Dual Transcriptome Analysis Reveals the Changes in Gene Expression in Both Cotton and Verticillium dahliae During the Infection Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strains, Plant Material, and Culture Conditions
2.2. Dual RNA-Sequencing (RNA-Seq)
2.3. Differentially Expressed Gene (DEG) Screening and Analysis
2.4. Gene Expression Validation by Quantitative Real-Time PCR (qRT-PCR)
2.5. HIGS (Host-Induced Gene Silencing) Treatment
2.6. Yeast Signal Sequence Trap System
2.7. Agrobacterium Infiltration Assays
2.8. Statistical Analyses
3. Results
3.1. Gene Expression Changes in Vd592 and Cotton During Infection
3.2. GO Enrichment and KEGG Pathway Analysis of DEGs Identified in V. dahlia and Infected Cotton Roots
3.3. Pathogenicity-Related Genes in the Vd592 Transcriptome
3.4. Functional Verification of the Cell Wall-Degrading Enzyme Gene VdPE1 by HIGS
3.5. VdPE1 Is a Secreted Protein and Fails to Induce Cell Death in Nicotiana benthamiana
3.6. DEGs Associated with Flavonoid Biosynthesis in Cotton Transcriptome
3.7. DEGs Associated with Plant Hormone Signal Transduction in Cotton Transcriptome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, Y.; Zhao, M.; Li, T.; Wang, L.; Liao, C.; Liu, D.; Zhang, H.; Zhao, Y.; Liu, L.; Ge, X.; et al. Interactions between Verticillium dahliae and Cotton: Pathogenic Mechanism and Cotton Resistance Mechanism to Verticillium Wilt. Front. Plant Sci. 2023, 14, 1174281. [Google Scholar] [CrossRef] [PubMed]
- Billah, M.; Li, F.; Yang, Z. Regulatory Network of Cotton Genes in Response to Salt, Drought and Wilt Diseases (Verticillium and Fusarium): Progress and Perspective. Front. Plant Sci. 2021, 12, 759245. [Google Scholar] [CrossRef] [PubMed]
- Elfaleh, I.; Abbassi, F.; Habibi, M.; Ahmad, F.; Guedri, M.; Nasri, M.; Garnier, C. A Comprehensive Review of Natural Fibers and Their Composites: An Eco-Friendly Alternative to Conventional Materials. Results Eng. 2023, 19, 101271. [Google Scholar] [CrossRef]
- Aini, N.; Jibril, A.N.; Liu, S.; Han, P.; Pan, Z.; Zhu, L.; Nie, X. Advances and Prospects of Genetic Mapping of Verticillium Wilt Resistance in Cotton. J. Cotton Res. 2022, 5, 5. [Google Scholar] [CrossRef]
- Short, D.P.G.; Sandoya, G.; Vallad, G.E.; Koike, S.T.; Xiao, C.-L.; Wu, B.-M.; Gurung, S.; Hayes, R.J.; Subbarao, K.V. Dynamics of Verticillium Species Microsclerotia in Field Soils in Response to Fumigation, Cropping Patterns, and Flooding. Phytopathology 2015, 105, 638–645. [Google Scholar] [CrossRef]
- Klosterman, S.J.; Atallah, Z.K.; Vallad, G.E.; Subbarao, K.V. Diversity, Pathogenicity, and Management of Verticillium Species. Annu. Rev. Phytopathol. 2009, 47, 39–62. [Google Scholar] [CrossRef]
- Fradin, E.F.; Thomma, B.P.H.J. Physiology and Molecular Aspects of Verticillium Wilt Diseases Caused by V. dahliae and V. albo-Atrum. Mol. Plant Pathol. 2006, 7, 71–86. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, L.; Liu, S.; Zhou, J.; Wu, Y.; Feng, Z.; Zhang, Y.; Zhu, H.; Wei, F.; Feng, H. Identification and Functional Analysis of a Novel Hydrophobic Protein VdHP1 from Verticillium dahliae. Microbiol. Spectr. 2022, 10, e0247821. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Ge, X.; Yuan, Y.; Jin, Y.; Wang, Y.; Zhao, L.; Han, X.; Hu, W.; Yang, L.; et al. Genome-Wide Association Analysis Reveals a Novel Pathway Mediated by a Dual-TIR Domain Protein for Pathogen Resistance in Cotton. Genome Biol. 2023, 24, 111. [Google Scholar] [CrossRef]
- Jo, E.-K. Interplay between Host and Pathogen: Immune Defense and Beyond. Exp. Mol. Med. 2019, 51, 1–3. [Google Scholar] [CrossRef]
- Faulkner, C.; Robatzek, S. Plants and Pathogens: Putting Infection Strategies and Defence Mechanisms on the Map. Curr. Opin. Plant Biol. 2012, 15, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Praznik, A.; Fink, T.; Franko, N.; Lonzarić, J.; Benčina, M.; Jerala, N.; Plaper, T.; Roškar, S.; Jerala, R. Regulation of Protein Secretion through Chemical Regulation of Endoplasmic Reticulum Retention Signal Cleavage. Nat. Commun. 2022, 13, 1323. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Abdel-Hamid, A.M.; Sun, Z.; Cheng, Y.; Tu, T.; Cann, I.; Yao, B.; Zhu, W. Carbohydrate-Binding Modules Facilitate the Enzymatic Hydrolysis of Lignocellulosic Biomass: Releasing Reducing Sugars and Dissociative Lignin Available for Producing Biofuels and Chemicals. Biotechnol. Adv. 2023, 65, 108126. [Google Scholar] [CrossRef] [PubMed]
- Ling, L.-Z.; Chen, L.-L.; Liu, Z.-Z.; Luo, L.-Y.; Tai, S.-H.; Zhang, S.-D. Genome Sequencing and CAZymes Repertoire Analysis of Diaporthe Eres P3-1W Causing Postharvest Fruit Rot of ‘Hongyang’ Kiwifruit in China. PeerJ 2024, 12, e17715. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Li, B.; Yang, X.; Dong, Y.; Qiu, D. A Verticillium dahliae Pectate Lyase Induces Plant Immune Responses and Contributes to Virulence. Front. Plant Sci. 2018, 9, 1271. [Google Scholar] [CrossRef]
- Wang, D.; Chen, J.-Y.; Song, J.; Li, J.-J.; Klosterman, S.J.; Li, R.; Kong, Z.-Q.; Subbarao, K.V.; Dai, X.-F.; Zhang, D.-D. Cytotoxic Function of Xylanase VdXyn4 in the Plant Vascular Wilt Pathogen Verticillium dahliae. Plant Physiol. 2021, 187, 409–429. [Google Scholar] [CrossRef]
- Gui, Y.-J.; Zhang, W.-Q.; Zhang, D.-D.; Zhou, L.; Short, D.P.G.; Wang, J.; Ma, X.-F.; Li, T.-G.; Kong, Z.-Q.; Wang, B.-L.; et al. A Verticillium dahliae Extracellular Cutinase Modulates Plant Immune Responses. Mol. Plant-Microbe Interact. 2018, 31, 260–273. [Google Scholar] [CrossRef]
- Zhang, L.; Ni, H.; Du, X.; Wang, S.; Ma, X.-W.; Nürnberger, T.; Guo, H.-S.; Hua, C. The Verticillium-Specific Protein VdSCP7 Localizes to the Plant Nucleus and Modulates Immunity to Fungal Infections. New Phytol. 2017, 215, 368–381. [Google Scholar] [CrossRef]
- Wang, D.; Tian, L.; Zhang, D.-D.; Song, J.; Song, S.-S.; Yin, C.-M.; Zhou, L.; Liu, Y.; Wang, B.-L.; Kong, Z.-Q.; et al. Functional Analyses of Small Secreted Cysteine-Rich Proteins Identified Candidate Effectors in Verticillium dahliae. Mol. Plant Pathol. 2020, 21, 667–685. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, D.-D.; Song, J.; Li, J.-J.; Wang, J.; Li, R.; Klosterman, S.J.; Kong, Z.-Q.; Lin, F.-Z.; Dai, X.-F.; et al. Verticillium dahliae CFEM Proteins Manipulate Host Immunity and Differentially Contribute to Virulence. BMC Biol. 2022, 20, 55. [Google Scholar] [CrossRef]
- Newman, M.-A.; Sundelin, T.; Nielsen, J.T.; Erbs, G. MAMP (Microbe-Associated Molecular Pattern) Triggered Immunity in Plants. Front. Plant Sci. 2013, 4, 139. [Google Scholar] [CrossRef] [PubMed]
- Tena, G. PTI and ETI Are One. Nat. Plants 2021, 7, 1527. [Google Scholar] [CrossRef] [PubMed]
- Bigeard, J.; Colcombet, J.; Hirt, H. Signaling Mechanisms in Pattern-Triggered Immunity (PTI). Mol. Plant 2015, 8, 521–539. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Jiang, Z.; Bi, G.; Nomura, K.; Liu, M.; Wang, Y.; Cai, B.; Zhou, J.-M.; He, S.Y.; Xin, X.-F. Pattern-Recognition Receptors Are Required for NLR-Mediated Plant Immunity. Nature 2021, 592, 105–109. [Google Scholar] [CrossRef]
- Nabi, Z.; Manzoor, S.; Nabi, S.U.; Wani, T.A.; Gulzar, H.; Farooq, M.; Arya, V.M.; Baloch, F.S.; Vlădulescu, C.; Popescu, S.M.; et al. Pattern-Triggered Immunity and Effector-Triggered Immunity: Crosstalk and Cooperation of PRR and NLR-Mediated Plant Defense Pathways during Host–Pathogen Interactions. Physiol. Mol. Biol. Plants 2024, 30, 587–604. [Google Scholar] [CrossRef]
- Eitas, T.K.; Dangl, J.L. NB-LRR Proteins: Pairs, Pieces, Perception, Partners, and Pathways. Curr. Opin. Plant Biol. 2010, 13, 472–477. [Google Scholar] [CrossRef]
- Mi, X.; Li, W.; Chen, C.; Xu, H.; Wang, G.; Jin, X.; Zhang, D.; Guo, W. GhMPK9-GhRAF39_1-GhWRKY40a Regulates the GhERF1b- and GhABF2-Mediated Pathways to Increase Cotton Disease Resistance. Adv. Sci. 2024, 11, 2404400. [Google Scholar] [CrossRef]
- Li, T.-G.; Wang, B.-L.; Yin, C.-M.; Zhang, D.-D.; Wang, D.; Song, J.; Zhou, L.; Kong, Z.-Q.; Klosterman, S.J.; Li, J.-J.; et al. The Gossypium hirsutum TIR-NBS-LRR Gene GhDSC1 Mediates Resistance against Verticillium Wilt. Mol. Plant Pathol. 2019, 20, 857–876. [Google Scholar] [CrossRef]
- Campos, M.D.; Félix, M.d.R.; Patanita, M.; Materatski, P.; Varanda, C. High Throughput Sequencing Unravels Tomato-Pathogen Interactions towards a Sustainable Plant Breeding. Hortic. Res. 2021, 8, 171. [Google Scholar] [CrossRef]
- Rowland, B.E.; Henriquez, M.A.; Nilsen, K.T.; Subramaniam, R.; Walkowiak, S. Unraveling Plant-Pathogen Interactions in Cereals Using RNA-Seq. In Plant-Pathogen Interactions; Methods in Molecular Biology; Humana: New York, NY, USA, 2023; Volume 2659, pp. 103–118. [Google Scholar] [CrossRef]
- Meng, H.; Sun, M.; Jiang, Z.; Liu, Y.; Sun, Y.; Liu, D.; Jiang, C.; Ren, M.; Yuan, G.; Yu, W.; et al. Comparative Transcriptome Analysis Reveals Resistant and Susceptible Genes in Tobacco Cultivars in Response to Infection by Phytophthora nicotianae. Sci. Rep. 2021, 11, 809. [Google Scholar] [CrossRef]
- Zhu, H.; Song, J.; Dhar, N.; Shan, Y.; Ma, X.-Y.; Wang, X.-L.; Chen, J.-Y.; Dai, X.-F.; Li, R.; Wang, Z.-S. Transcriptome Analysis of a Cotton Cultivar Provides Insights into the Differentially Expressed Genes Underlying Heightened Resistance to the Devastating Verticillium Wilt. Cells 2021, 10, 2961. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Qin, J.; Cao, Y.; Subbarao, K.V.; Chen, J.; Mandal, M.K.; Xu, X.; Shang, W.; Hu, X. Transcription Factor VdCf2 Regulates Growth, Pathogenicity, and the Expression of a Putative Secondary Metabolism Gene Cluster in Verticillium dahliae. Appl. Environ. Microbiol. 2022, 88, e0138522. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.-Q.; Gui, Y.-J.; Short, D.P.G.; Li, T.-G.; Zhang, D.-D.; Zhou, L.; Liu, C.; Bao, Y.-M.; Subbarao, K.V.; Chen, J.-Y.; et al. Verticillium dahliae Transcription Factor VdFTF1 Regulates the Expression of Multiple Secreted Virulence Factors and Is Required for Full Virulence in Cotton. Mol. Plant Pathol. 2018, 19, 841–857. [Google Scholar] [CrossRef] [PubMed]
- Shilpha, J.; Lee, J.; Kwon, J.-S.; Lee, H.-A.; Nam, J.-Y.; Jang, H.; Kang, W.-H. An Improved Bacterial mRNA Enrichment Strategy in Dual RNA Sequencing to Unveil the Dynamics of Plant-Bacterial Interactions. Plant Methods 2024, 20, 99. [Google Scholar] [CrossRef] [PubMed]
- Duressa, D.; Anchieta, A.; Chen, D.; Klimes, A.; Garcia-Pedrajas, M.D.; Dobinson, K.F.; Klosterman, S.J. RNA-Seq Analyses of Gene Expression in the Microsclerotia of Verticillium dahliae. BMC Genom. 2013, 14, 607. [Google Scholar] [CrossRef]
- Li, X.; Dong, Y.; Yu, H.; Zhao, J.; Yang, F.; Song, W.; Wang, C.; Liu, J.; Liang, Q.; Wang, Y.; et al. A Dual RNA-Seq Analyses Revealed Dynamic Arms Race during the Invasion of Walnut by Colletotrichum gloeosporioides. BMC Plant Biol. 2024, 24, 653. [Google Scholar] [CrossRef]
- Xiong, X.-P.; Sun, S.-C.; Zhang, X.-Y.; Li, Y.-J.; Liu, F.; Zhu, Q.-H.; Xue, F.; Sun, J. Corrigendum: GhWRKY70D13 Regulates Resistance to Verticillium dahliae in Cotton Through the Ethylene and Jasmonic Acid Signaling Pathways. Front. Plant Sci. 2020, 11, 1045. [Google Scholar] [CrossRef]
- Petersen, T.N.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 4.0: Discriminating Signal Peptides from Transmembrane Regions. Nat. Methods 2011, 8, 785–786. [Google Scholar] [CrossRef]
- Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E.L.L. Predicting Transmembrane Protein Topology with a Hidden Markov Model: Application to Complete Genomes. J. Mol. Biol. 2001, 305, 567–580. [Google Scholar] [CrossRef]
- Bendtsen, J.D.; Jensen, L.J.; Blom, N.; Von Heijne, G.; Brunak, S. Feature-Based Prediction of Non-Classical and Leaderless Protein Secretion. Protein Eng. Des. Sel. 2004, 17, 349–356. [Google Scholar] [CrossRef]
- Urban, M.; Cuzick, A.; Seager, J.; Wood, V.; Rutherford, K.; Venkatesh, S.Y.; De Silva, N.; Martinez, M.C.; Pedro, H.; Yates, A.D.; et al. PHI-Base: The Pathogen-Host Interactions Database. Nucleic Acids Res. 2020, 48, D613–D620. [Google Scholar] [CrossRef] [PubMed]
- Lombard, V.; Golaconda Ramulu, H.; Drula, E.; Coutinho, P.M.; Henrissat, B. The Carbohydrate-Active Enzymes Database (CAZy) in 2013. Nucleic Acids Res. 2014, 42, D490–D495. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ma, X.; Sun, T.; Zhu, Q.-H.; Feng, H.; Li, Y.; Liu, F.; Zhang, X.; Sun, J.; Li, Y. VdPT1 Encoding a Neutral Trehalase of Verticillium dahliae Is Required for Growth and Virulence of the Pathogen. Int. J. Mol. Sci. 2023, 25, 294. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Kim, S.G.; Tsuda, K.; Gupta, R.; Park, S.-Y.; Kim, S.T.; Kang, K.Y. Magnaporthe oryzae-Secreted Protein MSP1 Induces Cell Death and Elicits Defense Responses in Rice. Mol. Plant-Microbe Interact. 2016, 29, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Yan, Y.; Sohail, M.A.; Liu, H.; Huang, J.; Hsiang, T.; Zheng, L. A Novel Hexose Transporter ChHxt6 Is Required for Hexose Uptake and Virulence in Colletotrichum higginsianum. Int. J. Mol. Sci. 2021, 22, 5963. [Google Scholar] [CrossRef]
- Pedrini, N.; Ortiz-Urquiza, A.; Huarte-Bonnet, C.; Fan, Y.; Juárez, M.P.; Keyhani, N.O. Tenebrionid Secretions and a Fungal Benzoquinone Oxidoreductase Form Competing Components of an Arms Race between a Host and Pathogen. Proc. Natl. Acad. Sci. USA 2015, 112, E3651–E3660. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, X.; Zhu, M.; Chen, M.; Zhang, S.; He, F.; Chen, X.; Lv, J.; Pei, M.; Zhang, Y.; et al. MoIVD-Mediated Leucine Catabolism Is Required for Vegetative Growth, Conidiation and Full Virulence of the Rice Blast Fungus Magnaporthe oryzae. Front. Microbiol. 2019, 10, 444. [Google Scholar] [CrossRef]
- Zhou, B.-J.; Jia, P.-S.; Gao, F.; Guo, H.-S. Molecular Characterization and Functional Analysis of a Necrosis- and Ethylene-Inducing, Protein-Encoding Gene Family from Verticillium dahliae. Mol. Plant-Microbe Interact. 2012, 25, 964–975. [Google Scholar] [CrossRef]
- Tang, C.; Li, T.; Klosterman, S.J.; Tian, C.; Wang, Y. The bZIP Transcription Factor VdAtf1 Regulates Virulence by Mediating Nitrogen Metabolism in Verticillium dahliae. New Phytol. 2020, 226, 1461–1479. [Google Scholar] [CrossRef]
- Tian, L.; Li, J.; Huang, C.; Zhang, D.; Xu, Y.; Yang, X.; Song, J.; Wang, D.; Qiu, N.; Short, D.P.G.; et al. Cu/Zn Superoxide Dismutase (VdSOD1) Mediates Reactive Oxygen Species Detoxification and Modulates Virulence in Verticillium dahliae. Mol. Plant Pathol. 2021, 22, 1092–1108. [Google Scholar] [CrossRef]
- Xu, L.; Wang, H.; Zhang, C.; Wang, J.; Chen, A.; Chen, Y.; Ma, Z. System-Wide Characterization of Subtilases Reveals That Subtilisin-like Protease FgPrb1 of Fusarium graminearum Regulates Fungal Development and Virulence. Fungal Genet. Biol. FG B 2020, 144, 103449. [Google Scholar] [CrossRef]
- Qi, X.; Su, X.; Guo, H.; Qi, J.; Cheng, H. VdThit, a Thiamine Transport Protein, Is Required for Pathogenicity of the Vascular Pathogen Verticillium dahliae. Mol. Plant-Microbe Interact. 2016, 29, 545–559. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Zhang, R.; Zhao, J.; Qi, T.; Kang, Z.; Guo, J. Host-Induced Silencing of Fusarium graminearum Genes Enhances the Resistance of Brachypodium distachyon to Fusarium Head Blight. Front. Plant Sci. 2019, 10, 1362. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Chen, A.; Zhang, Y.; Zhang, C.; Hu, Y.; Luo, Z.; Wang, B.; Yun, Y.; Zhou, J.; Li, G.; et al. ESCRT-III Accessory Proteins Regulate Fungal Development and Plant Infection in Fusarium graminearum. Curr. Genet. 2019, 65, 1041–1055. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, L.; Liang, Y.; Yu, J. FgPEX4 Is Involved in Development, Pathogenicity, and Cell Wall Integrity in Fusarium graminearum. Curr. Genet. 2019, 65, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Bi, F.; Barad, S.; Ment, D.; Luria, N.; Dubey, A.; Casado, V.; Glam, N.; Mínguez, J.D.; Espeso, E.A.; Fluhr, R.; et al. Carbon Regulation of Environmental pH by Secreted Small Molecules That Modulate Pathogenicity in Phytopathogenic Fungi. Mol. Plant Pathol. 2016, 17, 1178–1195. [Google Scholar] [CrossRef]
- Zhang, D.-D.; Wang, X.-Y.; Chen, J.-Y.; Kong, Z.-Q.; Gui, Y.-J.; Li, N.-Y.; Bao, Y.-M.; Dai, X.-F. Identification and Characterization of a Pathogenicity-Related Gene VdCYP1 from Verticillium dahliae. Sci. Rep. 2016, 6, 27979. [Google Scholar] [CrossRef]
- Bravo Ruiz, G.; Di Pietro, A.; Roncero, M.I.G. Combined Action of the Major Secreted Exo- and Endopolygalacturonases Is Required for Full Virulence of Fusarium oxysporum. Mol. Plant Pathol. 2016, 17, 339–353. [Google Scholar] [CrossRef]
- Han, J.-H.; Shin, J.-H.; Lee, Y.-H.; Kim, K.S. Distinct Roles of the YPEL Gene Family in Development and Pathogenicity in the Ascomycete Fungus Magnaporthe oryzae. Sci. Rep. 2018, 8, 14461. [Google Scholar] [CrossRef]
- Höfer, A.M.; Harting, R.; Aßmann, N.F.; Gerke, J.; Schmitt, K.; Starke, J.; Bayram, Ö.; Tran, V.-T.; Valerius, O.; Braus-Stromeyer, S.A.; et al. The Velvet Protein Vel1 Controls Initial Plant Root Colonization and Conidia Formation for Xylem Distribution in Verticillium Wilt. PLoS Genet. 2021, 17, e1009434. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Liu, C.; Gui, Y.-J.; Si, K.-W.; Zhang, D.-D.; Wang, J.; Short, D.P.G.; Huang, J.-Q.; Li, N.-Y.; Liang, Y.; et al. Comparative Genomics Reveals Cotton-specific Virulence Factors in Flexible Genomic Regions in Verticillium dahliae and Evidence of Horizontal Gene Transfer from Fusarium. New Phytol. 2018, 217, 756–770. [Google Scholar] [CrossRef] [PubMed]
- Ben-Daniel, B.-H.; Bar-Zvi, D.; Tsror Lahkim, L. Pectate Lyase Affects Pathogenicity in Natural Isolates of Colletotrichum Coccodes and in pelA Gene-Disrupted and Gene-Overexpressing Mutant Lines. Mol. Plant Pathol. 2012, 13, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-Y.; Chen, J.-Y.; Wang, J.-L.; Li, L.; Xiao, H.-L.; Adam, S.M.; Dai, X.-F. Molecular Characterization and Functional Analysis of a Specific Secreted Protein from Highly Virulent Defoliating Verticillium dahliae. Gene 2013, 529, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Zhao, J.-H.; Zhao, P.; Zhang, T.; Wang, S.; Guo, H.-S. A Fungal milRNA Mediates Epigenetic Repression of a Virulence Gene in Verticillium dahliae. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2019, 374, 20180309. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.-B.; Chen, G.-Q.; Chen, Y.-P.; Dong, B.; Lu, J.-P.; Liu, X.-H.; Lin, F.-C. MoRad6-Mediated Ubiquitination Pathways Are Essential for Development and Pathogenicity in Magnaporthe oryzae. Environ. Microbiol. 2016, 18, 4170–4187. [Google Scholar] [CrossRef]
- Seong, K.; Hou, Z.; Tracy, M.; Kistler, H.C.; Xu, J.-R. Random Insertional Mutagenesis Identifies Genes Associated with Virulence in the Wheat Scab Fungus Fusarium graminearum. Phytopathology 2005, 95, 744–750. [Google Scholar] [CrossRef]
- Fernandez, J.; Lopez, V.; Kinch, L.; Pfeifer, M.A.; Gray, H.; Garcia, N.; Grishin, N.V.; Khang, C.-H.; Orth, K. Role of Two Metacaspases in Development and Pathogenicity of the Rice Blast Fungus Magnaporthe oryzae. mBio 2021, 12, e03471-20. [Google Scholar] [CrossRef]
- Oliver, J.D.; Kaye, S.J.; Tuckwell, D.; Johns, A.E.; Macdonald, D.A.; Livermore, J.; Warn, P.A.; Birch, M.; Bromley, M.J. The Aspergillus fumigatus Dihydroxyacid Dehydratase Ilv3A/IlvC Is Required for Full Virulence. PLoS ONE 2012, 7, e43559. [Google Scholar] [CrossRef]
- Tzima, A.K.; Paplomatas, E.J.; Tsitsigiannis, D.I.; Kang, S. The G Protein β Subunit Controls Virulence and Multiple Growth- and Development-Related Traits in Verticillium dahliae. Fungal Genet. Biol. FG B 2012, 49, 271–283. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, Y.-L.; Zhao, J.-H.; Wang, S.; Jin, Y.; Chen, Z.-Q.; Fang, Y.-Y.; Hua, C.-L.; Ding, S.-W.; Guo, H.-S. Cotton Plants Export microRNAs to Inhibit Virulence Gene Expression in a Fungal Pathogen. Nat. Plants 2016, 2, 16153. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, X.; Sun, M.; Liu, H.; Xu, J.-R. The FgSRP1 SR-Protein Gene Is Important for Plant Infection and Pre-mRNA Processing in Fusarium graminearum. Environ. Microbiol. 2017, 19, 4065–4079. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, M.; Tang, G.; Ma, Z.; Shao, W. The Endocytic Cargo Adaptor Complex Is Required for Cell-Wall Integrity via Interacting with the Sensor FgWsc2B in Fusarium graminearum. Curr. Genet. 2019, 65, 1071–1080. [Google Scholar] [CrossRef] [PubMed]
- Tsolakidou, M.-D.; Pantelides, L.S.; Tzima, A.K.; Kang, S.; Paplomatas, E.J.; Tsaltas, D. Disruption and Overexpression of the Gene Encoding ACC (1-Aminocyclopropane-1-Carboxylic Acid) Deaminase in Soil-Borne Fungal Pathogen Verticillium dahliae Revealed the Role of ACC as a Potential Regulator of Virulence and Plant Defense. Mol. Plant-Microbe Interact. 2019, 32, 639–653. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, S.M.; Šamec, D.; Tomczyk, M.; Milella, L.; Russo, D.; Habtemariam, S.; Suntar, I.; Rastrelli, L.; Daglia, M.; Xiao, J.; et al. Flavonoid Biosynthetic Pathways in Plants: Versatile Targets for Metabolic Engineering. Biotechnol. Adv. 2020, 38, 107316. [Google Scholar] [CrossRef]
- Ding, L.-N.; Li, Y.-T.; Wu, Y.-Z.; Li, T.; Geng, R.; Cao, J.; Zhang, W.; Tan, X.-L. Plant Disease Resistance-Related Signaling Pathways: Recent Progress and Future Prospects. Int. J. Mol. Sci. 2022, 23, 16200. [Google Scholar] [CrossRef]
- Li, Y.; Song, S.; Chen, B.; Zhang, Y.; Sun, T.; Ma, X.; Li, Y.; Sun, J.; Zhang, X. Deleting an Xylosidase-Encoding Gene VdxyL3 Increases Growth and Pathogenicity of Verticillium dahlia. Front. Microbiol. 2024, 15, 1428780. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, W.; Feng, Z.; Zhu, Q.; Sun, Y.; Li, Y.; Sun, J. Transcriptomic Analysis of Gene Expression of Verticillium dahliae upon Treatment of the Cotton Root Exudates. BMC Genom. 2020, 21, 155. [Google Scholar] [CrossRef]
- Westermann, A.J.; Barquist, L.; Vogel, J. Resolving Host–Pathogen Interactions by Dual RNA-Seq. PLoS Pathog. 2017, 13, e1006033. [Google Scholar] [CrossRef]
- Li, H.; Wang, D.; Zhang, D.-D.; Geng, Q.; Li, J.-J.; Sheng, R.-C.; Xue, H.-S.; Zhu, H.; Kong, Z.-Q.; Dai, X.-F.; et al. A Polyketide Synthase from Verticillium dahliae Modulates Melanin Biosynthesis and Hyphal Growth to Promote Virulence. BMC Biol. 2022, 20, 125. [Google Scholar] [CrossRef]
- Kong, W.-L.; Ni, H.; Wang, W.-Y.; Wu, X.-Q. Antifungal Effects of Volatile Organic Compounds Produced by Trichoderma koningiopsis T2 against Verticillium dahliae. Front. Microbiol. 2022, 13, 1013468. [Google Scholar] [CrossRef]
- Gao, F.; Zhou, B.-J.; Li, G.-Y.; Jia, P.-S.; Li, H.; Zhao, Y.-L.; Zhao, P.; Xia, G.-X.; Guo, H.-S. A Glutamic Acid-Rich Protein Identified in Verticillium dahliae from an Insertional Mutagenesis Affects Microsclerotial Formation and Pathogenicity. PLoS ONE 2010, 5, e15319. [Google Scholar] [CrossRef] [PubMed]
- Fan, R.; Klosterman, S.J.; Wang, C.; Subbarao, K.V.; Xu, X.; Shang, W.; Hu, X. Vayg1 Is Required for Microsclerotium Formation and Melanin Production in Verticillium dahliae. Fungal Genet. Biol. 2017, 98, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Wang, Q.; Zhang, T.; Ge, X.; Liu, W.; Guo, H.; Wang, X.; Sun, Z.; Li, Z.; Cheng, H. A Verticillium dahliae Exoglucanase as Potential HIGS Target Interacts with a Cotton Cysteine Protease to Confer Resistance to Cotton Verticillium Wilt. Plant Biotechnol. J. 2024, 22, 2107–2109. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tian, L.; Zhang, D.-D.; Short, D.P.G.; Zhou, L.; Song, S.-S.; Liu, Y.; Wang, D.; Kong, Z.-Q.; Cui, W.-Y.; et al. SNARE-Encoding Genes VdSec22 and VdSso1 Mediate Protein Secretion Required for Full Virulence in Verticillium dahliae. Mol. Plant-Microbe Interact. 2018, 31, 651–664. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Wang, K.; Sun, L.; Xing, H.; Wang, S.; Li, L.; Chen, S.; Guo, H.-S.; Zhang, J. The Plant-Specific Transcription Factors CBP60g and SARD1 Are Targeted by a Verticillium Secretory Protein VdSCP41 to Modulate Immunity. eLife 2018, 7, e34902. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Y.; Wang, H.-L.; Kan, C.; Li, Z.; Yang, X.; Yin, W.; Xia, X.; Nam, H.G.; Li, Z.; et al. Verticillium dahliae Secretory Effector PevD1 Induces Leaf Senescence by Promoting ORE1-Mediated Ethylene Biosynthesis. Mol. Plant 2021, 14, 1901–1917. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Z.; Li, J.; Wang, Y.; Yuan, J.; Zhan, J.; Wang, P.; Lin, Y.; Li, F.; Ge, X. Verticillium dahliae Secreted Protein Vd424Y Is Required for Full Virulence, Targets the Nucleus of Plant Cells, and Induces Cell Death. Mol. Plant Pathol. 2021, 22, 1109–1120. [Google Scholar] [CrossRef]
- Seong, K.; Krasileva, K.V. Prediction of Effector Protein Structures from Fungal Phytopathogens Enables Evolutionary Analyses. Nat. Microbiol. 2023, 8, 174–187. [Google Scholar] [CrossRef]
- Gui, Y.-J.; Chen, J.-Y.; Zhang, D.-D.; Li, N.-Y.; Li, T.-G.; Zhang, W.-Q.; Wang, X.-Y.; Short, D.P.G.; Li, L.; Guo, W.; et al. Verticillium dahliae Manipulates Plant Immunity by Glycoside Hydrolase 12 Proteins in Conjunction with Carbohydrate-Binding Module 1. Environ. Microbiol. 2017, 19, 1914–1932. [Google Scholar] [CrossRef]
- Li, C.; Qin, J.; Huang, Y.; Shang, W.; Chen, J.; Klosterman, S.J.; Subbarao, K.V.; Hu, X. Verticillium dahliae Effector VdCE11 Contributes to Virulence by Promoting Accumulation and Activity of the Aspartic Protease GhAP1 from Cotton. Microbiol. Spectr. 2023, 11, e0354722. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, T.; Liu, J.; Zhang, R.; Yu, Y.; Zhou, G.; Liu, J.; Gao, B. The Key Role of Plant Hormone Signaling Transduction and Flavonoid Biosynthesis Pathways in the Response of Chinese Pine (Pinus tabuliformis) to Feeding Stimulation by Pine Caterpillar (Dendrolimus tabulaeformis). Int. J. Mol. Sci. 2024, 25, 6354. [Google Scholar] [CrossRef] [PubMed]
- Guang, H.; Xiaoyang, G.; Zhian, W.; Ye, W.; Peng, W.; Linfang, S.; Bingting, W.; Anhong, Z.; Fuguang, L.; Jiahe, W. The Cotton MYB33 Gene Is a Hub Gene Regulating the Trade-off between Plant Growth and Defense in Verticillium dahliae Infection. J. Adv. Res. 2024, 61, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Xiao, S.; Wang, X.; Ao, C.; Zhang, X.; Zhu, L. GhWRKY1-like Enhances Cotton Resistance to Verticillium dahliae via an Increase in Defense-Induced Lignification and S Monolignol Content. Plant Sci. 2021, 305, 110833. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.-P.; Sun, S.-C.; Zhu, Q.-H.; Zhang, X.-Y.; Li, Y.-J.; Liu, F.; Xue, F.; Sun, J. The Cotton Lignin Biosynthetic Gene Gh4CL30 Regulates Lignification and Phenolic Content and Contributes to Verticillium Wilt Resistance. Mol. Plant-Microbe Interact. 2021, 34, 240–254. [Google Scholar] [CrossRef]
- Li, H.; Zhang, S.; Zhao, Y.; Zhao, X.; Xie, W.; Guo, Y.; Wang, Y.; Li, K.; Guo, J.; Zhu, Q.-H.; et al. Identification and Characterization of Cinnamyl Alcohol Dehydrogenase Encoding Genes Involved in Lignin Biosynthesis and Resistance to Verticillium dahliae in Upland Cotton (Gossypium hirsutum L.). Front. Plant Sci. 2022, 13, 840397. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, Y.; Wu, N.; Azhar, M.T.; Hou, Y.; Shang, H. GhERF.B4-15D: A Member of ERF Subfamily B4 Group Positively Regulates the Resistance against Verticillium dahliae in Upland Cotton. Biomolecules 2023, 13, 1348. [Google Scholar] [CrossRef]
- He, X.; Zhu, L.; Wassan, G.M.; Wang, Y.; Miao, Y.; Shaban, M.; Hu, H.; Sun, H.; Zhang, X. GhJAZ2 Attenuates Cotton Resistance to Biotic Stresses via the Inhibition of the Transcriptional Activity of GhbHLH171. Mol. Plant Pathol. 2018, 19, 896–908. [Google Scholar] [CrossRef]
- Hu, Q.; Zhu, L.; Zhang, X.; Guan, Q.; Xiao, S.; Min, L.; Zhang, X. GhCPK33 Negatively Regulates Defense against Verticillium dahliae by Phosphorylating GhOPR3. Plant Physiol. 2018, 178, 876–889. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, Y.; Zhang, X.; Zhao, L.; Feng, Z.; Wei, F.; Zhang, Y.; Feng, H.; Zhou, Y.; Zhu, H. MPK Homolog GhNTF6 Was Involved in Cotton against Verticillium Wilt by Interacted with VdEPG1. Int. J. Biol. Macromol. 2022, 195, 456–465. [Google Scholar] [CrossRef]
- Wang, L.; Guo, D.; Zhao, G.; Wang, J.; Zhang, S.; Wang, C.; Guo, X. Group IIc WRKY Transcription Factors Regulate Cotton Resistance to Fusarium oxysporum by Promoting GhMKK2-Mediated Flavonoid Biosynthesis. New Phytol. 2022, 236, 249–265. [Google Scholar] [CrossRef]
- Li, N.-Y.; Zhou, L.; Zhang, D.-D.; Klosterman, S.J.; Li, T.-G.; Gui, Y.-J.; Kong, Z.-Q.; Ma, X.-F.; Short, D.P.G.; Zhang, W.-Q.; et al. Heterologous Expression of the Cotton NBS-LRR Gene GbaNA1 Enhances Verticillium Wilt Resistance in Arabidopsis. Front. Plant Sci. 2018, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhang, Q.; Jiang, X.; Li, R.; Dhar, N. Cotton CC-NBS-LRR Gene GbCNL130 Confers Resistance to Verticillium Wilt Across Different Species. Front. Plant Sci. 2021, 12, 695691. [Google Scholar] [CrossRef] [PubMed]
Gene ID | Phenotype of Mutant in Other Pathogens | Pathogen Species | Reference |
---|---|---|---|
VDAG_00395 | Reduced virulence | Magnaporthe oryzae | [45] |
VDAG_00974 | Reduced virulence | Colletotrichum higginsianum | [46] |
VDAG_01121 | Reduced virulence | Beauveria bassiana | [47] |
VDAG_01774 | Loss of pathogenicity | Parastagonospora nodorum | No data |
VDAG_01922 | Reduced virulence | Magnaporthe oryzae | [48] |
VDAG_01995 | Reduced virulence | Verticillium dahliae | [49] |
VDAG_02250 | Reduced virulence | Verticillium dahliae | [50] |
VDAG_02630 | Reduced virulence | Verticillium dahliae | [51] |
VDAG_02670 | Reduced virulence | Fusarium graminearum | [52] |
VDAG_03620 | Reduced virulence | Verticillium dahliae | [53] |
VDAG_03678 | Reduced virulence | Fusarium graminearum | [54] |
VDAG_03776 | Loss of pathogenicity | Fusarium graminearum | [55] |
VDAG_04213 | Reduced virulence | Fusarium graminearum | [56] |
VDAG_05703 | Reduced virulence | Colletotrichum gloeosporioides | [57] |
VDAG_05890 | Loss of pathogenicity | Verticillium dahliae | [58] |
VDAG_05992 | Reduced virulence | Fusarium oxysporum | [59] |
VDAG_06615 | Loss of pathogenicity | Magnaporthe oryzae | [60] |
VDAG_06763 | Reduced virulence | Verticillium dahliae | [61] |
VDAG_07223 | Reduced virulence | Verticillium dahliae | [62] |
VDAG_07566 | Reduced virulence | Clostridium coccoides | [63] |
VDAG_07697 | Reduced virulence | Verticillium dahliae | [64] |
VDAG_08333 | Reduced virulence | Verticillium dahliae | [65] |
VDAG_09023 | Reduced virulence | Magnaporthe oryzae | [66] |
VDAG_09037 | Reduced virulence | Fusarium graminearum | [67] |
VDAG_09467 | Reduced virulence | Magnaporthe oryzae | [68] |
VDAG_09671 | Reduced virulence | Aspergillus fumigatus | [69] |
VDAG_09689 | Reduced virulence | Verticillium dahliae | [70] |
VDAG_09736 | Reduced virulence | Verticillium dahliae | [71] |
VDAG_09950 | Reduced virulence | Verticillium dahliae | [71] |
VDAG_10099 | Reduced virulence | Fusarium graminearum | [72] |
VDAG_10176 | Reduced virulence | Fusarium graminearum | [73] |
VDAG_10392 | Reduced virulence | Verticillium dahliae | [74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Li, Y.; Yang, Q.; Song, S.; Zhang, Y.; Zhang, X.; Sun, J.; Liu, F.; Li, Y. Dual Transcriptome Analysis Reveals the Changes in Gene Expression in Both Cotton and Verticillium dahliae During the Infection Process. J. Fungi 2024, 10, 773. https://doi.org/10.3390/jof10110773
Li Y, Li Y, Yang Q, Song S, Zhang Y, Zhang X, Sun J, Liu F, Li Y. Dual Transcriptome Analysis Reveals the Changes in Gene Expression in Both Cotton and Verticillium dahliae During the Infection Process. Journal of Fungi. 2024; 10(11):773. https://doi.org/10.3390/jof10110773
Chicago/Turabian StyleLi, Yongtai, Yuanjing Li, Qingwen Yang, Shenglong Song, Yong Zhang, Xinyu Zhang, Jie Sun, Feng Liu, and Yanjun Li. 2024. "Dual Transcriptome Analysis Reveals the Changes in Gene Expression in Both Cotton and Verticillium dahliae During the Infection Process" Journal of Fungi 10, no. 11: 773. https://doi.org/10.3390/jof10110773
APA StyleLi, Y., Li, Y., Yang, Q., Song, S., Zhang, Y., Zhang, X., Sun, J., Liu, F., & Li, Y. (2024). Dual Transcriptome Analysis Reveals the Changes in Gene Expression in Both Cotton and Verticillium dahliae During the Infection Process. Journal of Fungi, 10(11), 773. https://doi.org/10.3390/jof10110773