Combining Prognostic Nutritional Index and Brain Natriuretic Peptide as a Predicting Tool for Heart Transplantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Follow-Up Data and Variable Definitions
2.3. Statistical Analysis
3. Results
3.1. The Optimal Cut-Off Values of PNI and BNP for Estimating Prognosis
3.2. Baseline Characteristic of Different Groups
3.3. Univariate and Multivariate Cox Analysis of OS of Patients with HTx
3.4. Survival Analysis of HTx Patients of Different Level of PNI and BNP after PSM
3.5. Effectiveness Evaluation of BNP and PNI Level in Predicting the OS of HTx
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McMurray, J.J.; Adamopoulos, S.; Anker, S.D.; Auricchio, A.; Bohm, M.; Dickstein, K.; Falk, V.; Filippatos, G.; Fonseca, C.; Gomez-Sanchez, M.A.; et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2012, 14, 803–869. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.L.; Sung, S.H.; Cheng, H.M.; Hsu, P.F.; Guo, C.Y.; Yu, W.C.; Chen, C.H. Prognostic Nutritional Index and the Risk of Mortality in Patients With Acute Heart Failure. J. Am. Heart Assoc. 2017, 6, e004876. [Google Scholar] [CrossRef] [PubMed]
- Doi, S.; Iwata, H.; Wada, H.; Funamizu, T.; Shitara, J.; Endo, H.; Naito, R.; Konishi, H.; Tsuboi, S.; Ogita, M.; et al. A novel and simply calculated nutritional index serves as a useful prognostic indicator in patients with coronary artery disease. Int. J. Cardiol. 2018, 262, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Keskin, M.; Hayiroglu, M.I.; Keskin, T.; Kaya, A.; Tatlisu, M.A.; Altay, S.; Uzun, A.O.; Borklu, E.B.; Guvenc, T.S.; Avci, I.I.; et al. A novel and useful predictive indicator of prognosis in ST-segment elevation myocardial infarction, the prognostic nutritional index. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Buzby, G.P.; Mullen, J.L.; Matthews, D.C.; Hobbs, C.L.; Rosato, E.F. Prognostic nutritional index in gastrointestinal surgery. Am. J. Surg. 1980, 139, 160–167. [Google Scholar] [CrossRef]
- Rahman, A.; Jafry, S.; Jeejeebhoy, K.; Nagpal, A.D.; Pisani, B.; Agarwala, R. Malnutrition and Cachexia in Heart Failure. JPEN J. Parenter Enteral. Nutr. 2016, 40, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Okoshi, M.P.; Romeiro, F.G.; Paiva, S.A.; Okoshi, K. Heart failure-induced cachexia. Arq. Bras. Cardiol. 2013, 100, 476–482. [Google Scholar] [CrossRef]
- Nishi, I.; Seo, Y.; Hamada-Harimura, Y.; Yamamoto, M.; Ishizu, T.; Sugano, A.; Sato, K.; Sai, S.; Obara, K.; Suzuki, S.; et al. Geriatric nutritional risk index predicts all-cause deaths in heart failure with preserved ejection fraction. ESC Heart Fail. 2019, 6, 396–405. [Google Scholar] [CrossRef] [Green Version]
- Hollander, S.A.; Schultz, L.M.; Dennis, K.; Hollander, A.M.; Rizzuto, S.; Murray, J.M.; Rosenthal, D.N.; Almond, C.S. Impact of ventricular assist device implantation on the nutritional status of children awaiting heart transplantation. Pediatr. Transplant. 2019, 23, e13351. [Google Scholar] [CrossRef] [PubMed]
- Murphy, L.; Gray, A.; Joyce, E. Anabolism to Catabolism: Serologic Clues to Nutritional Status in Heart Failure. Curr. Heart Fail. Rep. 2019, 16, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Pureza, V.; Florea, V.G. Mechanisms for cachexia in heart failure. Curr. Heart Fail. Rep. 2013, 10, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Talha, S.; Charloux, A.; Piquard, F.; Geny, B. Brain natriuretic peptide and right heart dysfunction after heart transplantation. Clin. Transplant. 2017, 31, e12969. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, Y.Y.; Chai, K.; Zhang, W.; Li, X.L.; Dong, Y.G.; Zhou, J.M.; Huo, Y.; Yang, J.F. [Contemporary epidemiology and treatment of hospitalized heart failure patients in real clinical practice in China]. Zhonghua Xin Xue Guan Bing Za Zhi 2019, 47, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R.S.; Ozalp, F.; Murday, A.J.; Robb, S.D.; McDonagh, T.A. N-terminal pro-brain natriuretic peptide. A new gold standard in predicting mortality in patients with advanced heart failure. Eur. Heart J. 2003, 24, 1735–1743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vorlat, A.; De Hous, N.; Vervaecke, A.J.; Vermeulen, T.; Van Craenenbroeck, E.; Heidbuchel, H.; Rodrigus, I.; Van Donink, W.; Ancion, A.; Van Cleemput, J.; et al. Biomarkers and Donor Selection in Heart Transplantation. Transplant. Proc. 2019, 51, 1673–1678. [Google Scholar] [CrossRef] [PubMed]
- Franekova, J.; Hoskova, L.; Secnik, P., Jr.; Pazdernik, M.; Kotrbata, M.; Kubicek, Z.; Jabor, A. The role of timely measurement of galectin-3, NT-proBNP, cystatin C and hsTnT in predicting prognosis and heart function after heart transplantation. Clin. Chem. Lab. Med. 2016, 54, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Nashef, S.A.; Roques, F.; Michel, P.; Gauducheau, E.; Lemeshow, S.; Salamon, R. European system for cardiac operative risk evaluation (EuroSCORE). Eur. J. Cardiothorac. Surg. 1999, 16, 9–13. [Google Scholar] [CrossRef]
- Nashef, S.A.; Roques, F.; Sharples, L.D.; Nilsson, J.; Smith, C.; Goldstone, A.R.; Lockowandt, U. EuroSCORE II. Eur. J. Cardiothorac. Surg. 2012, 41, 734–744. [Google Scholar] [CrossRef] [Green Version]
- Shahian, D.M.; O’Brien, S.M.; Filardo, G.; Ferraris, V.A.; Haan, C.K.; Rich, J.B.; Normand, S.L.; DeLong, E.R.; Shewan, C.M.; Dokholyan, R.S.; et al. The Society of Thoracic Surgeons 2008 cardiac surgery risk models: Part 1—Coronary artery bypass grafting surgery. Ann. Thorac. Surg. 2009, 88, S2–S22. [Google Scholar] [CrossRef] [PubMed]
Variables | Case (n = 489) | PNI | BNP | ||||
---|---|---|---|---|---|---|---|
Low (n = 311) | High (n = 178) | p-Value | Low (n = 331) | High (n = 158) | p-Value | ||
Demographic Index | |||||||
Sex | 0.747 | 0.519 | |||||
Male | 383 | 245 | 138 | 262 | 121 | ||
Female | 106 | 66 | 40 | 69 | 37 | ||
Age | 47.57 ± 12.65 | 48.77 ± 11.97 | 45.47 ± 13.52 | 0.005 | 46.70 ± 12.68 | 49.38 ± 12.42 | 0.029 |
diagnosis | 0.058 | 0.137 | |||||
Ischemic cardiomyopathy | 95 | 64 | 31 | 70 | 25 | ||
Non-ischemic cardiomyopathy | 308 | 190 | 118 | 197 | 111 | ||
Congenital heart disease | 19 | 8 | 11 | 15 | 4 | ||
Other heart diseases | 67 | 49 | 18 | 49 | 18 | ||
recipient blood-type | 0.707 | 0.023 | |||||
A | 164 | 109 | 55 | 111 | 53 | ||
B | 134 | 86 | 48 | 78 | 56 | ||
AB | 31 | 18 | 13 | 22 | 9 | ||
O | 160 | 98 | 62 | 120 | 40 | ||
recipient BMI | 23.00 ± 7.46 | 22.95 ± 8.74 | 23.07 ± 4.42 | 0.874 | 23.54 ± 8.63 | 21.87 ± 3.80 | 0.020 |
recipient/donor BMI | 1.04 ± 0.26 | 1.05 ± 0.26 | 1.02 ± 0.28 | 0.131 | 1.02 ± 0.27 | 1.08 ± 0.25 | 0.016 |
recipient/donor age | 0.81 ± 0.40 | 0.78 ± 0.35 | 0.87 ± 0.46 | 0.012 | 0.83 ± 0.41 | 0.78 ± 0.36 | 0.17 |
recipient/donor sex | 0.951 | 0.703 | |||||
Male/Female | 35 | 22 | 13 | 25 | 10 | ||
Male/Male | 347 | 222 | 125 | 237 | 110 | ||
Female/Male | 78 | 50 | 28 | 52 | 26 | ||
Female/Female | 29 | 17 | 12 | 17 | 12 | ||
recipient/donor blood-type | 0.627 | 0.133 | |||||
identical | 400 | 252 | 148 | 277 | 123 | ||
different | 89 | 59 | 30 | 54 | 35 | ||
Heart surgery history (Yes) | 132 | 89 | 43 | 0.286 | 90 | 42 | 0.888 |
190 | 99 | ||||||
Charlson Comorbidity Index | 0.582 | 0. 510 | |||||
1 | 134 | 84 | 50 | 87 | 47 | ||
2 | 60 | 40 | 20 | 44 | 16 | ||
≥3 | 16 | 12 | 4 | 11 | 5 | ||
waiting time | 29.64 ± 15.56 | 29.31 ± 11.51 | <0.001 | 29.98 ± 14.03 | 28.56 ± 14.57 | 0.955 | |
Preoperative Therapy | |||||||
preoperative IABP | 8 | 6 | 2 | 0.5 | 1 | 7 | 0.001 |
preoperative ECMO | 6 | 4 | 2 | 0.875 | 2 | 4 | 0.070 |
preoperative ARB | 85 | 54 | 31 | 0.988 | 58 | 27 | 0.906 |
preoperative ACEI | 163 | 86 | 77 | <0.001 | 123 | 40 | 0.009 |
preoperative dopamine | 291 | 198 | 93 | 0.013 | 180 | 111 | 0.001 |
preoperative BB | 381 | 233 | 148 | 0.035 | 264 | 117 | 0.155 |
Preoperative Blood Index | |||||||
Hb | 133.15 ± 23.34 | 128.71 ± 23.57 | 140/90 ± 20.51 | <0.001 | 134.37 ± 24.70 | 130.56 ± 19.67 | 0.093 |
ALT | 71.19 ± 295.91 | 74.32 ± 249.15 | 65.72 ± 364.21 | 0.758 | 66.58 ± 289.29 | 80.85 ± 310.03 | 0.618 |
AST | 60.25 ± 253.23 | 62.76 ± 248.85 | 55.88 ± 261.37 | 0.773 | 53.43 ± 211.17 | 74.54 ± 324.03 | 0.389 |
D-dimer | 6.77 ± 7.81 | 6.18 ± 7.70 | 7.79 ± 7.93 | 0.029 | 6.42 ± 7.92 | 7.49 ± 7.55 | 0.161 |
troponin | 1034.23 ± 5713.50 | 1029.75 ± 5154.90 | 1042.06 ± 6592.53 | 0.982 | 1135.31 ± 6313.58 | 822.47 ± 4197.02 | 0.572 |
Cr | 99.24 ± 52.38 | 103.37 ± 60.19 | 92.04 ± 33.70 | 0.021 | 95.56 ± 47.65 | 106.96 ± 60.55 | 0.024 |
RBC | 4.50 ± 1.53 | 4.37 ± 1.82 | 4.73 ± 0.78 | 0.013 | 4.51 ± 0.79 | 4.49 ± 2.45 | 0.916 |
PLT | 180.45 ± 66.77 | 174.21 ± 70.21 | 191.35 ± 58.91 | 0.006 | 182.86 ± 65.63 | 175.39 ± 69.05 | 0.248 |
WBC | 6.79 ± 4.65 | 6.38 ± 2.84 | 7.51 ± 6.69 | 0.010 | 6.93 ± 5.29 | 6.51 ± 2.89 | 0.355 |
triglyceride (TG) | 1.12 ± 0.69 | 0.97 ± 0.47 | 1.39 ± 0.90 | <0.001 | 1.19 ± 0.75 | 0.98 ± 0.52 | 0.002 |
LDL | 2.08 ± 0.93 | 2.03 ± 0.92 | 2.16 ± 0.94 | 0.153 | 2.12 ± 0.94 | 2.00 ± 0.89 | 0.182 |
Variables | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
HR | 95%CI | p Value | HR | 95%CI | p Value | |
Demographic index | ||||||
Sex | 1.501 | 1.010–2.232 | 0.045 | 1.243 | 0.807–1.913 | 0.324 |
Age | 1.027 | 1.011–1.043 | 0.001 | 1.025 | 1.009–1.042 | 0.002 |
Diagnosis | 1.064 | 0.910–1.243 | 0.437 | |||
Recipient blood-type | 1.106 | 0.920–1.331 | 0.283 | |||
Recipient BMI | 1.014 | 0.989–1.040 | 0.287 | |||
Recipient/donor BMI | 1.372 | 0.695–2.707 | 0.362 | |||
Recipient/donor age | 0.662 | 0.401–1.093 | 0.107 | |||
Recipient/donor sex | 0.851 | 0.659–1.098 | 0.215 | |||
Recipient/donor blood-type | 1.226 | 1.013–1.485 | 0.037 | 1.118 | 0.936–1.337 | 0.220 |
Cardiac surgery history (Yes) | 1.308 | 0.890–1.921 | 0.172 | |||
Charlson Comorbidity Index | 1.124 | 0.944–1.338 | 0.19 | |||
Waiting time | 1.013 | 1.001–1.024 | 0.036 | 1.014 | 1.003–1.026 | 0.012 |
Preoperative therapy | ||||||
Preoperative IABP | 3.374 | 1.239–9.187 | 0.017 | 2.185 | 0.781–6.113 | 0.136 |
Preoperative ECMO | 1.014 | 0.141–7.274 | 0.989 | |||
Preoperative ARB | 1.368 | 0.866–2.160 | 0.179 | |||
Preoperative ACEI | 0.506 | 0.331–0.773 | 0.002 | 0.675 | 0.431–1.059 | 0.087 |
Preoperative dopamine | 1.553 | 1.063–2.270 | 0.023 | 1.339 | 0.901–1.988 | 0.148 |
Preoperative BB | 0.704 | 0.475–1.044 | 0.081 | |||
Preoperative Blood index | ||||||
Hb | 0.987 | 0.979–0.995 | 0.002 | 0.997 | 0.987–1.007 | 0.521 |
ALT | 1.000 | 0.999–1.001 | 0.884 | |||
AST | 1.000 | 1.000–1.001 | 0.433 | |||
D-dimer | 1.017 | 0.995–1.041 | 0.137 | |||
Troponin | 1.000 | 1.000–1.000 | 0.668 | |||
Cr | 1.002 | 1.000–1.005 | 0.082 | |||
RBC | 0.774 | 0.611–0.982 | 0.035 | 0.993 | 0.881–1.119 | 0.913 |
PLT | 0.998 | 0.995–1.001 | 0.235 | |||
WBC | 1.014 | 0.990–1.039 | 0.242 | |||
Triglyceride (TG) | 0.734 | 0.544–0.990 | 0.043 | 0.932 | 0.670–1.296 | 0.675 |
LDL | 1.111 | 0.910–1.357 | 0.3 | |||
PNI | 0.416 | 0.271–0.642 | <0.001 | 0.613 | 0.378–0.993 | 0.047 |
BNP | 1.917 | 1.340–2.743 | <0.001 | 1.542 | 1.057–2.248 | 0.024 |
Variables | PNI (after PSM) (n = 232) | BNP (after PSM) (n = 252) | ||||
---|---|---|---|---|---|---|
Low (n = 116) | High (n = 116) | p Value | Low (n = 126) | High (n = 126) | p Value | |
Demographic index | ||||||
Sex | 0.872 | 0.479 | ||||
Male | 91 | 92 | 94 | 99 | ||
Female | 25 | 24 | 32 | 27 | ||
Age | 45.99 ± 12.29 | 46.18 ± 13.84 | 0.912 | 47.50 ± 12.35 | 48.45 ± 12.33 | 0.541 |
Diagnosis | 0.913 | |||||
Ischemic cardiomyopathy | 20 | 20 | 21 | 21 | ||
Non-ischemic cardiomyopathy | 75 | 79 | 85 | 85 | ||
Congenital | 5 | 4 | 4 | 4 | ||
Other | 16 | 13 | 16 | 16 | ||
Recipient blood-type | 0.892 | |||||
A | 31 | 36 | 48 | 38 | ||
B | 36 | 32 | 28 | 45 | ||
AB | 9 | 9 | 10 | 8 | ||
O | 40 | 39 | 40 | 35 | ||
Recipient BMI | 23.04 ± 4.24 | 22.80 ± 4.57 | 0.667 | 22.41 ± 4.66 | 22.30 ± 3.60 | 0.843 |
Recipient/donor BMI | 1.04 ± 0.26 | 1.04 ± 0.28 | 0.890 | 1.06 ± 027 | 1.04 ± 0.20 | 0.453 |
Recipient/donor age | 0.89 ± 0.40 | 0.84 ± 0.38 | 0.363 | 0.79 ± 0.37 | 0.77 ± 0.34 | 0.646 |
Recipient/donor sex | 0.449 | 0.821 | ||||
Male/Female | 4 | 9 | 9 | 10 | ||
Male/Male | 85 | 84 | 86 | 88 | ||
Female/Male | 23 | 18 | 25 | 20 | ||
Female/Female | 4 | 5 | 6 | 8 | ||
Recipient/donor blood-type | 0.714 | |||||
Identical | 92 | 95 | 102 | 100 | ||
Different | 24 | 21 | 24 | 26 | ||
Heart surgery history (Yes) | 36 | 30 | 0.383 | 26 | 28 | 0.759 |
Charlson Comorbidity Index | 0.902 | |||||
0 | 72 | 68 | 81 | 73 | ||
1 | 27 | 32 | 27 | 37 | ||
2 | 14 | 13 | 12 | 12 | ||
≥3 | 3 | 3 | 6 | 4 | ||
Waiting time | 31.43 ± 15.72 | 29.27 ± 11.79 | 0.237 | 30.06 ± 14.05 | 28.75 ± 14.60 | 0.487 |
Preoperative therapy | ||||||
Preoperative IABP | 1 | 1 | 1.000 | 0 | 1 | 0.316 |
Preoperative ECMO | 2 | 1 | 0.561 | 1 | 0 | 0.316 |
Preoperative ARB | 16 | 20 | 0.468 | 24 | 21 | 0.622 |
Preoperative ACEI | 50 | 47 | 0.690 | 37 | 38 | 0.890 |
Preoperative dopamine | 63 | 64 | 0.895 | 83 | 82 | 0.762 |
Preoperative BB | 93 | 91 | 0.746 | 100 | 98 | 0.759 |
Evaluation Index | PNI | BNP | Combined |
---|---|---|---|
Sensitivity (%) | 77.7 | 72.0 | 85.1 |
Specificity (%) | 41.0 | 45.5 | 34.2 |
AUC | 0.594 | 0.587 | 0.634 |
C-index | 0.593 (0.554–0.634) | 0.582 (0.536–0.628) | 0.632 (0.585–0.680) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Z.; Tu, J.; Xu, L.; Lin, Y.; Deng, B.; Li, F.; Chen, S.; Dong, N. Combining Prognostic Nutritional Index and Brain Natriuretic Peptide as a Predicting Tool for Heart Transplantation. J. Cardiovasc. Dev. Dis. 2022, 9, 40. https://doi.org/10.3390/jcdd9020040
Cai Z, Tu J, Xu L, Lin Y, Deng B, Li F, Chen S, Dong N. Combining Prognostic Nutritional Index and Brain Natriuretic Peptide as a Predicting Tool for Heart Transplantation. Journal of Cardiovascular Development and Disease. 2022; 9(2):40. https://doi.org/10.3390/jcdd9020040
Chicago/Turabian StyleCai, Ziwen, Jingrong Tu, Li Xu, Yao Lin, Bowen Deng, Fei Li, Si Chen, and Nianguo Dong. 2022. "Combining Prognostic Nutritional Index and Brain Natriuretic Peptide as a Predicting Tool for Heart Transplantation" Journal of Cardiovascular Development and Disease 9, no. 2: 40. https://doi.org/10.3390/jcdd9020040
APA StyleCai, Z., Tu, J., Xu, L., Lin, Y., Deng, B., Li, F., Chen, S., & Dong, N. (2022). Combining Prognostic Nutritional Index and Brain Natriuretic Peptide as a Predicting Tool for Heart Transplantation. Journal of Cardiovascular Development and Disease, 9(2), 40. https://doi.org/10.3390/jcdd9020040