Findings and Methodological Shortcomings of Investigations Concerning the Relationship Between Sleep Duration and Blood Pressure: A Comprehensive Narrative Review
Abstract
:1. Introduction
2. Sleep Duration Epidemiology
3. Sleep Duration, Blood Pressure, and Hypertension
3.1. Office Blood Pressure Measurement (OBPM)-Based Sphygmomanometer Investigations
3.2. Ambulatory Blood Pressure Monitoring (ABPM)-Based Investigations
4. Discussion
4.1. Deficiencies of the Method of Blood Pressure Assessment and Diagnosis of Hypertension
4.2. Deficiencies of ABPM-Based Investigations
4.3. Deficiencies of the Quantification of Sleep Duration and Definition of Short and Long Sleep Duration
4.4. Deficiencies in the Design and Conduct of Investigations
4.5. Deficiencies of the Source of Blood Pressure and Sleep Duration Data
4.6. Deficiencies and Disparities of Inclusion and Exclusion Criteria of Study Participants
5. Perspectives: SSD in the Context of the American Heart Association’s Cardiovascular Health Life’s Essential 8 TM
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Watson, N.F.; Badr, M.S.; Belenky, G.; Bliwise, D.L.; Buxton, O.M.; Buysse, D.; Dinges, D.F.; Gangwisch, J.; Grandner, M.A.; Kushida, C.; et al. Recommended amount of sleep for a healthy adult: A joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society. Sleep 2015, 38, 843–844. [Google Scholar] [CrossRef] [PubMed]
- Paruthi, S.; Brooks, L.J.; D’Ambrosio, C.; Hall, W.A.; Kotagal, S.; Lloyd, R.M.; Malow, B.A.; Maski, K.; Nichols, C.; Quan, S.F.; et al. Recommended amount of sleep for pediatric populations: A consensus statement of the American Academy of Sleep Medicine. J. Clin. Sleep Med. 2016, 12, 785–786. [Google Scholar] [CrossRef] [PubMed]
- Lloyd-Jones, D.M.; Allen, N.B.; Anderson, C.A.M.; Black, T.; Brewer, L.C.; Foraker, R.E.; Grandner, M.A.; Lavretsky, H.; Perak, A.M.; Sharma, G.; et al. Life’s Essential 8: Updating and enhancing the American Heart Association’s construct of cardiovascular health: A presidential advisory from the American Heart Association. Circulation 2022, 146, e18–e43. [Google Scholar] [CrossRef]
- Caldwell, J.A.; Caldwell, J.L.; Thompson, L.A.; Lieberman, H.R. Fatigue and its management in the workplace. Neurosci. Biobehav. Rev. 2019, 96, 272–289. [Google Scholar] [CrossRef]
- Cavaillès, C.; Dintica, C.; Habes, M.; Leng, Y.; Carnethon, M.R.; Yaffe, K. Association of self-reported sleep caracteristics with neuroimaging markers of brain aging years later in middle-aged adults. Neurology 2024, 103, e209988. [Google Scholar] [CrossRef]
- Chaiard, J.; Deeluea, J.; Suksatit, B.; Songkham, W.; Inta, N. Short sleep duration among Thai nurses: Influences on fatigue, daytime sleepiness, and occupational errors. J. Occup. Health 2018, 60, 348–355. [Google Scholar] [CrossRef]
- Girardeau, G.; Lopes-Dos-Santos, V. Brain neural patterns and the memory function of sleep. Science 2021, 374, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Lo, J.C.; Ong, J.L.; Leong, R.L.; Gooley, J.J.; Chee, M.W. Cognitive performance, sleepiness, and mood in partially sleep deprived adolescents: The Need for Sleep Study. Sleep 2016, 39, 687–698. [Google Scholar] [CrossRef]
- Biddle, D.J.; Hermens, D.F.; Lallukka, T.; Aji, M.; Glozier, N. Insomnia symptoms and short sleep duration predict trajectory of mental health symptoms. Sleep Med. 2019, 54, 53–61. [Google Scholar] [CrossRef]
- Ko, S.H.; Baeg, M.K.; Ko, S.Y.; Han, K.D. Women who sleep more have reduced risk of peptic ulcer disease; Korean National Health and Nutrition Examination Survey (2008–2009). Sci. Rep. 2016, 6, 36925. [Google Scholar] [CrossRef]
- Prather, A.A.; Janicki-Deverts, D.; Hall, M.H.; Cohen, S. Behaviorally assessed sleep and susceptibility to the common cold. Sleep 2015, 38, 1353–1359. [Google Scholar] [CrossRef] [PubMed]
- Shibata, M.; Iwane, T.; Higuchi, R.; Suwa, K.; Nakajima, K. Potential common factors associated with predisposition to common cold in middle-aged and elderly Japanese: A community-based cross-sectional study. Medicine 2018, 97, e10729. [Google Scholar] [CrossRef]
- Yuan, S.; Sun, Y.; Tan, X.; Geng, J.; Sun, J.; Chen, X.; Yu, L.; Wang, J.; Zhou, X.; Hesketh, T.; et al. Sleep duration and daytime napping in relation to incident inflammatory bowel disease: A prospective cohort study. Aliment. Pharmacol. Ther. 2023, 57, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Zha, L.F.; Dong, J.T.; Wang, J.L.; Chen, Q.W.; Wu, J.F.; Zhou, Y.C.; Nie, S.F.; Tu, X. Effects of insomnia on peptic ulcer disease using Mendelian randomization. Oxid. Med. Cell Longev. 2021, 2021, 2216314. [Google Scholar] [CrossRef]
- Bain, A.R.; Weil, B.R.; Diehl, K.J.; Greiner, J.J.; Stauffer, B.L.; DeSouza, C.A. Insufficient sleep is associated with impaired nitric oxide-mediated endothelium-dependent vasodilation. Atherosclerosis 2017, 265, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Bertisch, S.M.; Pollock, B.D.; Mittleman, M.A.; Buysse, D.J.; Bazzano, L.A.; Gottlieb, D.J.; Redline, S. Insomnia with objective short sleep duration and risk of incident cardiovascular disease and all-cause mortality: Sleep Heart Health Study. Sleep 2018, 41, zsy047. [Google Scholar] [CrossRef]
- Blasco-Colmenares, E.; Moreno-Franco, B.; Latre, M.L.; Mur-Vispe, E.; Pocovi, M.; Jarauta, E.; Civeira, F.; Laclaustra, M.; Casasnovas, J.A.; Guallar, E. Sleep duration and subclinical atherosclerosis: The Aragon Workers’ Health Study. Atherosclerosis 2018, 274, 35–40. [Google Scholar] [CrossRef]
- Covassin, N.; Singh, P. Sleep duration and cardiovascular disease risk: Epidemiologic and experimental evidence. Sleep Med. Clin. 2016, 11, 81–89. [Google Scholar] [CrossRef]
- Daghlas, I.; Dashti, H.S.; Lane, J.; Aragam, K.G.; Rutter, M.K.; Saxena, R.; Vetter, C. Sleep duration and myocardial infarction. J. Am. Coll. Cardiol. 2019, 74, 1304–1314. [Google Scholar] [CrossRef]
- Domínguez, F.; Fuster, V.; Fernández-Alvira, J.M.; Fernández-Friera, L.; López-Melgar, B.; Blanco-Rojo, R.; Fernández-Ortiz, A.; García-Pavía, P.; Sanz, J.; Mendiguren, J.M.; et al. Association of sleep duration and quality with subclinical atherosclerosis. J. Am. Coll. Cardiol. 2019, 73, 134–144. [Google Scholar] [CrossRef]
- Hijmans, J.G.; Levy, M.; Garcia, V.; Lincenberg, G.M.; Diehl, K.J.; Greiner, J.J.; Stauffer, B.L.; DeSouza, C.A. Insufficient sleep is associated with a pro-atherogenic circulating microRNA signature. Exp. Physiol. 2019, 104, 975–982. [Google Scholar] [CrossRef] [PubMed]
- Itani, O.; Jike, M.; Watanabe, N.; Kaneita, Y. Short sleep duration and health outcomes: A systematic review, meta-analysis, and meta-regression. Sleep Med. 2017, 32, 246–256. [Google Scholar] [CrossRef]
- Jike, M.; Itani, O.; Watanabe, N.; Buysse, D.J.; Kaneita, Y. Long sleep duration and health outcomes: A systematic review, meta-analysis and meta-regression. Sleep Med. Rev. 2018, 39, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Kundel, V.; Reid, M.; Fayad, Z.; Ayappa, I.; Mani, V.; Rueschman, M.; Redline, S.; Shea, S.; Shah, N. Sleep duration and vascular inflammation using hybrid positron emission tomography/magnetic resonance imaging: Results from the Multi-Ethnic Study of Atherosclerosis. J. Clin. Sleep Med. 2021, 17, 2009–2018. [Google Scholar] [CrossRef]
- Kwok, C.S.; Kontopantelis, E.; Kuligowski, G.; Gray, M.; Muhyaldeen, A.; Gale, C.P.; Peat, G.M.; Cleator, J.; Chew-Graham, C.; Loke, Y.K.; et al. Self-reported sleep duration and quality and cardiovascular disease and mortality: A dose-response meta-analysis. J. Am. Heart Assoc. 2018, 7, e008552. [Google Scholar] [CrossRef]
- Lao, X.Q.; Liu, X.; Deng, H.B.; Chan, T.C.; Ho, K.F.; Wang, F.; Vermeulen, R.; Tam, T.; Wong, M.C.S.; Tse, L.A.; et al. Sleep quality, sleep duration, and the risk of coronary heart disease: A prospective cohort study with 60,586 adults. J. Clin. Sleep. Med. 2018, 14, 109–117. [Google Scholar] [CrossRef]
- Tao, J.; Xia, L.; Cai, Z.; Liang, L.; Chen, Y.; Meng, J.; Wang, Z. Interaction between microRNA and DNA methylation in atherosclerosis. DNA Cell Biol. 2021, 40, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Meng, Y.; Jin, X.; Xi, W.; Ma, Q.; Yang, J.; Ma, X.; Yan, B. Association of objective and self-reported sleep duration with all-cause and cardiovascular disease mortality: A community-based study. J. Am. Heart Assoc. 2023, 12, e027832. [Google Scholar] [CrossRef]
- Hosseini, K.; Soleimani, H.; Tavakoli, K.; Maghsoudi, M.; Heydari, N.; Farahvash, Y.; Etemadi, A.; Najafi, K.; Askari, M.K.; Gupta, R.; et al. Association between sleep duration and hypertension incidence: Systematic review and meta-analysis of cohort studies. PLoS ONE 2024, 19, e0307120. [Google Scholar] [CrossRef]
- Johnson, K.A.; Gordon, C.J.; Chapman, J.L.; Hoyos, C.M.; Marshall, N.S.; Miller, C.B.; Grunstein, R.R. The association of insomnia disorder characterised by objective short sleep duration with hypertension, diabetes and body mass index: A systematic review and meta-analysis. Sleep Med Rev. 2021, 59, 101456. [Google Scholar] [CrossRef]
- Wang, Y.; Mei, H.; Jiang, Y.R.; Sun, W.Q.; Song, Y.J.; Liu, S.J.; Jiang, F. Relationship between duration of sleep and hypertension in adults: A meta-analysis. J. Clin. Sleep Med. 2015, 11, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, Y.; Wang, X.; Yang, S.; Chen, W.; Zeng, Z. The association between sleep duration and hypertension: A meta and study sequential analysis. J. Hum. Hypertens. 2021, 35, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Xian, H.; Cheng, X.; Wu, X.; Meng, J.; Chen, W.; Zeng, Z. Methodological and reporting quality assessment of systematic reviews and meta-analyses in the association between sleep duration and hypertension. Syst. Rev. 2024, 13, 211. [Google Scholar] [CrossRef]
- Liu, Y.; Wheaton, A.G.; Chapman, D.P.; Cunningham, T.J.; Lu, H.; Croft, J.B. Prevalence of healthy sleep duration among Adults--United States, 2014. MMWR Morb. Mortal. Weekly Rep. 2016, 65, 137–141. [Google Scholar] [CrossRef]
- Chami, H.A.; Ghandour, B.; Isma’eel, H.; Nasreddine, L.; Nasrallah, M.; Tamim, H. Sleepless in Beirut: Sleep duration and associated subjective sleep insufficiency, daytime fatigue, and sleep debt in an urban environment. Sleep Breath. 2020, 24, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.B.; Tam, T.; Zee, B.C.; Chung, R.Y.; Su, X.; Jin, L.; Chan, T.C.; Chang, L.Y.; Yeoh, E.K.; Lao, X.Q. Short sleep duration increases metabolic impact in healthy adults: A population-based cohort study. Sleep 2017, 40, zsx130. [Google Scholar] [CrossRef]
- Huang, L.; Long, Z.; Lyu, J.; Chen, Y.; Li, R.; Wang, Y.; Li, S. The associations of trajectory of sleep duration and inflammation with hypertension: A Longitudinal Study in China. Nat. Sci. Sleep 2021, 13, 1797–1806. [Google Scholar] [CrossRef]
- Kim, C.W.; Chang, Y.; Kang, J.G.; Ryu, S. Changes in sleep duration and subsequent risk of hypertension in healthy adults. Sleep 2018, 41, zsy159. [Google Scholar] [CrossRef]
- Ong, J.L.; Tandi, J.; Patanaik, A.; Lo, J.C.; Chee, M.W.L. Large-scale data from wearables reveal regional disparities in sleep patterns that persist across age and sex. Sci. Rep. 2019, 9, 3415. [Google Scholar] [CrossRef]
- Wheaton, A.G.; Jones, S.E.; Cooper, A.C.; Croft, J.B. Short sleep duration among middle school and high school students—United States, 2015. MMWR Morb. Mortal. Weekly Rep. 2018, 67, 85–90. [Google Scholar] [CrossRef]
- Wheaton, A.G.; Claussen, A.H. Short sleep duration among infants, children, and adolescents aged 4 months-17 years—United States, 2016–2018. MMWR Morb. Mortal. Weekly Rep. 2021, 70, 1315–1321. [Google Scholar] [CrossRef]
- Feng, X.; Liu, Q.; Li, Y.; Zhao, F.; Chang, H.; Lyu, J. Longitudinal study of the relationship between sleep duration and hypertension in Chinese adult residents (CHNS 2004–2011). Sleep Med. 2019, 58, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Mendoza, J.; Vgontzas, A.N.; Liao, D.; Shaffer, M.L.; Vela-Bueno, A.; Basta, M.; Bixler, E.O. Insomnia with objective short sleep duration and incident hypertension: The Penn State Cohort. Hypertension 2012, 60, 929–935. [Google Scholar] [CrossRef]
- Gangwisch, J.E.; Heymsfield, S.B.; Boden-Albala, B.; Buijs, R.M.; Kreier, F.; Pickering, T.G.; Rundle, A.G.; Zammit, G.K.; Malaspina, D. Short sleep duration as a risk factor for hypertension: Analyses of the first National Health and Nutrition Examination Survey. Hypertension 2006, 47, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, D.J.; Redline, S.; Nieto, F.J.; Baldwin, C.M.; Newman, A.B.; Resnick, H.E.; Punjabi, N.M. Association of usual sleep duration with hypertension: The Sleep Heart Health Study. Sleep 2006, 29, 1009–1014. [Google Scholar] [CrossRef]
- Grandner, M.; Mullington, J.M.; Hashmi, S.D.; Redeker, N.S.; Watson, N.F.; Morgenthaler, T.I. Sleep duration and hypertension: Analysis of >700,000 adults by age and sex. J. Clin. Sleep Med. 2018, 14, 1031–1039. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zheng, L.; Wang, J.; Zhang, X.; Zhang, X.; Li, J. Epidemiological evidence for the link between sleep duration and high blood pressure: A systematic review and meta-analysis. Sleep Med. 2013, 14, 324–332. [Google Scholar] [CrossRef]
- Javaheri, S.; Storfer-Isser, A.; Rosen, C.L.; Redline, S. Sleep quality and elevated blood pressure in adolescents. Circulation 2008, 118, 1034–1040. [Google Scholar] [CrossRef]
- Li, C.; Shang, S. Relationship between sleep and hypertension: Findings from the NHANES (2007–2014). Int. J. Environ. Res. Public Health 2021, 18, 7867. [Google Scholar] [CrossRef]
- Li, C.; Shang, S.; Liang, W. Sleep and risk of hypertension in general American adults: The National Health and Nutrition Examination Surveys (2015–2018). J. Hypertens 2023, 41, 63–73. [Google Scholar] [CrossRef]
- Pandey, A.; Williams, N.; Donat, M.; Ceide, M.; Brimah, P.; Ogedegbe, G.; McFarlane, S.I.; Jean-Louis, G. Linking sleep to hypertension: Greater risk for blacks. Int. J. Hypertens. 2013, 2013, 436502. [Google Scholar] [CrossRef] [PubMed]
- Seixas, A.A.; Auguste, E.; Butler, M.; James, C.; Newsome, V.; Auguste, E.; da Silva Fonseca, V.A.; Schneeberger, A.; Zizi, F.; Jean-Louis, G. Differences in short and long sleep durations between blacks and whites attributed to emotional distress: Analysis of the National Health Interview Survey in the United States. Sleep Health 2017, 3, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Vgontzas, A.N.; Liao, D.; Bixler, E.O.; Chrousos, G.P.; Vela-Bueno, A. Insomnia with objective short sleep duration is associated with a high risk for hypertension. Sleep 2009, 32, 491–497. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, X.; Li, Y.; Mao, Z.; Huo, W.; Jiang, J. Night sleep duration and sleep initiation time with hypertension in Chinese rural population: The Henan Rural Cohort. Eur. J. Public Health 2020, 30, 164–170. [Google Scholar] [CrossRef]
- Doyle, C.Y.; Ruiz, J.M.; Taylor, D.J.; Smyth, J.W.; Flores, M.; Dietch, J.R.; Ahn, C.; Allison, M.; Smith, T.W.; Uchino, B.N. Associations between objective sleep and ambulatory blood pressure in a community sample. Psychosom. Med. 2019, 81, 545–556. [Google Scholar] [CrossRef]
- Friedman, O.; Shukla, Y.; Logan, A.G. Relationship between self-reported sleep duration and changes in circadian blood pressure. Am. J. Hypertens. 2009, 22, 1205–1211. [Google Scholar] [CrossRef]
- Kim, B.S.; Kim, J.H.; Kim, W.; Kim, W.S.; Park, S.; Lee, S.J.; Kim, J.Y.; Lee, E.M.; Ihm, S.H.; Pyun, W.B.; et al. Clinical and life style factors related to the nighttime blood pressure, nighttime dipping and their phenotypes in Korean hypertensive patients. Clin. Hypertens. 2023, 29, 21. [Google Scholar] [CrossRef] [PubMed]
- Makarem, N.; Shechter, A.; Carnethon, M.R.; Mullington, J.M.; Hall, M.H.; Abdalla, M. Sleep duration and blood pressure: Recent advances and future directions. Curr. Hypertens. Rep. 2019, 21, 33. [Google Scholar] [CrossRef]
- Schillaci, G.; Verdecchia, P.; Borgioni, C.; Ciucci, A.; Gattobigio, R.; Sacchi, N.; Benemio, G.; Porcellati, C. Predictors of diurnal blood pressure changes in 2042 subjects with essential hypertension. J. Hypertens. 1996, 14, 1167–1173. [Google Scholar] [CrossRef]
- Shulman, R.; Cohen, D.L.; Grandner, M.A.; Gislason, T.; Pack, A.I.; Kuna, S.T.; Townsend, R.R.; Cohen, J.B. Sleep duration and 24-hour ambulatory blood pressure in adults not on antihypertensive medications. J. Clin. Hypertens. 2018, 20, 1712–1720. [Google Scholar] [CrossRef]
- Fujikawa, T.; Tochikubo, O.; Kura, N.; Umemura, S. Factors related to elevated 24-h blood pressure in young adults. Clin. Exp. Hypertens. 2009, 31, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Mezick, E.J.; Hall, M.; Matthews, K.A. Sleep duration and ambulatory blood pressure in black and white adolescents. Hypertension 2012, 59, 747–752. [Google Scholar] [CrossRef]
- Meininger, J.C.; Gallagher, M.R.; Eissa, M.A.; Nguyen, T.Q.; Chan, W. Sleep duration and its association with ambulatory blood pressure in a school-based, diverse sample of adolescents. Am. J. Hypertens. 2014, 27, 948–955. [Google Scholar] [CrossRef]
- Hermida, R.C.; Crespo, J.J.; Domínguez-Sardiña, M.; Otero, A.; Moyá, A.; Ríos, M.T.; Sineiro, E.; Castiñeira, M.C.; Callejas, P.A.; Pousa, L.; et al. Bedtime hypertension treatment improves cardiovascular risk reduction: The Hygia Chronotherapy Trial. Eur. Heart J. 2020, 41, 4565–4576. [Google Scholar] [CrossRef] [PubMed]
- Hermida, R.C.; Mojón, A.; Hermida-Ayala, R.G.; Smolensky, M.H.; Fernández, J.R. Extent of asleep blood pressure reduction by hypertension medications is ingestion-time dependent: Systematic review and meta-analysis of published human trials. Sleep Med. Rev. 2021, 59, 101454. [Google Scholar] [CrossRef]
- Hermida, R.C.; Hermida-Ayala, R.G.; Smolensky, M.H.; Mojón, A.; Fernández, J.R. Ingestion-time differences in the pharmacodynamics of hypertension medications: Systematic review of human chronopharmacology trials. Adv. Drug Deliv. Rev. 2021, 170, 200–213. [Google Scholar] [CrossRef] [PubMed]
- Hermida, R.C.; Hermida-Ayala, R.G.; Mayojón, A.; Smolensky, M.H.; Fernández, J.R. Systematic review and quality evaluation of published human ingestion-time trials of blood pressure-lowering medications and their combinations. Chronobiol. Int. 2021, 38, 1460–1476. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Vgontzas, A.N.; Chen, L.; Zheng, D.; Chen, B.; Fernandez-Mendoza, J.; Karataraki, M.; Tang, X.; Li, Y. A meta-analysis of the association between insomnia with objective short sleep duration and risk of hypertension. Sleep Med. Rev. 2024, 75, 101914. [Google Scholar] [CrossRef]
- Li, H.; Ren, Y.; Wu, Y.; Zhao, X. Correlation between sleep duration and hypertension: A dose-response meta-analysis. J. Hum. Hypertens. 2019, 33, 218–228. [Google Scholar] [CrossRef]
- Nurrobi, Y.A.S.; Winston, K.; Damara, I.; Rahman, A.L.; Falakhi, M.F.; Aristya, M.P.; Toaha, A.F.; Larasaty, I.N. The effect of sleep duration on hypertension risk in an adult Asian population: A systematic review and meta-analysis. Cureus 2024, 16, e61508. [Google Scholar]
- Lusardi, P.; Zoppi, A.; Preti, P.; Pesce, R.M.; Piazza, E.; Fogari, R. Effects of insufficient sleep on blood pressure in hypertensive patients: A 24-h study. Am. J. Hypertens. 1999, 12, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Meerlo, P.; Sgoifo, A.; Suchecki, D. Restricted and disrupted sleep: Effects on autonomic function, neuroendocrine stress systems and stress responsivity. Sleep Med. Rev. 2008, 12, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, K.; Leproult, R.; Van Cauter, E. Impact of sleep debt on metabolic and endocrine function. Lancet 1999, 354, 1435–1439. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Lu, C.; Zha, J. Long sleep duration increases the risk of all-cause mortality among community-dwelling older adults with frailty: Evidence From NHANES 2009–2014. J. Appl. Gerontol. 2023, 42, 1078–1088. [Google Scholar] [CrossRef]
- Kakizaki, M.; Kuriyama, S.; Nakaya, N.; Sone, T.; Nagai, M.; Sugawara, Y.; Hozawa, A.; Fukudo, S.; Tsuji, I. Long sleep duration and cause-specific mortality according to physical function and self-rated health: The Ohsaki Cohort Study. J. Sleep Res. 2013, 22, 209–216. [Google Scholar] [CrossRef]
- Nagai, M.; Tomata, Y.; Watanabe, T.; Kakizaki, M.; Tsuji, I. Association between sleep duration, weight gain, and obesity for long period. Sleep Med. 2013, 14, 206–210. [Google Scholar] [CrossRef]
- Suzuki, E.; Yorifuji, T.; Ueshima, K.; Takao, S.; Sugiyama, M.; Ohta, T.; Ishikawa-Takata, K.; Doi, H. Sleep duration, sleep quality and cardiovascular disease mortality among the elderly: A population-based cohort study. Prev. Med. 2009, 49, 135–141. [Google Scholar] [CrossRef]
- Tan, X.; Chapman, C.D.; Cedernaes, J.; Benedict, C. Association between long sleep duration and increased risk of obesity and type 2 diabetes: A review of possible mechanisms. Sleep Med. Rev. 2018, 40, 127–134. [Google Scholar] [CrossRef]
- Hermida, R.C.; Fernández, J.R.; Ayala, D.E.; Mojón, A.; Alonso, I.; Smolensky, M. Circadian rhythm of double (rate-pressure) product in healthy normotensive young subjects. Chronobiol. Int. 2001, 18, 475–489. [Google Scholar] [CrossRef]
- Smolensky, M.H.; Hermida, R.C.; Portaluppi, F. Circadian mechanisms of 24-hour blood pressure regulation and patterning. Sleep Med. Rev. 2017, 33, 4–16. [Google Scholar] [CrossRef]
- Haghayegh, S.; Smolensky, M.H.; Khoshnevis, S.; Hermida, R.C.; Castriotta, R.J.; Diller, K.R. The circadian rhythm of thermoregulation modulates both the sleep/wake cycle and 24 h pattern of arterial blood pressure. Compr. Physiol. 2021, 11, 2645–2658. [Google Scholar] [PubMed]
- Taylor, N.A.S.; Machado-Moreira, C.A.; van den Heuvel, A.M.J.; Caldwell, J.N. Hands and feet: Physiological insulators, radiators and evaporators. Eur. J. Appl. Physio. 2014, 114, 2037–2060. [Google Scholar] [CrossRef]
- Ayala, D.E.; Moyá, A.; Crespo, J.J.; Castiñeira, C.; Domínguez-Sardiña, M.; Gomara, S.; Sineiro, E.; Mojón, A.; Fontao, M.J.; Hermida, R.C.; et al. Circadian pattern of ambulatory blood pressure in hypertensive patients with and without type 2 diabetes. Chronobiol. Int. 2013, 30, 99–115. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ríos, M.T.; Crespo, J.J.; Moyá, A.; Domínguez-Sardiña, M.; Otero, A.; Sánchez, J.J.; Mojón, A.; Fernández, J.R.; Ayala, D.E.; et al. Treatment-time regimen of hypertension medications significantly affects ambulatory blood pressure and clinical characteristics of patients with resistant hypertension. Chronobiol. Int. 2013, 30, 192–206. [Google Scholar] [CrossRef] [PubMed]
- Kario, K. Obstructive sleep apnea syndrome and hypertension: Ambulatory blood pressure. Hypertens. Res. 2009, 32, 428–432. [Google Scholar] [CrossRef]
- Mojón, A.; Ayala, D.E.; Piñeiro, L.; Otero, A.; Crespo, J.J.; Moyá, A.; Bóveda, J.; de Lis, J.P.; Fernández, J.R.; Hermida, R.C.; et al. Comparison of ambulatory blood pressure parameters of hypertensive patients with and without chronic kidney disease. Chronobiol. Int. 2013, 30, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Sieminski, M.; Partinen, M. Nocturnal systolic blood pressure is increased in restless legs syndrome. Sleep Breath. 2016, 20, 1013–1019. [Google Scholar] [CrossRef]
- Hermida, R.C.; Smolensky, M.H.; Ayala, D.E.; Portaluppi, F.; International Society for Chronobiology; American Association of Medical Chronobiology and Chronotherapeutics; Spanish Society of Applied Chronobiology, Chronotherapy, and Vascular Risk; Spanish Society of Atherosclerosis; Romanian Society of Internal Medicine. 2013 ambulatory blood pressure monitoring recommendations for the diagnosis of adult hypertension, assessment of cardiovascular and other hypertension-associated risk, and attainment of therapeutic goals. Chronobiol. Int. 2013, 30, 355–410. [Google Scholar] [CrossRef]
- Hermida, R.C.; Crespo, J.J.; Otero, A.; Domínguez-Sardiña, M.; Moyá, A.; Ríos, M.T.; Castiñeira, M.C.; Callejas, P.A.; Pousa, L.; Sineiro, E.; et al. Asleep blood pressure: Significant prognostic marker of vascular risk and therapeutic target for prevention. Eur. Heart J. 2018, 39, 4159–4171. [Google Scholar] [CrossRef]
- Evbayekha, E.O.; Okobi, O.E.; Okobi, T.; Ibeson, E.C.; Nwafor, J.N.; Ozobokeme, O.E.; Olawoye, A.; Ngoladi, I.A.; Boms, M.G.; Habib, F.A.; et al. The evolution of hypertension guidelines over the last 20+ years: A comprehensive review. Cureus 2022, 14, e31437. [Google Scholar] [CrossRef]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T., Jr.; et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: The JNC 7 report. JAMA 2003, 289, 2560–2572. [Google Scholar] [CrossRef] [PubMed]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E., Jr.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: Executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018, 71, 1269–1324. [Google Scholar]
- Muntner, P.; Carey, R.M.; Gidding, S.; Jones, D.W.; Taler, S.J.; Wright, J.T., Jr.; Whelton, P.K. Potential US population impact of the 2017 ACC/AHA High Blood Pressure Guideline. Circulation 2018, 137, 109–118. [Google Scholar] [CrossRef]
- Ben-Dov, I.Z.; Kark, J.D.; Ben-Ishay, D.; Mekler, J.; Ben-Arie, L.; Bursztyn, M. Predictors of all-cause mortality in clinical ambulatory monitoring: Unique aspects of blood pressure during sleep. Hypertension 2007, 49, 1235–1241. [Google Scholar] [CrossRef]
- Brotman, D.J.; Davidson, M.B.; Boumitri, M.; Vidt, D.G. Impaired diurnal blood pressure variation and all-cause mortality. Am. J. Hypertens. 2008, 21, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Dolan, E.; Stanton, A.; Thijs, L.; Hinedi, K.; Atkins, N.; McClory, S.; Den Hond, E.; McCormack, P.; Staessen, J.A.; O’Brien, E. Superiority of ambulatory over clinic blood pressure measurement in predicting mortality: The Dublin outcome study. Hypertension 2005, 46, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Fagard, R.H.; Thijs, L.; Staessen, J.A.; Clement, D.L.; De Buyzere, M.L.; De Bacquer, D.A. Prognostic significance of ambulatory blood pressure in hypertensive patients with history of cardiovascular disease. Blood Press. Monit. 2008, 13, 325–332. [Google Scholar] [CrossRef]
- Fan, H.Q.; Li, Y.; Thijs, L.; Hansen, T.W.; Boggia, J.; Kikuya, M.; Björklund-Bodegård, K.; Richart, T.; Ohkubo, T.; Jeppesen, J.; et al. Prognostic value of isolated nocturnal hypertension on ambulatory measurement in 8711 individuals from 10 populations. J. Hypertens. 2010, 28, 2036–2045. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Mojón, A.; Fernández, J.R. Decreasing sleep-time blood pressure determined by ambulatory monitoring reduces cardiovascular risk. J. Am. Coll. Cardiol. 2011, 58, 1165–1173. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Fernández, J.R.; Mojón, A. Sleep-time blood pressure: Prognostic value and relevance as a therapeutic target for cardiovascular risk reduction. Chronobiol. Int. 2013, 30, 68–86. [Google Scholar] [CrossRef]
- Hermida, R.C.; Mojón, A.; Fernández, J.R.; Otero, A.; Crespo, J.J.; Domínguez-Sardiña, M.; Ríos, M.T.; Smolensky, M.H. Ambulatory blood pressure monitoring-based definition of true arterial hypertension. Minerva Med. 2020, 111, 573–588. [Google Scholar] [CrossRef] [PubMed]
- Hermida, R.C.; Smolensky, M.H.; Mojón, A.; Crespo, J.J.; Ríos, M.T.; Domínguez-Sardiña, M.; Otero, A.; Fernández, J.R. New perspectives on the definition, diagnosis, and treatment of true arterial hypertension. Expert. Opin. Pharmacother. 2020, 21, 1167–1178. [Google Scholar] [CrossRef] [PubMed]
- Roush, G.C.; Fagard, R.H.; Salles, G.F.; Pierdomenico, S.D.; Reboldi, G.; Verdecchia, P.; Eguchi, K.; Kario, K.; Hoshide, S.; Polonia, J.; et al. Prognostic impact from clinic, daytime, and night-time systolic blood pressure in nine cohorts of 13,844 patients with hypertension. J. Hypertens. 2014, 32, 2332–2340. [Google Scholar] [CrossRef]
- Ohkubo, T.; Hozawa, A.; Yamaguchi, J.; Kikuya, M.; Ohmori, K.; Michimata, M.; Matsubara, M.; Hashimoto, J.; Hoshi, H.; Araki, T.; et al. Prognostic significance of the nocturnal decline in blood pressure in individuals with and without high 24-h blood pressure: The Ohasama study. J. Hypertens. 2002, 20, 2183–2189. [Google Scholar] [CrossRef]
- Salles, G.F.; Reboldi, G.; Fagard, R.H.; Cardoso, C.R.; Pierdomenico, S.D.; Verdecchia, P.; Eguchi, K.; Kario, K.; Hoshide, S.; Polonia, J.; et al. Prognostic effect of the nocturnal blood pressure fall in hypertensive patients: The ambulatory blood pressure collaboration in patients with hypertension (ABC-H) meta-analysis. Hypertension 2016, 67, 693–700. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Fernández, J.R.; Mojón, A.; Smolensky, M.H. Hypertension: New perspective on its definition and clinical management by bedtime therapy substantially reduces cardiovascular disease risk. Eur. J. Clin. Investig. 2018, 48, e12909. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Fontao, M.J.; Mojón, A.; Fernández, J.R. Ambulatory blood pressure monitoring: Importance of sampling rate and duration—48 versus 24 hours—on the accurate assessment of cardiovascular risk. Chronobiol. Int. 2013, 30, 55–67. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Mojón, A.; Smolensky, M.H.; Fernández, J.R. Diagnosis and management of hypertension: Around-the-clock ambulatory blood pressure monitoring is substantially more effective and less costly than daytime office blood pressure measurements. Chronobiol. Int. 2019, 36, 1515–1527. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.E.; Sinha, M.D. The definition of daytime and nighttime influences the interpretation of ABPM in children. Pediatr. Nephrol. 2011, 26, 775–781. [Google Scholar] [CrossRef]
- Mortazavi, B.J.; Martinez-Brockman, J.L.; Tessier-Sherman, B.; Burg, M.; Miller, M.; Nowroozilarki, Z.; Adams, O.P.; Maharaj, R.; Nazario, C.M.; Nunez, M.; et al. Classification of blood pressure during sleep impacts designation of nocturnal nondipping. PLOS Digit. Health 2023, 2, e0000267. [Google Scholar] [CrossRef]
- Arora, T.; Broglia, E.; Pushpakumar, D.; Lodhi, T.; Taheri, S. An investigation into the strength of the association and agreement levels between subjective and objective sleep duration in adolescents. PLoS ONE 2013, 8, e72406. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, C.N.; Nakhla, M.Z.; Lee, E.E.; Yoon, H.K.; Wing, D.; Depp, C.A.; Eyler, L.T. Inaccuracy between subjective reports and objective measures of sleep duration and clinical correlates in bipolar disorder. J. Affect. Disord. 2019, 250, 226–230. [Google Scholar] [CrossRef]
- Fernandez-Mendoza, J.; Calhoun, S.L.; Bixler, E.O.; Karataraki, M.; Liao, D.; Vela-Bueno, A.; Jose Ramos-Platon, M.; Sauder, K.A.; Basta, M.; Vgontzas, A.N. Sleep misperception and chronic insomnia in the general population: Role of objective sleep duration and psychological profiles. Psychosom. Med. 2011, 73, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Agnew HWJr Webb, W.B.; Williams, R.L. The first night effect: An EEG study of sleep. Psychophysiology 1966, 2, 263–266. [Google Scholar] [CrossRef]
- Byun, J.-H.; Kim, K.T.; Moon H-j Motamedi, G.K.; Cho, Y.W. The first night effect during polysomnography, and patients’ estimates of sleep quality. Psychiatry Res. 2019, 274, 27–29. [Google Scholar] [CrossRef]
- Gariepy, G.; Danna, S.; Gobiņa, I.; Rasmussen, M.; de Matos, M.G.; Tynjälä, J.; Janssen, I.; Kalman, M.; Villeruša, A.; Husarova, D.; et al. How are adolescents sleeping? Adolescent sleep patterns and sociodemographic differences in 24 European and North American Countries. J. Adolesc. Health 2020, 66, S81–S88. [Google Scholar] [CrossRef]
- Hale, L.; Guan, S. Screen time and sleep among school-aged children and adolescents: A systematic literature review. Sleep Med. Rev. 2015, 21, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Hale, L.; Kirschen, G.W.; LeBourgeois, M.K.; Gradisar, M.; Garrison, M.M.; Montgomery-Downs, H.; Kirschen, H.; McHale, S.M.; Chang, A.M.; Buxton, O.M. Youth screen media habits and sleep: Sleep-friendly screen behavior recommendations for clinicians, educators, and parents. Child. Adolesc. Psychiatr. Clin. N. Am. 2018, 27, 229–245. [Google Scholar] [CrossRef]
- Bourchtein, E.; Langberg, J.M.; Cusick, C.N.; Breaux, R.P.; Smith, Z.R.; Becker, S.P. Featured Article: Technology use and sleep in adolescents with and without attention-deficit/hyperactivity disorder. J. Pediatr. Psychol. 2019, 44, 517–526. [Google Scholar] [CrossRef]
- Cain, N.; Gradisar, M. Electronic media use and sleep in school-aged children and adolescents: A review. Sleep Med. 2010, 11, 735–742. [Google Scholar] [CrossRef]
- Hysing, M.; Pallesen, S.; Stormark, K.M.; Jakobsen, R.; Lundervold, A.J.; Sivertsen, B. Sleep and use of electronic devices in adolescence: Results from a large population-based study. BMJ Open 2015, 5, e006748. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, Y.; Itani, O.; Nakajima, S.; Kaneko, Y.; Suzuki, M.; Kaneita, Y. Impact of chronotype, insomnia symptoms, sleep duration, and electronic devices on nonrestorative sleep and daytime sleepiness among Japanese adolescents. Sleep Med. 2023, 110, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Peracchia, S.; Curcio, G. Exposure to video games: Effects on sleep and on post-sleep cognitive abilities. A systematic review of experimental evidence. Sleep Sci. 2018, 11, 302–314. [Google Scholar] [CrossRef]
- Scott, H.; Biello, S.M.; Woods, H.C. Social media use and adolescent sleep patterns: Cross-sectional findings from the UK millennium cohort study. BMJ Open 2019, 9, e031161. [Google Scholar] [CrossRef] [PubMed]
- Touitou, Y.; Touitou, D.; Reinberg, A. Disruption of adolescents’ circadian clock: The vicious circle of media use, exposure to light at night, sleep loss and risk behaviors. J. Physiol. Paris 2016, 110, 467–479. [Google Scholar] [CrossRef]
- Van Dyk, T.R.; Krietsch, K.N.; Saelens, B.E.; Whitacre, C.; McAlister, S.; Beebe, D.W. Inducing more sleep on school nights reduces sedentary behavior without affecting physical activity in short-sleeping adolescents. Sleep Med. 2018, 47, 7–10. [Google Scholar] [CrossRef]
- Kanerva, N.; Kronholm, E.; Partonen, T.; Ovaskainen, M.L.; Kaartinen, N.E.; Konttinen, H.; Broms, U.; Männistö, U. Tendency toward eveningness is associated with unhealthy dietary habits. Chronobiol. Int. 2012, 29, 920–927. [Google Scholar] [CrossRef]
- Nedeltcheva, A.V.; Kilkus, J.M.; Imperial, J.; Kasza, K.; Schoeller, D.A.; Penev, P.D. Sleep curtailment is accompanied by increased intake of calories from snacks. Am. J. Clin. Nutr. 2009, 89, 126–133. [Google Scholar] [CrossRef]
- Spaeth, A.M.; Dinges, D.F.; Goel, N. Effects of experimental sleep restriction on weight gain, caloric intake, and meal timing in healthy adults. Sleep 2013, 36, 981–990. [Google Scholar] [CrossRef]
- Allison, K.C.; Hopkins, C.M.; Ruggieri, M.; Spaeth, A.M.; Ahima, R.S.; Zhang, Z.; Taylor, D.M.; Goel, N. Prolonged, controlled daytime versus delayed eating impacts weight and metabolism. Curr. Biol. 2021, 31, 650–657. [Google Scholar] [CrossRef]
- Arora, T.; Taheri, S. Associations among late chronotype, body mass index and dietary behaviors in young adolescents. Int. J. Obes. 2015, 39, 39–44. [Google Scholar] [CrossRef]
- Barrington, W.E.; Beresford, S.A.A. Eating occasions, obesity and related behaviors in working adults: Does it matter when you snack? Nutrients 2019, 11, 2320. [Google Scholar] [CrossRef] [PubMed]
- Culnan, E.; Kloss, J.D.; Grandner, M. A prospective study of weight gain associated with chronotype among college freshmen. Chronobiol. Int.
- Gallant, A.R.; Lundgren, J.; Drapeau, V. The night-eating syndrome and obesity. Obes. Rev. 2012, 13, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Halberg, F.; Haus, E.; Cornélissen, G. From biologic rhythms to chronomes relevant for nutrition. In Not Eating Enough: Overcoming Underconsumption of Military Operational Rations, Institute of Medicine (US) Committee on Military Nutrition Research; Marriott, B.M., Ed.; National Academies Press (US): Washington, DC, USA, 1995; pp. 361–372. [Google Scholar]
- Jacobs, H.; Thompson, M.; Halberg, E.; Halberg, F.; Graeber, R.C.; Levine, H.; Haus, E. Relative body weight loss on limited free-choice meal consumed as breakfast rather than dinner. Chronobiologia 1975, 2 (Suppl. S1), 33. [Google Scholar]
- Karatzi, K.; Moschonis, G.; Choupi, E.; Manios, Y.; Healthy Growth Study group. Late-night overeating is associated with smaller breakfast, breakfast skipping, and obesity in children: The Healthy Growth Study. Nutrition 2017, 33, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Maukonen, M.; Kanerva, N.; Partonen, T.; Männistö, S. Chronotype and energy intake timing in relation to changes in anthropometrics: A 7-year follow-up study in adults. Chronobiol. Int. 2019, 36, 27–41. [Google Scholar] [CrossRef]
- McHill, A.W.; Phillips, A.J.; Czeisler, C.A.; Keating, L.; Yee, K.; Barger, L.K.; Garaulet, M.; Scheer, F.A.; Klerman, E.B. Later circadian timing of food intake is associated with increased body fat. Am. J. Clin. Nutr. 2017, 106, 1213–1219. [Google Scholar] [CrossRef]
- Okada, C.; Imano, H.; Muraki, I.; Yamada, K.; Iso, H. The association of having a late dinner or bedtime snack and skipping breakfast with overweight in Japanese women. J. Obes. 2019, 2019, 2439571. [Google Scholar] [CrossRef]
- Vujović, N.; Piron, M.J.; Qian, J.; Chellappa, S.L.; Nedeltcheva, A.; Barr, D.; Heng, S.W.; Kerlin, K.; Srivastav, S.; Wang, W.; et al. Late isocaloric eating increases hunger, decreases energy expenditure, and modifies metabolic pathways in adults with overweight and obesity. Cell Metab. 2022, 34, 1486–1498.e7. [Google Scholar] [CrossRef]
- Xiao, Q.; Garaulet, M.; Scheer, F.A.J.L. Meal timing and obesity: Interactions with macronutrient intake and chronotype. Int. J. Obes. 2019, 43, 1701–1711. [Google Scholar] [CrossRef]
- Antza, C.; Kostopoulos, G.; Mostafa, S.; Nirantharakumar, K.; Tahrani, A. The links between sleep duration, obesity and type 2 diabetes mellitus. J. Endocrinol. 2021, 252, 125–141. [Google Scholar] [CrossRef] [PubMed]
- Basdeki, E.D.; Koumi, K.; Tsirimiagkou, C.; Argyris, A.; Chrysostomou, S.; Sfikakis, P.P.; Protogerou, A.D.; Karatzi, K. Late-night overeating or low-quality food choices late at night are associated with subclinical vascular damage in patients at increased cardiovascular risk. Nutrients 2022, 14, 470. [Google Scholar] [CrossRef]
- de Jong, E.; Stocks, T.; Visscher, T.L.; HiraSing, R.A.; Seidell, J.C.; Renders, C.M. Association between sleep duration and overweight: The importance of parenting. Int. J. Obes. 2012, 36, 1278–1284. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, H.; Itoh, H.; Kiriyama, H.; Kamon, T.; Fujiu, K.; Morita, K.; Michihata, N.; Jo, T.; Takeda, N.; Morita, H.; et al. Possible association between eating behaviors and cardiovascular disease in the general population: Analysis of a nationwide epidemiological database. Atherosclerosis 2021, 320, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Markwald, R.R.; Melanson, E.L.; Smith, M.R.; Higgins, J.; Perreault, L.; Eckel, R.H.; Wright, K.P., Jr. Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proc. Natl. Acad. Sci. USA 2013, 110, 5695–5700. [Google Scholar] [CrossRef]
- Reinberg, A.; Migraine, C.; Apflebaum, M.; Brigant, L.; Ghata, J.; Vieux, N.; Laporte, A.; Nicolai, A. Circadian and ultradian rhythms in eating behavior and nutrient intake in oil refinery operators (study 2). Chronobiologia 1979, 5, 89–102. [Google Scholar]
- Reutrakul, S.; Van Cauter, E. Sleep influences on obesity, insulin resistance, and risk of type 2 diabetes. Metabolism. 2018, 84, 56–66. [Google Scholar] [CrossRef]
- Spiegel, K.; Tasali, E.; Penev, P.; Van Cauter, E. Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann. Intern. Med. 2004, 141, 846–850. [Google Scholar] [CrossRef]
- Tambalis, K.D.; Panagiotakos, D.B.; Psarra, G.; Sidossis, L.S. Insufficient sleep duration is associated with dietary habits, screen time, and obesity in children. J. Clin. Sleep Med. 2018, 14, 1689–1696. [Google Scholar] [CrossRef]
- Van Cauter, E.; Knutson, K.L. Sleep and the epidemic of obesity in children and adults. Eur. J. Endocrinol. 2008, 159 (Suppl. S1), S59–S66. [Google Scholar] [CrossRef]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [PubMed]
- Bakour, C.; Mansuri, F.; Johns-Rejano, C.; Crozier, M.; Wilson, R.; Sappenfield, W. Association between screen time and obesity in US adolescents: A cross-sectional analysis using National Survey of Children’s Health 2016–2017. PLoS ONE 2022, 17, e0278490. [Google Scholar] [CrossRef] [PubMed]
- McClain, J.J.; Lewin, D.S.; Laposky, A.D.; Kahle, L.; Berrigan, D. Associations between physical activity, sedentary time, sleep duration and daytime sleepiness in US adults. Prev. Med. 2014, 66, 68–73. [Google Scholar] [CrossRef]
- Sulemana, H.; Smolensky, M.H.; Lai, D. Relationship between physical activity and body mass index in adolescents. Med. Sci. Sports Exerc. 2006, 38, 1182–1186. [Google Scholar] [CrossRef] [PubMed]
- Pettee Gabriel, K.; Jaeger, B.C.; Lewis, C.E.; Sidney, S.; Dooley, E.E.; Carnethon, M.R.; Jacobs DRJr Hornikel, B.; Reis, J.P.; Schreiner, P.J.; Shikany, J.M.; et al. Analysis of cardiorespiratory fitness in early adulthood and midlife with all-cause mortality and fatal or nonfatal cardiovascular disease. JAMA Netw. Open 2023, 6, e230842. [Google Scholar] [CrossRef]
- Wolf, J.; Hering, D.; Narkiewicz, K. Non-dipping pattern of hypertension and obstructive sleep apnea syndrome. Hypertens. Res. 2010, 33, 867–871. [Google Scholar] [CrossRef]
- Logan, R.W.; Hasler, B.P.; Forbes, E.E.; Franzen, P.L.; Torregrossa, M.M.; Huang, Y.H.; Buysse, D.J.; Clark, D.B.; McClung, C.A. Impact of sleep and circadian rhythms on addiction vulnerability in adolescents. Biol. Psychiatry 2018, 83, 987–996. [Google Scholar] [CrossRef]
- Wittmann, M.; Paulus, M.; Roenneberg, T. Decreased psychological well-being in late ‘chronotypes’ is mediated by smoking and alcohol consumption. Subst. Use Misuse 2010, 45, 15–30. [Google Scholar] [CrossRef]
- Castro, J.P.; El-Atat, F.A.; McFarlane, S.I.; Aneja, A.; Sowers, J.R. Cardiometabolic syndrome: Pathophysiology and treatment. Curr. Hypertens. Rep. 2003, 5, 393–401. [Google Scholar] [CrossRef]
- Lababidi, H.; Salerno, P.R.; Wass, S.Y.; Shafiabadi Hasani, N.; Bourges-Sevenier, B.; Al-Kindi, S. The Global burden of premature cardiovascular disease, 1990–2019. Int. J. Cardiol. Cardiovasc. Risk Prev. 2023, 19, 200212. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smolensky, M.H.; Hermida, R.C.; Castriotta, R.J.; Geng, Y.-J. Findings and Methodological Shortcomings of Investigations Concerning the Relationship Between Sleep Duration and Blood Pressure: A Comprehensive Narrative Review. J. Cardiovasc. Dev. Dis. 2025, 12, 95. https://doi.org/10.3390/jcdd12030095
Smolensky MH, Hermida RC, Castriotta RJ, Geng Y-J. Findings and Methodological Shortcomings of Investigations Concerning the Relationship Between Sleep Duration and Blood Pressure: A Comprehensive Narrative Review. Journal of Cardiovascular Development and Disease. 2025; 12(3):95. https://doi.org/10.3390/jcdd12030095
Chicago/Turabian StyleSmolensky, Michael H., Ramón C. Hermida, Richard J. Castriotta, and Yong-Jian Geng. 2025. "Findings and Methodological Shortcomings of Investigations Concerning the Relationship Between Sleep Duration and Blood Pressure: A Comprehensive Narrative Review" Journal of Cardiovascular Development and Disease 12, no. 3: 95. https://doi.org/10.3390/jcdd12030095
APA StyleSmolensky, M. H., Hermida, R. C., Castriotta, R. J., & Geng, Y.-J. (2025). Findings and Methodological Shortcomings of Investigations Concerning the Relationship Between Sleep Duration and Blood Pressure: A Comprehensive Narrative Review. Journal of Cardiovascular Development and Disease, 12(3), 95. https://doi.org/10.3390/jcdd12030095