Antifungal Resistance and Genotyping of Clinical Candida parapsilosis Complex in Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Candida parapsilosis Complex Isolates
2.2. Antifungal Susceptibility Testing
2.3. Genomic DNA Extraction
2.4. Detection of ERG11 Mutations
2.5. Detection of FKS1 (HS1 and HS2) Mutations
2.6. Microsatellite Typing of C. parapsilosis Isolates
2.7. Data Availability
3. Results
3.1. Clinical Features of the Isolates
3.2. Antifungal Susceptibility Profiling
3.3. Mutations in the ERG11 Gene and FKS1 HS Regions
3.4. MLST Genotyping, Phylogeny, and Population Genetics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lockhart, S.R.; Chowdhary, A.; Gold, J.A.W. The rapid emergence of antifungal-resistant human-pathogenic fungi. Nat. Rev. Microbiol. 2023, 21, 818–832. [Google Scholar] [CrossRef] [PubMed]
- Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and multi-national prevalence of fungal diseases—Estimate precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, H.O.; Arai, T.; Majima, H.; Watanabe, A.; Kamei, K. Genetic basis of azole and echinocandin resistance in clinical Candida glabrata in Japan. Antimicrob. Agents Chemother. 2020, 64, e00783-20. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, H.O.; Hubka, V.; Watanabe, A.; Nagi, M.; Miyazaki, Y.; Yaguchi, T.; Kamei, K. Prevalence of antifungal resistance, genetic basis of acquired azole and echinocandin resistance, and genotyping of Candida krusei recovered from an international collection. Antimicrob. Agents Chemother. 2021, 66, e0185621. [Google Scholar] [CrossRef] [PubMed]
- Tóth, R.; Nosek, J.; Mora-Montes, H.M.; Gabaldon, T.; Bliss, J.M.; Nosanchuk, J.D.; Turner, S.A.; Butler, G.; Vágvölgyi, C.; Gácser, A. Candida parapsilosis: From genes to the bedside. Clin. Microbiol. Rev. 2019, 32, e00111-18. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, H.O.; Watanabe, A.; Kamei, K. Azole and echinocandin resistance mechanisms and genotyping of Candida tropicalis in Japan: Cross-boundary dissemination and animal–human transmission of C. tropicalis infection. Clin. Microbiol. Infect. 2022, 28, 302.e5–302.e8. [Google Scholar] [CrossRef]
- Khalifa, H.O.; Majima, H.; Watanabe, A.; Kamei, K. In Vitro characterization of twenty-one antifungal combinations against echinocandin-resistant and -susceptible Candida glabrata. J. Fungi 2021, 7, 108. [Google Scholar] [CrossRef]
- Sakagami, T.; Kawano, T.; Yamashita, K.; Yamada, E.; Fujino, N.; Kaeriyama, M.; Fukuda, Y.; Nomura, N.; Mitsuyama, J.; Suematsu, H.; et al. Antifungal susceptibility trend and analysis of resistance mechanism for Candida species isolated from bloodstream at a Japanese university hospital. J. Infect. Chemother. 2019, 25, 34–40. [Google Scholar] [CrossRef]
- Díaz-García, J.; Mesquida, A.; Sánchez-Carrillo, C.; Reigadas, E.; Muñoz, P.; Escribano, P.; Guinea, J. Monitoring the epidemiology and antifungal resistance of yeasts causing fungemia in a tertiary care hospital in Madrid, Spain: Any relevant changes in the last 13 years? Antimicrob. Agents Chemother. 2021, 65, e01827-20. [Google Scholar] [CrossRef]
- Arastehfar, A.; Daneshnia, F.; Najafzadeh, M.J.; Hagen, F.; Mahmoudi, S.; Salehi, M.; Zarrinfar, H.; Namvar, Z.; Zareshahrabadi, Z.; Khodavaisy, S.; et al. Evaluation of molecular epidemiology, clinical characteristics, antifungal susceptibility profiles, and molecular mechanisms of antifungal resistance of Iranian Candida parapsilosis species complex blood isolates. Front. Cell. Infect. Microbiol. 2020, 10, 206. [Google Scholar] [CrossRef]
- Berkow, E.L.; Manigaba, K.; Parker, J.E.; Barker, K.S.; Kelly, S.L.; Rogers, P.D. Multidrug transporters and alterations in sterol biosynthesis contribute to azole antifungal resistance in Candida parapsilosis. Antimicrob. Agents Chemother. 2015, 59, 5942–5950. [Google Scholar] [CrossRef] [PubMed]
- Diab-Elschahawi, M.; Forstner, C.; Hagen, F.; Meis, J.F.; Lassnig, A.M.; Presterl, E.; Klaassen, C.H.W. Microsatellite genotyping clarified conspicuous accumulation of Candida parapsilosis at a cardiothoracic surgery intensive care unit. J. Clin. Microbiol. 2012, 50, 3422–3426. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.C.R.; Fuchs, B.B.; Pinhati, H.M.S.; Siqueira, R.A.; Hagen, F.; Meis, J.F.; Mylonakis, E.; Colombo, A.L. Candida parapsilosis resistance to fluconazole: Molecular mechanisms and in vivo impact in infected Galleria mellonella larvae. Antimicrob. Agents Chemother. 2015, 59, 6581–6587. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, H.O.; Arai, T.; Majima, H.; Watanabe, A.; Kamei, K. Evaluation of Surveyor nuclease for rapid identification of FKS genes mutations in Candida glabrata. J. Infect. Chemother. 2021, 27, 834–839. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 4th ed.; CLSI Document M27-Ed4; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antifungal Susceptibility Testing Of Yeasts, 1st ed.; CLSI Document M60; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Pfaller, M.A.; Diekema, D.J. Progress in Antifungal Susceptibility Testing of Candida spp. by Use of Clinical and laboratory standards institute broth microdilution methods, 2010 to 2012. J. Clin. Microbiol. 2012, 50, 2846–2856. [Google Scholar] [CrossRef]
- Sabino, R.; Sampaio, P.; Rosado, L.; Stevens, D.A.; Clemons, K.V.; Pais, C. New polymorphic microsatellite markers able to distinguish among Candida parapsilosis Sensu Stricto isolates. J. Clin. Microbiol. 2010, 48, 1677–1682. [Google Scholar] [CrossRef]
- Flevari, A.; Theodorakopoulou, M.; Velegraki, A.; Armaganidis, A.; Dimopoulos, G. Treatment of invasive candidiasis in the elderly: A review. Clin. Interv. Aging 2013, 8, 1199–1208. [Google Scholar]
- Pfaller, M.A.; Andes, D.R.; Diekema, D.J.; Horn, D.L.; Reboli, A.C.; Rotstein, C.; Franks, B.; Azie, N.E. Epidemiology and outcomes of invasive candidiasis due to non-albicans species of Candida in 2496 patients: Data from the Prospective Antifungal Therapy (PATH) registry 2004–2008. PLoS ONE 2014, 9, e101510. [Google Scholar] [CrossRef]
- Martí-Carrizosa, M.; Sánchez-Reus, F.; March, F.; Coll, P. Fungemia in a Spanish hospital: The role of Candida parapsilosis over a 15-year period. Scand. J. Infect. Dis. 2014, 46, 454–461. [Google Scholar] [CrossRef]
- Pfaller, M.; Rhomberg, P.; Messer, S.; Jones, R.N.; Castanheira, M. Isavuconazole, micafungin, and 8 comparator antifungal agents’ susceptibility profiles for common and uncommon opportunistic fungi collected in 2013: Temporal analysis of antifungal drug resistance using CLSI species-specific clinical breakpoints and proposed epidemiological cutoff values. Diagn. Microbiol. Infect. Dis. 2015, 82, 303–313. [Google Scholar] [CrossRef]
- Whaley, S.G.; Berkow, E.L.; Rybak, J.M.; Nishimoto, A.T.; Barker, K.S.; Rogers, P.D. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front. Microbiol. 2016, 7, 2173. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Kim, Y.-J.; Yong, D.; Byun, J.-H.; Kim, T.S.; Chang, Y.S.; Choi, M.J.; Byeon, S.A.; Won, E.J.; Kim, S.H.; et al. Fluconazole-resistant Candida parapsilosis bloodstream isolates with Y132F mutation in ERG11 gene, South Korea. Emerg. Infect. Dis. 2018, 24, 1768–1770. [Google Scholar] [CrossRef] [PubMed]
- Ning, Y.-T.; Sun, T.-S.; Dai, R.-C.; Luo, Z.-Y.; Yu, S.-Y.; Zhang, G.; Mei, Y.-N.; Lin, Y.-L.; Hasi, C.-L.; Chen, S.C.A.; et al. Emergence of multiple fluconazole-resistant Candida parapsilosis sensu stricto clones with persistence and transmission in China. J. Antimicrob. Chemother. 2023, dkad356. [Google Scholar] [CrossRef] [PubMed]
- Corzo-Leon, D.E.; Peacock, M.; Rodriguez-Zulueta, P.; Salazar-Tamayo, G.J.; MacCallum, D.M. General hospital outbreak of invasive candidiasis due to azole-resistant Candida parapsilosis associated with an Erg11 Y132F mutation. Med. Mycol. 2021, 59, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Arastehfar, A.; Hilmioğlu-Polat, S.; Daneshnia, F.; Pan, W.; Hafez, A.; Fang, W.; Liao, W.; Şahbudak-Bal, Z.; Metin, D.Y.; De Almeida, J.N., Jr.; et al. Clonal candidemia outbreak by Candida parapsilosis carrying Y132F in Turkey: Evolution of a persisting challenge. Front. Cell. Infect. Microbiol. 2021, 11, 676177. [Google Scholar] [CrossRef]
- Thomaz, D.Y.; de Almeida, J.N.; Sejas, O.N.E.; Del Negro, G.M.B.; Carvalho, G.O.M.H.; Gimenes, V.M.F.; de Souza, M.; Arastehfar, A.; Camargo, C.; Motta, A.; et al. Environmental clonal spread of azole-resistant Candida parapsilosis with Erg11-Y132F mutation causing a large candidemia outbreak in a Brazilian cancer referral center. J. Fungi 2021, 7, 259. [Google Scholar] [CrossRef] [PubMed]
- Cantón, E.; Pemán, J.; Quindós, G.; Eraso, E.; Miranda-Zapico, I.; Álvarez, M.; Merino, P.; Campos-Herrero, I.; Marco, F.; de la Pedrosa, E.G.G.; et al. Prospective multicenter study of the epidemiology, molecular identification, and antifungal susceptibility of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis isolated from patients with candidemia. Antimicrob. Agents Chemother. 2011, 55, 5590–5596. [Google Scholar] [CrossRef]
- Ning, Y.; Xiao, M.; Perlin, D.S.; Zhao, Y.; Lu, M.; Li, Y.; Luo, Z.; Dai, R.; Li, S.; Xu, J.; et al. Decreased echinocandin susceptibility in Candida parapsilosis causing candidemia and emergence of a pan-echinocandin resistant case in China. Emerg. Microbes Infect. 2023, 12, 2153086. [Google Scholar] [CrossRef]
- Barrientos, A.C.M.; Junior, J.N.d.A.; Litvinov, N.; Bain, V.; Cristofani, L.M.; Pereira, M.F.B.; de Paula, C.S.Y.; Motta, A.L.; Rossi, F.; Del Negro, G.M.B.; et al. Breakthrough candidemia in pediatric patients with cancer from a Brazilian center. Pediatr. Infect. Dis. J. 2021, 40, 251–254. [Google Scholar] [CrossRef]
- Rodrigues, L.S.; Siqueira, A.C.; Spalanzani, R.N.; Vasconcelos, T.M.; Sestren, B.; Bispo, S.P.; Abreu, R.B.V.; Kraft, L.; Ricieri, M.C.; Motta, F.A.; et al. Genotypic diversity of Candida parapsilosis complex in invasive candidiasis at a pediatric tertiary hospital: A 5-year retrospective study. J. Fungi 2022, 8, 1280. [Google Scholar] [CrossRef]
- Reiss, E.; Lasker, B.A.; Iqbal, N.J.; James, M.J.; Arthington-Skaggs, B.A. Molecular epidemiology of Candida parapsilosis sepsis from outbreak investigations in neonatal intensive care units. Infect. Genet. Evol. 2008, 8, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Delfino, D.; Scordino, F.; Pernice, I.; Passo, C.L.; Galbo, R.; David, A.; Barberi, I.; Criseo, G.; Cascio, A.; Romeo, O.; et al. Potential association of specific Candida parapsilosis genotypes, bloodstream infections and colonization of health workers’ hands. Clin. Microbiol. Infect. 2014, 20, O946–O951. [Google Scholar] [CrossRef] [PubMed]
- Rizzato, C.; Poma, N.; Zoppo, M.; Posteraro, B.; Mello, E.; Bottai, D.; Lupetti, A.; Sanguinetti, M.; Tavanti, A. CoERG11 A395T mutation confers azole resistance in Candida orthopsilosis clinical isolates. J. Antimicrob. Chemother. 2018, 73, 1815–1822. [Google Scholar] [CrossRef] [PubMed]
Drug | No. of Isolates at Each Determined MIC Value (µg/mL) | MIC Range (µg/mL) | GM a MIC (µg/mL) | MIC (µg/mL) of Quality Control Strains: | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
≤0.015 | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | C. parapsilosis ATCC 22019 | C. krusei ATCC 6258 | |||
MFG | 1 | 1 | 13 | 14 | 50 | 0.06–1 | 0.66 | 0.5 | 0.12 | ||||
CAS | 1 | 23 | 55 | 0.25–1 | 0.8 | 1 | 0.25 | ||||||
AMB | 10 | 69 | 0.5–1 | 0.92 | 0.5 | 1 | |||||||
5FC | 79 | 0.12 | 0.12 | ≤0.12 | 4 | ||||||||
FLC | 1 | 24 | 42 | 6 | 5 | 1 | 0.12–4 | 0.47 | 1 | 16 | |||
ITC | 5 | 38 | 26 | 10 | 0.015–0.12 | 0.04 | 0.06 | 0.12 | |||||
VRC | 59 | 18 | 2 | 0.015–0.06 | 0.02 | 0.03 | 0.12 | ||||||
MZ | 16 | 27 | 22 | 14 | 0.03–0.25 | 0.08 | 0.12 | 0.25 |
Loci | Size Range (bp) | No. of Alleles | No. of Genotype |
---|---|---|---|
CP1 | 216–269 | 16 | 20 |
CP4 | 253–479 | 30 | 28 |
B5 | 116–197 | 15 | 16 |
CP6 | 213–328 | 27 | 32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalifa, H.O.; Watanabe, A.; Kamei, K. Antifungal Resistance and Genotyping of Clinical Candida parapsilosis Complex in Japan. J. Fungi 2024, 10, 4. https://doi.org/10.3390/jof10010004
Khalifa HO, Watanabe A, Kamei K. Antifungal Resistance and Genotyping of Clinical Candida parapsilosis Complex in Japan. Journal of Fungi. 2024; 10(1):4. https://doi.org/10.3390/jof10010004
Chicago/Turabian StyleKhalifa, Hazim O., Akira Watanabe, and Katsuhiko Kamei. 2024. "Antifungal Resistance and Genotyping of Clinical Candida parapsilosis Complex in Japan" Journal of Fungi 10, no. 1: 4. https://doi.org/10.3390/jof10010004
APA StyleKhalifa, H. O., Watanabe, A., & Kamei, K. (2024). Antifungal Resistance and Genotyping of Clinical Candida parapsilosis Complex in Japan. Journal of Fungi, 10(1), 4. https://doi.org/10.3390/jof10010004