cardiol. 2010, 56, 1576–1584. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.S.; de Groot, E.A.; Ruijter, J.M.; Wilde, A.A.; Tan, H.L. Exercise-induced ECG changes in Brugada syndrome. Circ. Arrhythm. Electrophysiol. 2009, 2, 531–539. [Google Scholar] [CrossRef] [PubMed]
ECG/Exercise Test Finding (Reference) | Implications |
---|---|
QRS fragmentation (ECG) [3] | Linked to higher SCD risk but low utility in intermediate-risk patients |
Early repolarization pattern (ECG) [3] | Linked to higher SCD risk but low utility in intermediate-risk patients |
Brugada pattern in inferior or lateral leads (ECG) [10] | Linked to higher SCD risk |
Aggravated Brugada pattern during exercise/early recovery (exercise testing) [2] | Controversial |
Brugada “burden” (several leads and persistence in time of the pattern) [10,16,17] | Linked to higher probability of arrhythimc events |
Society/Year | Recommendations |
---|---|
ESC 2005 [23] | No competitive sports. |
ESC 2006 [18] | Competitive sports with low cardiovascular demand. Leisure-time sports with moderate cardiovascular demand. |
AHA/ACC 2015 [24] | All competitive sports (IIb C). Asymptomatic athlete with genotype-positive/phenotype-negative—all competitive sports with appropriate preventive measures (IIa C), including the following:
|
ESC 2020 [2] | Sports activities * not associated with an increase in core temperature > 39 °C (e.g., endurance events under extremely hot and/or humid conditions) (asymptomatic, mutation carriers, asymptomatic inducible ECG pattern) (IIb C). (* All sports, except endurance sports with increased core temperature.) |
COCIS, Italian 2020 [15] | Competitive sports if no risk factors (suspected arrhythmic syncope, family history of SCD (age < 40–45 years), early repolarization pattern in lateral leads without ST elevation, sinus node or conduction disturbances, increased ST elevation during the recovery phase of an exercise test or positive EPS). Competitive sports in Brugada types 2 and 3 or a positive drug test and no risk factors (above-mentioned). Competitive sports in controversial cases if negative EPS. |
EHRA 2021 [19] | All sports not associated with an increase in core temperature > 39 °C (e.g., endurance events under extremely hot and/or humid conditions)—(asymptomatic, mutation carriers, asymptomatic athletes with an inducible ECG pattern) (“may do”). |
HRS 2024 [5] | No evidence to support exercise restriction:
|
Society/Year | Recommendations |
---|---|
ESC 2005 [23] | Low–moderate dynamic and low–static sports—except sports with risk of bodily collision (I A,B).
|
ESC 2006 [18] | No competitive sports—except with a low cardiovascular demand and no risks due to syncope (>6 weeks after implantation). Leisure-time sports allowed (>6 weeks after implantation).
|
AHA/ACC 2015 [25] | Class IA-level sports (athletes free from device therapies >3 months) (IIa C) Higher intensity depending on individual evaluation (if free from device therapies >3 months) (IIb C):
|
ESC 2020 [2] | Leisure and competitive sports (without recurrent arrhythmias >3 months after ICD implantation) (IIa C):
|
COCIS, Italian 2020 [15] | Low-to-moderate intensity (>3 months after therapies and in asymptomatic individuals). Sports with a lower risk of trauma and the avoidance of repetitive use of the ipsilateral arm (preferred). |
EHRA 2021 [19] | Leisure and competitive sports (no recurrent event > 3 months) (“may do”):
|
HRS 2024 [5] | No specific recommendations. |
Author/Year | N | Conclusions |
---|---|---|
Boisson et al., 2021 [27] | 32 | Good compliance with current sports guidelines and good aerobic fitness in children with inherited arrhythmic disorders and cardiomyopathies. |
Amedro et al. [28] | 214 | No overall results have been published. |
Pichara et al., 2021 [10] | 163 | Treadmill exercise testing protocol (high precordial leads and passive recovery phase in the supine position) increased the diagnostic yield of BrS. |
Morita et al., 2020 [8] | 307 | Premature ventricular contractions in the early recovery phase of treadmill exercise test were associated with future occurrence of ventricular fibrillation in BrS patients. |
Romero et al., 2020 [29] | 110 | Depolarization dynamic analysis during cycle ergometer exercise testing may help identify higher risk asymptomatic BrS. |
Subramanian et al., 2017 [30] | 163 | Increased S wave upslope duration ratio in the precordial leads (peak exercise), augmentation of J point elevation in lead aVR and delayed heart rate recovery (late recovery) were independent predictors of future major arrhythmic events in BrS. |
Calvo et al., 2018 [31] | 105 | Proposed model using time-frequency heart rate variability analysis during cycle ergometer exercise testing to identify higher risk BrS patients. |
Chanavirut et al., 2015 [20] | 34 | BrS patients had higher parasympathetic and lower sympathetic activation during the recovery period after cycle ergometer exercise testing. |
Pospiech et al., 2015 [13] | 63 | ECG alterations (beta angle) during cycle ergometer exercise testing were more pronounced in BrS patients compared to healthy subjects. |
Makimoto et al., 2010 [32] | 195 | ST elevation augmentation during early recovery (1 to 4 min) of the treadmill exercise test was associated with future cardiac events in asymptomatic BrS patients. |
Amin et al., 2009 [33] | 85 | Several ECG alterations during exercise testing were reported in BrS patients (QRS widening in SCN5A positive BrS patients and QT prolongation in BrS patients) compared to healthy subjects. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, C.M.; Vazão, A.; Carvalho, M.; Cabral, M.; Martins, A.; Amado, M.; Pereira, J.; Saraiva, F.; Martins, H.; Dores, H. Brugada Syndrome and Exercise: Is It Time for a Paradigm Change? J. Cardiovasc. Dev. Dis. 2025, 12, 94. https://doi.org/10.3390/jcdd12030094
Gonçalves CM, Vazão A, Carvalho M, Cabral M, Martins A, Amado M, Pereira J, Saraiva F, Martins H, Dores H. Brugada Syndrome and Exercise: Is It Time for a Paradigm Change? Journal of Cardiovascular Development and Disease. 2025; 12(3):94. https://doi.org/10.3390/jcdd12030094
Chicago/Turabian StyleGonçalves, Carolina Miguel, Adriana Vazão, Mariana Carvalho, Margarida Cabral, André Martins, Mónica Amado, Joana Pereira, Fátima Saraiva, Hélia Martins, and Hélder Dores. 2025. "Brugada Syndrome and Exercise: Is It Time for a Paradigm Change?" Journal of Cardiovascular Development and Disease 12, no. 3: 94. https://doi.org/10.3390/jcdd12030094
APA StyleGonçalves, C. M., Vazão, A., Carvalho, M., Cabral, M., Martins, A., Amado, M., Pereira, J., Saraiva, F., Martins, H., & Dores, H. (2025). Brugada Syndrome and Exercise: Is It Time for a Paradigm Change? Journal of Cardiovascular Development and Disease, 12(3), 94. https://doi.org/10.3390/jcdd12030094