Trichophyton mentagrophytes ITS Genotype VIII/Trichophyton indotineae Infection and Antifungal Resistance in Bangladesh
Abstract
:1. Introduction
2. Patients and Methods
2.1. PCR for Determination of the Species from Skin Scraping Samples
2.2. Visualization by PCR-ELISA for Direct Identification of Dermatophytes from Skin Scrapings
2.3. Identification of Dermatophyte Species by Sequencing of the Fungal DNA from Culture
2.4. In Vitro Antifungal Susceptibility Testing of Trichophyton mentagrophytes Genotype VIII (Trichophyton indotineae) and Trichophyton rubrum
2.5. Squalene epoxidase Gene Analysis for Terbinafine Resistance Testing of Trichophyton mentagrophytes Genotype VIII (Trichophyton indotineae)
2.6. Mutation Analysis by PCR Using the DermaGenius® Resistance Multiplex RT-PCR
2.7. Sequencing of the Erg11B Gene
2.8. Phylogenetic Tree According to ITS-rDNA and tef1-α
2.9. Deposition of the Sequences in Gene Databases
2.10. Ethics Statement and Patient Informed Consent
3. Results
3.1. Patients Data
3.2. Dermatophyte Detection by Culture and/or PCR
3.3. Identification of Fungal Species and Genotypes by Sequencing of the ITS and the tef1-α Region of the rDNA
3.4. Antifungal Resistance Testing and Point Mutation Analysis of Trichophyton mentagrophytes ITS Genotype VIII (Trichophyton indotineae)
3.4.1. Antifungal Resistance Testing
3.4.2. Mutation Analysis of Squalene Epoxidase
3.4.3. Mutation Analysis by RT-PCR
3.4.4. Sequencing of the Erg11B Gene
4. Discussion
4.1. Fungal Infections in Bangladesh
4.2. Clinical and Anamnestic Patient Data
4.3. Pathogen Identification
4.4. Resistance Testing
4.5. Terbinafine Resistance Due to Mutations in Squalene Epoxidase
4.6. Itraconazole Resistance Due to Mutations in the ERG11 Gene
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verma, S.B.; Panda, S.; Nenoff, P.; Singal, A.; Rudramurthy, S.M.; Uhrlaß, S.; Das, A.; Bisherwal, K.; Shaw, D.; Vasani, R. The unprecedented epidemic-like scenario of dermatophytosis in India: I. Epidemiology, risk factors and clinical features. Indian J. Dermatol. Venereol. Leprol. 2021, 87, 154–175. [Google Scholar] [CrossRef] [PubMed]
- Chanyachailert, P.; Leeyaphan, C.; Bunyaratavej, S. Cutaneous fungal caused by dermatophytes and non-dermatophytes: An updated comprehensive review of epidemiology, clinical presentations, and diagnostic testing. J. Fungi 2023, 9, 669. [Google Scholar] [CrossRef] [PubMed]
- Philpot, C. The differentiation of Trichophyton mentagrophytes from T. rubrum by a simple urease test. Sabouraudia 1967, 5, 189–193. [Google Scholar] [CrossRef]
- Zhan, P.; Liu, W. The changing face of dermatophytic infections worldwide. Mycopathologia 2017, 182, 77–86. [Google Scholar] [CrossRef]
- Kaaman, T. The clinical significance of cutaneous reactions to trichophytin in dermatophytosis. Acta Derm. Venereol. 1978, 58, 139–143. [Google Scholar] [CrossRef]
- Havlickova, B.; Czaika, V.A.; Friedrich, M. Epidemiological trends in skin mycoses worldwide. Mycoses 2008, 51 (Suppl. S4), 2–15. [Google Scholar] [CrossRef]
- Sahai, S.; Mishra, D. Change in spectrum of dermatophytes isolated from superficial mycoses cases: First report from Central India. Indian J. Dermatol. Venereol. Leprol. 2011, 77, 335–336. [Google Scholar] [CrossRef]
- Bhatia, V.K.; Sharma, P.C. Epidemiological studies on dermatophytosis in human patients in Himachal Pradesh, India. Springerplus 2014, 3, 134. [Google Scholar] [CrossRef]
- Kalita, J.M.; Sharma, A.; Bhardwaj, A.; Nag, V.L. Dermatophytoses and spectrum of dermatophytes in patients attending a teaching hospital in Western Rajasthan, India. J. Fam. Med. Prim. Care 2019, 8, 1418–1421. [Google Scholar] [CrossRef]
- Rudramurthy, S.M.; Shankarnarayan, S.A.; Dogra, S.; Shaw, D.; Mushtaq, K.; Paul, R.A.; Narang, T.; Chakrabarti, A. Mutation in the squalene epoxidase gene of Trichophyton interdigitale and Trichophyton rubrum associated with allylamine resistance. Antimicrob. Agents Chemother. 2018, 62, e02522-17. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Masih, A.; Khurana, A.; Singh, P.K.; Gupta, M.; Hagen, F.; Meis, J.F.; Chowdhary, A. High terbinafine resistance in Trichophyton interdigitale isolates in Delhi, India harbouring mutations in the Squalene epoxidase (SQLE) gene. Mycoses 2018, 61, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Rezaei-Matehkolaei, A.; Rafiei, A.; Makimura, K.; Gräser, Y.; Gharghani, M.; Sadeghi-Nejad, B. Epidemiological aspects of dermatophytosis in Khuzestan, southwestern Iran, an Update. Mycopathologia 2016, 181, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Symoens, F.; Jousson, O.; Planard, C.; Fratti, M.; Staib, P.; Mignon, B.; Monod, M. Molecular analysis and mating behaviour of the Trichophyton mentagrophytes species complex. Int. J. Med. Microbiol. 2011, 301, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Taghipour, S.; Pchelin, I.M.; Zarei Mahmoudabadi, A.; Ansari, S.; Katiraee, F.; Rafiei, A.; Shokohi, T.; Abastabar, M.; Taraskina, A.E.; Kermani, F.; et al. Trichophyton mentagrophytes and T. interdigitale genotypes are associated with particular geographic areas and clinical manifestations. Mycoses 2019, 62, 1084–1091. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.B.; Madhu, R. The great Indian epidemic of superficial dermatophytosis: An appraisal. Indian J. Dermatol. 2017, 62, 227–236. [Google Scholar] [CrossRef]
- Nenoff, P.; Verma, S.B.; Uhrlaß, S.; Burmester, A.; Gräser, Y. A clarion call for preventing taxonomical errors of dermatophytes using the example of the novel Trichophyton mentagrophytes genotype VIII uniformly isolated in the Indian epidemic of superficial dermatophytosis. Mycoses 2019, 62, 6–10. [Google Scholar] [CrossRef]
- Winter, P.; Burmester, A.; Tittelbach, J.; Wiegand, C. A new genotype of Trichophyton quinckeanum with point mutations in Erg11A encoding sterol 14-α demethylase exhibits increased itraconazole resistance. J. Fungi 2023, 9, 1006. [Google Scholar] [CrossRef]
- Burmester, A.; Hipler, U.-C.; Elsner, P.; Wiegand, C. Point mutations in the squalene epoxidase erg1 and sterol 14-α demethylase erg11 gene of T. indotineae isolates indicate that the resistant mutant strains evolved independently. Mycoses 2022, 65, 97–102. [Google Scholar] [CrossRef]
- Kano, R.; Kimura, U.; Kakurai, M.; Hiruma, J.; Kamata, H.; Suga, Y.; Harada, K. Trichophyton indotineae sp. nov.: A new highly terbinafine-resistant anthropophilic dermatophyte species. Mycopathologia 2020, 185, 947–958. [Google Scholar] [CrossRef]
- Kong, F.; Tong, Z.; Chen, X.; Sorrell, T.; Wang, B.; Wu, Q.; Ellis, D.; Chen, S. Rapid identification and differentiation of Trichophyton species, based on sequence polymorphisms of the ribosomal internal transcribed spacer regions, by rolling-circle amplification. J. Clin. Microbiol. 2008, 46, 1192–1199. [Google Scholar] [CrossRef]
- Kawasaki, M.; Anzawa, K.; Wakasa, A.; Takeda, K.; Tanabe, H.; Mochizuki, T.; Ishizaki, H.; Hemashettar, B.M. Different genes can result in different phylogenetic relationships in Trichophyton species. Nihon Ishinkin Gakkai Zasshi 2008, 49, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Jabet, A.; Brun, S.; Normand, A.-C.; Imbert, S.; Akhoundi, M.; Dannaoui, E.; Audiffred, L.; Chasset, F.; Izri, A.; Laroche, L.; et al. Extensive dermatophytosis caused by Terbinafine-resistant Trichophyton indotineae, France. Emerg. Infect. Dis. 2022, 28, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Dellière, S.; Joannard, B.; Benderdouche, M.; Mingui, A.; Gits-Muselli, M.; Hamane, S.; Alanio, A.; Petit, A.; Gabison, G.; Bagot, M.; et al. Emergence of difficult-to-treat tinea corporis caused by Trichophyton mentagrophytes complex isolates, Paris, France. Emerg. Infect. Dis. 2022, 28, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Klinger, M.; Theiler, M.; Bosshard, P.P. Epidemiological and clinical aspects of Trichophyton mentagrophytes/Trichophyton interdigitale infections in the Zurich area: A retrospective study using genotyping. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Nenoff, P.; Verma, S.B.; Ebert, A.; Süß, A.; Fischer, E.; Auerswald, E.; Dessoi, S.; Hofmann, W.; Schmidt, S.; Neubert, K.; et al. Spread of Terbinafine-Resistant Trichophyton mentagrophytes Type VIII (India) in Germany—”The Tip of the Iceberg?”. J. Fungi 2020, 6, 207. [Google Scholar] [CrossRef]
- Jia, S.; Long, X.; Hu, W.; Zhu, J.; Jiang, Y.; Ahmed, S.; Hoog, G.S.d.; Liu, W.; Jiang, Y. The epidemic of the multiresistant dermatophyte Trichophyton indotineae has reached China. Front. Immunol. 2022, 13, 1113065. [Google Scholar] [CrossRef]
- Durdu, M.; Kandemir, H.; Karakoyun, A.S.; Ilkit, M.; Tang, C.; de Hoog, S. First Terbinafine-Resistant Trichophyton indotineae Isolates with Phe397Leu and/or Thr414His Mutations in Turkey. Mycopathologia 2023, 188, 2. [Google Scholar] [CrossRef]
- Beifuss, B.; Bezold, G.; Gottlöber, P.; Borelli, C.; Wagener, J.; Schaller, M.; Korting, H.C. Direct detection of five common dermatophyte species in clinical samples using a rapid and sensitive 24-h PCR-ELISA technique open to protocol transfer. Mycoses 2011, 54, 137–145. [Google Scholar] [CrossRef]
- Hsu, M.-C.; Chen, K.-W.; Lo, H.-J.; Chen, Y.-C.; Liao, M.-H.; Lin, Y.-H.; Li, S.-Y. Species identification of medically important fungi by use of real-time LightCycler PCR. J. Med. Microbiol. 2003, 52, 1071–1076. [Google Scholar] [CrossRef]
- Winter, I.; Uhrlaß, S.; Krüger, C.; Herrmann, J.; Bezold, G.; Winter, A.; Barth, S.; Simon, J.C.; Gräser, Y.; Nenoff, P. Molecular biological detection of dermatophytes in clinical samples when onychomycosis or tinea pedis is suspected. A prospective study comparing conventional dermatomycological diagnostics and polymerase chain reaction. Dermatologie 2013, 64, 283–289. [Google Scholar] [CrossRef]
- Mirhendi, H.; Makimura, K.; de Hoog, G.S.; Rezaei-Matehkolaei, A.; Najafzadeh, M.J.; Umeda, Y.; Ahmadi, B. Translation elongation factor 1-α gene as a potential taxonomic and identification marker in dermatophytes. Med. Mycol. 2015, 53, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Kargl, A.; Kosse, B.; Uhrlaß, S.; Koch, D.; Krüger, C.; Eckert, K.; Nenoff, P. Hedgehog fungi in a dermatological office in Munich: Case reports and review. Dermatologie 2018, 69, 576–585. [Google Scholar] [CrossRef]
- Uhrlaß, S.; Schroedl, W.; Mehlhorn, C.; Krüger, C.; Hubka, V.; Maier, T.; Gräser, Y.; Paasch, U.; Nenoff, P. Molecular epidemiology of Trichophyton quinckeanum—A zoophilic dermatophyte on the rise. J. Dtsch. Dermatol. Ges. 2018, 16, 21–32. [Google Scholar] [CrossRef]
- Paepe, R.d.; Normand, A.-C.; Uhrlaß, S.; Nenoff, P.; Piarroux, R.; Packeu, A. Resistance profile, terbinafine resistance screening and MALDI-TOF MS identification of the emerging pathogen Trichophyton indotineae. Mycopathologia 2024, 189, 29. [Google Scholar] [CrossRef]
- Yamada, T.; Maeda, M.; Alshahni, M.M.; Tanaka, R.; Yaguchi, T.; Bontems, O.; Salamin, K.; Fratti, M.; Monod, M. Terbinafine resistance of Trichophyton clinical isolates caused by specific point mutations in the squalene epoxidase gene. Antimicrob. Agents Chemother. 2017, 61, e00115-17. [Google Scholar] [CrossRef]
- Ebert, A.; Monod, M.; Salamin, K.; Burmester, A.; Uhrlaß, S.; Wiegand, C.; Hipler, U.-C.; Krüger, C.; Koch, D.; Wittig, F.; et al. Alarming India-wide phenomenon of antifungal resistance in dermatophytes: A multicentre study. Mycoses 2020, 63, 717–728. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Overview of Anti-Fungal ECOFFs and Clinical Breakpoints for Yeasts, Moulds and Dermatophytes Using the EUCAST E.Def 7.4, E.Def 9.4 and E.Def 11.0 Procedures. Version 4.0. Available online: http://www.eucast.org (accessed on 7 July 2024).
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- TECOmedical Group. Klinisch Orientierte Dermatophytendiagnostik DermaGenius® 3.0 Complete RT-PCR. 2022. Available online: https://www.tecomedical.com/de/Dermatophyten-/DermaGenius-30-multiplex-RT-PCR/ (accessed on 7 July 2024).
- Ndiaye, M.; Sacheli, R.; Diongue, K.; Adjetey, C.; Darfouf, R.; Seck, M.C.; Badiane, A.S.; Diallo, M.A.; Dieng, T.; Hayette, M.-P.; et al. Evaluation of the Multiplex Real-Time PCR DermaGenius® Assay for the Detection of Dermatophytes in Hair Samples from Senegal. J. Fungi 2021, 8, 11. [Google Scholar] [CrossRef]
- Singh, A.; Singh, P.; Dingemans, G.; Meis, J.F.; Chowdhary, A. Evaluation of DermaGenius® resistance real-time polymerase chain reaction for rapid detection of terbinafine-resistant Trichophyton species. Mycoses 2021, 64, 721–726. [Google Scholar] [CrossRef]
- Uhrlaß, S.; Nenoff, P. DermaGenius® 3.0 for mycological diagnostics in routine testing. Mycoses 2022, 65, 17–18. [Google Scholar]
- Clinically Oriented Dermatophyte Diagnostics. DermaGenius® 3.0 Complete RT-PCR. 2022. Available online: https://www.tecomedical.com/download-file?file_id=4715&file_code=59e2e16f62 (accessed on 8 July 2024).
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed]
- Uhrlaß, S.; Verma, S.B.; Gräser, Y.; Rezaei-Matehkolaei, A.; Hatami, M.; Schaller, M.; Nenoff, P. Trichophyton indotineae—An emerging pathogen causing recalcitrant dermatophytoses in India and worldwide—A multidimensional perspective. J. Fungi 2022, 8, 757. [Google Scholar] [CrossRef] [PubMed]
- Seebacher, C.; Bouchara, J.-P.; Mignon, B. Updates on the epidemiology of dermatophyte infections. Mycopathologia 2008, 166, 335–352. [Google Scholar] [CrossRef]
- Shah, S.R.; Vyas, H.R.; Shah, B.J.; Jangid, N.C.; Choudhary, A.; Gehlawat, T.; Mistry, D.; Joshi, R. A clinical-mycological study of dermatophytosis in Western India with focus on antifungal drug resistance as a factor in recalcitrance. Indian J. Dermatol. 2023, 68, 234. [Google Scholar] [CrossRef]
- Kumar, P.; Ramachandran, S.; Das, S.; Bhattacharya, S.N.; Taneja, B. Insights into changing dermatophyte spectrum in India through analysis of cumulative 161,245 cases between 1939 and 2021. Mycopathologia 2023, 188, 183–202. [Google Scholar] [CrossRef]
- Gupta, A.K.; Venkataraman, M.; Hall, D.C.; Cooper, E.A.; Summerbell, R.C. The emergence of Trichophyton indotineae: Implications for clinical practice. Int. J. Dermatol. 2023, 62, 857–861. [Google Scholar] [CrossRef]
- Verma, S.B.; Vasani, R. Male genital dermatophytosis—Clinical features and the effects of the misuse of topical steroids and steroid combinations—An alarming problem in India. Mycoses 2016, 59, 606–614. [Google Scholar] [CrossRef]
- Nenoff, P.; Uhrlaß, S.; Verma, S.B.; Panda, S. Trichophyton mentagrophytes ITS genotype VIII and Trichophyton indotineae: A terminological maze, or is it? Indian J. Dermatol. Venerol. Leprol. 2022, 88, 586–589. [Google Scholar] [CrossRef]
- Süß, A.; Uhrlaß, S.; Ludes, A.; Verma, S.B.; Monod, M.; Krüger, C.; Nenoff, P. Extensive tinea corporis due to a terbinafine-resistant Trichophyton mentagrophytes isolate of the Indian genotype in a young infant from Bahrain in Germany. Dermatologie 2019, 70, 888–896. [Google Scholar] [CrossRef]
- Gawaz, A.; Nenoff, P.; Uhrlaß, S.; Schaller, M. Therapie eines Terbinafin-resistenten Trichophyton mentagrophytes Typ VIII. Dermatologie 2021, 72, 900–904. [Google Scholar] [CrossRef] [PubMed]
- Eichhorn, K.; Uhrlaß, S.; Nenoff, P. Chronisch rezidivierende Tinea corporis durch ein Terbinafin-resistentes Isolat von Trichophyton rubrum—Erfolgreiche Therapie mit Itraconazol. J. Dtsch. Dermatol. Ges. 2021, 19 (Suppl. S1), 27–30. [Google Scholar] [CrossRef]
- Appelt, L.; Nenoff, P.; Uhrlaß, S.; Krüger, C.; Kühn, P.; Eichhorn, K.; Buder, S.; Beissert, S.; Abraham, S.; Aschoff, R.; et al. Terbinafin-resistente Dermatophytosen und Onychomykose durch Trichophyton rubrum. Hautarzt 2021, 72, 868–877. [Google Scholar] [CrossRef] [PubMed]
- Burmester, A.; Hipler, U.-C.; Uhrlaß, S.; Nenoff, P.; Singal, A.; Verma, S.B.; Elsner, P.; Wiegand, C. Indian T. mentagrophytes squalene epoxidase erg1 double mutants show high proportion of combined fluconazole and terbinafine resistance. Mycoses 2020, 63, 1175–1180. [Google Scholar] [CrossRef] [PubMed]
- Hargrove, T.Y.; Wawrzak, Z.; Lamb, D.C.; Guengerich, F.P.; Lepesheva, G.I. Structure-Functional Characterization of Cytochrome P450 Sterol 14α-Demethylase (CYP51B) from Aspergillus fumigatus and Molecular Basis for the Development of Antifungal Drugs. J. Biol. Chem. 2015, 290, 23916–23934. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, S.; Cramer, R.A. Regulation of sterol biosynthesis in the human fungal pathogen Aspergillus fumigatus: Opportunities for therapeutic development. Front. Microbiol. 2017, 8, 92. [Google Scholar] [CrossRef]
- Elsaman, H.; Golubtsov, E.; Brazil, S.; Ng, N.; Klugherz, I.; Dichtl, K.; Müller, C.; Wagener, J. Toxic eburicol accumulation drives the antifungal activity of azoles against Aspergillus fumigatus. Nat. Commun. 2024, 15, 6312. [Google Scholar] [CrossRef]
- Alcazar-Fuoli, L.; Mellado, E. Ergosterol biosynthesis in Aspergillus fumigatus: Its relevance as an antifungal target and role in antifungal drug resistance. Front. Microbiol. 2012, 3, 439. [Google Scholar] [CrossRef]
- Zhang, J.; Li, L.; Lv, Q.; Yan, L.; Wang, Y.; Jiang, Y. The Fungal CYP51s: Their functions, structures, related drug resistance, and inhibitors. Front. Microbiol. 2019, 10, 691. [Google Scholar] [CrossRef]
- Banerjee, A.; Pata, J.; Sharma, S.; Monk, B.C.; Falson, P.; Prasad, R. Directed mutational strategies reveal drug binding and transport by the MDR transporters of Candida albicans. J. Fungi 2021, 7, 68. [Google Scholar] [CrossRef]
- Monod, M.; Feuermann, M.; Salamin, K.; Fratti, M.; Makino, M.; Alshahni, M.M.; Makimura, K.; Yamada, T. Trichophyton rubrum azole resistance mediated by a new ABC transporter, TruMDR3. Antimicrob. Agents Chemother. 2019, 63, e00863-19. [Google Scholar] [CrossRef]
- Yamada, T.; Yaguchi, T.; Maeda, M.; Alshahni, M.M.; Salamin, K.; Guenova, E.; Feuermann, M.; Monod, M. Gene Amplification of CYP51B: A New Mechanism of Resistance to Azole Compounds in Trichophyton indotineae. Antimicrob. Agents Chemother. 2022, 66, e0005922. [Google Scholar] [CrossRef] [PubMed]
- Rosam, K.; Monk, B.C.; Lackner, M. Sterol 14α-demethylase ligand-binding pocket-mediated acquired and intrinsic azole resistance fungel pathogens. J. Fungi 2020, 7, 1. [Google Scholar] [CrossRef]
- Brunner, P.C.; Stefanato, F.L.; McDonald, B.A. Evolution of the CYP51 gene in Mycosphaerella graminicola: Evidence for intragenic recombination and selective replacement. Mol. Plant Pathol. 2008, 9, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Cañas-Gutiérrez, G.P.; Angarita-Velásquez, M.J.; Restrepo-Flórez, J.M.; Rodríguez, P.; Moreno, C.X.; Arango, R. Analysis of the CYP51 gene and encoded protein in propiconazole-resistant isolates of Mycosphaerella fijiensis. Pest Manag. Sci. 2009, 65, 892–899. [Google Scholar] [CrossRef] [PubMed]
Strain Number, Moelbis Lab | Collection | ITSrDNA–Genebank NCBI | tef1-α–Genebank NCBI | Species |
---|---|---|---|---|
600270 19 | - | OM951137 | Moelbis lab | T. interdigitale ITS genotype I |
208223 17 | DSM 108620 | MK447595 | MK460538 | T. interdigitale ITS genotype I |
600086 21 | - | OM951149 | Moelbis lab | T. interdigitale ITS genotype I |
200070 17 | DSM 108,621 | MK447596 | MK460539 | T. interdigitale ITS genotype II |
600283 19 | - | OM951146 | 600283 19 | T. interdigitale ITS genotype II |
212583 21 | - | OM951143 | Moelbis lab | T. interdigitale ITS genotype II |
250016 18 | - | MN886818 | MN886231 | T. mentagrophytes ITS genotype II* |
212063 17 | DSM 108905 | MK630684 | MK751367 | T. mentagrophytes ITS genotype II* |
208787 21 | - | OM951152 | Moelbis lab | T. mentagrophytes ITS genotype III |
200002 16 | DSM 103451 | KX866689 | MK460540 | T. mentagrophytes ITS genotype III |
217704 15 | DSM 108630 | MK450325 | MK460541 | T. mentagrophytes ITS genotype III |
217907 15 | DSM 108628 | MK447605 | MK460542 | T. mentagrophytes ITS genotype III* |
218893 16 | DSM 108629 | MK447604 | MK460543 | T. mentagrophytes ITS genotype III* |
900120 17 | DSM 108632 | MK447606 | MK460544 | T. mentagrophytes ITS genotype III* |
- | UKJ 594/19 | MN064822.1 | - | T. mentagrophytes ITS genotype VIII T. indotineae |
204532 20 | - | MT333242 | MT340525 | T. mentagrophytes ITS genotype VIII T. indotineae |
220575 19 | - | MT330287 | MT340521 | T. mentagrophytes ITS genotype VIII T. indotineae |
214174 19 | DSM 110675 | MT330289 | MT340511 | T. mentagrophytes ITS genotype VIII T. indotineae |
218160 18 | DSM 108899 | MT330253 | MT340503 | T. mentagrophytes ITS genotype VIII T. indotineae |
216377 17 | DSM 108902 | MT330249 | MT340500 | T. mentagrophytes ITS genotype VIII T. indotineae |
214677 16 | DSM 108903 | MT330252 | MT340499 | T. mentagrophytes ITS genotype VIII T. indotineae |
- | CBS 130940 | - | KM678173.1 | T. mentagrophytes ITS genotype VIII T. indotineae |
600158 22 | - | PQ216375 | PQ232479 | T. mentagrophytesITS genotype VIII T. indotineae |
600145 22 | - | PQ216374 | PQ232478 | T. mentagrophytesITS genotype VIII T. indotineae |
600121 22 | - | PQ216373 | PQ232477 | T. mentagrophytesITS genotype VIII T. indotineae |
600115 22 | - | PQ216372 | PQ232476 | T. mentagrophytesITS genotype VIII T. indotineae |
600103 22 | - | PQ216371 | PQ232475 | T. mentagrophytesITS genotype VIII T. indotineae |
215003 16 | DSM 108624 | MK450324 | MK467449 | T. mentagrophytes ITS genotype VII |
210363 16 | DSM 108625 | MK450323 | MK467450 | T. mentagrophytes ITS genotype VII |
218904 16 | DSM 108622 | MK450322 | MK467448 | T. mentagrophytes ITS genotype VII |
204543 17 | DSM 108626 | MK447609 | MK467445 | T. mentagrophytes ITS genotype IV |
200602 17 | DSM 108631 | MK447607 | MK467447 | T. mentagrophytes ITS genotype IV |
200617 17 | DSM 108627 | MK447608 | MK467446 | T. mentagrophytes ITS genotype IV |
112636 16 | - | PQ248103 | Moelbis lab | T. quinckeanum |
Species | Country | Strain Number, Moelbis Lab | Year | Genebank NCBI |
---|---|---|---|---|
T. mentagrophytes ITS genotype VIII T. indotineae | Bangladesh | 600103/22 | 2022 | PQ216371 (ITS) PQ232475 (tef1-α) |
T. mentagrophytes ITS genotype VIII T. indotineae | Bangladesh | 600115/22 | 2022 | PQ216372 (ITS) PQ232476 (tef1-α) |
T. mentagrophytes ITS genotype VIII T. indotineae | Bangladesh | 600121/22 | 2022 | PQ216373 (ITS) PQ232477 (tef1-α) |
T. mentagrophytes ITS genotype VIII T. indotineae | Bangladesh | 600145/22 | 2022 | PQ216374 (ITS) PQ232478 (tef1-α) |
T. mentagrophytes ITS genotype VIII T. indotineae | Bangladesh | 600158/22 | 2022 | PQ216375 (ITS) PQ232479 (tef1-α) |
Trichophyton rubrum | Bangladesh | 600173/22 | 2022 | PQ216376 (ITS) PQ232480 (tef1-α) |
Occupation | Number |
---|---|
Housewife | 33 |
Student | 25 |
Service | 19 |
Businessman | 5 |
Peasant | 3 |
Industry worker | 2 |
Teacher | 2 |
Laborer | 1 |
Govt. service | 1 |
Shopkeeper | 1 |
Tailor | 1 |
Retired | 1 |
No job | 1 |
History of Previous FDCs | Number |
---|---|
Clobetasol + ofloxacin + ornidazole + terbinafine | 33 |
Econazole + triamcinolone | 20 |
Miconazole + hydrocortisone | 14 |
Triamcinolone injection | 6 |
Clobetasol | 6 |
Betamethasone | 2 |
Mometasone | 1 |
Triamcinolone | 1 |
Not sure | 9 |
No | 6 |
Yes | 1 |
Cultures Grown | Terbinafine (%) | Itraconazole (%) | |||
---|---|---|---|---|---|
-Resistant | -Sensitive | -Resistant | -Sensitive | ||
T. mentagrophytes/T. interdigitale | 76 | 49 (64%) | 27 (36%) | 21 (28%) | 55 (72%) |
Total | 76 | 76 (100%) | 76 (100%) |
Terbinafine-Resistant + Itraconazole-Resistant | Terbinafine-Resistant + Itraconazole-Sensitive | Terbinafine-Sensitive + Itraconazole-Resistant | Terbinafine-Sensitive + Itraconazole-Sensitive | Total | |
---|---|---|---|---|---|
F397L | 3 | 17 | 0 | 0 | 20 |
A448T | 1 | 0 | 10 | 6 | 17 |
L393S | 2 | 17 | 0 | 1 | 20 |
S436A | 2 | 1 | 0 | 2 | 5 |
F397I | 0 | 1 | 0 | 0 | 1 |
L393F | 0 | 1 | 0 | 0 | 1 |
N429D | 0 | 0 | 0 | 1 | 1 |
Double mutation F397L and A448T | 3 | 1 | 0 | 0 | 4 |
Total mutations | 11 | 38 | 10 | 10 | 69 |
No mutation (wild type) | 0 | 0 | 0 | 7 | 7 |
Total | 11 | 38 | 10 | 17 | 76 |
Mutation Identification | Pathogen Identification (%) | ||
---|---|---|---|
T. interdigitale/T. mentagrophytes | T. rubrum | ||
Wild type | 38 (38.4) | 34 (34.3) | 4 (4.1) |
Mutant | 61 (61.6) | 61 (61.6) | 0 (0.0) |
Total | 99 (100) | 95 (95.9) | 4 (4.1) |
Mutation | Base Exchange in the Erg11 Gene | Itraconazole Testing | Number | Percent (%) |
---|---|---|---|---|
D441Y | GAT → TAT | Sensitive | 4 | 5.0 |
D441G | GAT → GGT | Sensitive | 1 | 1.3 |
G443E | GGA → GAA | Resistant | 1 | 1.3 |
Sensitive | 1 | 1.3 | ||
G443R | GGA → AGA | Sensitive | 1 | 1.3 |
Y444H | TAC → CAC | Resistant | 2 | 2.5 |
Sensitive | 28 | 35.4 | ||
Y444C | TAC → TGC | Resistant | 2 | 2.5 |
Sensitive | 3 | 3.8 | ||
Y444S | TAC → TCC | Sensitive | 4 | 5.1 |
G445S | GGT → AGT | Resistant | 2 | 2.5 |
Sensitive | 1 | 1.3 | ||
G445D | GGT → GAT | 1 | 1.3 | |
Total mutations | 51 | 64.6 | ||
No mutations | Resistant | 15 | 19.0 | |
Sensitive | 13 | 16.4 | ||
Total | 79 | 100 |
Mutation | Mutation Present (%) | Mutation Absent (%) | Total (%) |
---|---|---|---|
Itraconazole-resistant | 7 (8.9) | 15 (19.0) | 22 (27.9) |
Itraconazole-sensitive | 44 (55.7) | 13 (16.4) | 57 (72.1) |
Total | 51 (64.6) | 28 (35.4) | 79 (100) |
Mutation (Erg11B) | Ala448Thr (SQLE) | Number | Percent (%) |
---|---|---|---|
D441Y | Absent | 4 | 5.1 |
D441G | Absent | 1 | 1.3 |
G443E | Absent | 2 | 2.5 |
G443R | Absent | 1 | 1.3 |
Y444H | Absent | 30 | 37.8 |
Y444C | Absent | 5 | 6.3 |
Y444S | Absent | 4 | 5.1 |
G445S | Absent | 3 | 3.8 |
G445D | Present | 1 | 1.3 |
None | Present | 18 | 22.8 |
Absent | 10 | 12.7 | |
Total | 79 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhuiyan, M.S.I.; Verma, S.B.; Illigner, G.-M.; Uhrlaß, S.; Klonowski, E.; Burmester, A.; Noor, T.; Nenoff, P. Trichophyton mentagrophytes ITS Genotype VIII/Trichophyton indotineae Infection and Antifungal Resistance in Bangladesh. J. Fungi 2024, 10, 768. https://doi.org/10.3390/jof10110768
Bhuiyan MSI, Verma SB, Illigner G-M, Uhrlaß S, Klonowski E, Burmester A, Noor T, Nenoff P. Trichophyton mentagrophytes ITS Genotype VIII/Trichophyton indotineae Infection and Antifungal Resistance in Bangladesh. Journal of Fungi. 2024; 10(11):768. https://doi.org/10.3390/jof10110768
Chicago/Turabian StyleBhuiyan, Mohammed Saiful Islam, Shyam B. Verma, Gina-Marie Illigner, Silke Uhrlaß, Esther Klonowski, Anke Burmester, Towhida Noor, and Pietro Nenoff. 2024. "Trichophyton mentagrophytes ITS Genotype VIII/Trichophyton indotineae Infection and Antifungal Resistance in Bangladesh" Journal of Fungi 10, no. 11: 768. https://doi.org/10.3390/jof10110768
APA StyleBhuiyan, M. S. I., Verma, S. B., Illigner, G. -M., Uhrlaß, S., Klonowski, E., Burmester, A., Noor, T., & Nenoff, P. (2024). Trichophyton mentagrophytes ITS Genotype VIII/Trichophyton indotineae Infection and Antifungal Resistance in Bangladesh. Journal of Fungi, 10(11), 768. https://doi.org/10.3390/jof10110768