Uncovering a Novel cyp51A Mutation and Antifungal Resistance in Aspergillus fumigatus through Culture Collection Screening
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Institute
2.2. Clinical and Environmental A. fumigatus Isolates
2.3. Microbiological Morphological Identification
2.4. DNA Extraction and Molecular Identification
2.5. Antifungal Screening Test for Environmental Strains
2.6. Broth Microdilution Test (BMD)
2.7. Epidemiological Cutoff Values (ECVs)
2.8. Detection of cyp51A Mutations
2.9. Microsatellite
3. Results
3.1. Microorganisms
3.2. Antifungal Screening Test
3.3. Broth Microdilution Test
3.4. cyp51A Gene Sequencing
3.5. Microsatellite
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and Multi-National Prevalence of Fungal Diseases-Estimate Precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.C.; Dening, D.W. The WHO fungal priority pathogens list as a game-changer. Nat. Rev. Microbiol. 2023, 21, 211–212. [Google Scholar] [CrossRef]
- Ullmann, A.J.; Aguado, J.M.; Arikan-Akdagli, S.; Denning, D.W.; Groll, A.H.; Lagrou, K.; Lass-Flörl, C.; Lewis, R.E.; Munoz, P.; Verweij, P.E.; et al. Diagnosis and management of Aspergillus diseases: Executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin. Microbiol. Infect. 2018, 24 (Suppl. 1), e1–e38. [Google Scholar] [CrossRef]
- Walsh, T.J.; Anaissie, E.J.; Denning, D.W.; Herbrecht, R.; Kontoyiannis, D.P.; Marr, K.A.; Morrison, V.A.; Segal, B.H.; Steinbach, W.J.; Stevens, D.A.; et al. Treatment of aspergillosis: Clinical practice guidelines of the Infectious Diseases Society of America. Clin. Infect. Dis. 2008, 46, 327–360. [Google Scholar] [CrossRef] [PubMed]
- Hoenigl, M.; Salmanton-García, J.; Walsh, T.J.; Nucci, M.; Neoh, C.F.; Jenks, J.D.; Lackner, M.; Sprute, R.; Al-Hatmi, A.M.S.; Bassetti, M.; et al. Global guideline for the diagnosis and management of rare mould infections: An initiative of the European Confederation of Medical Mycology in cooperation with the International Society for Human and Animal Mycology and the American Society for Microbiology. Lancet Infect. Dis. 2021, 21, e246–e257. [Google Scholar] [CrossRef]
- Garcia-Rubio, R.; Cuenca-Estrella, M.; Mellado, E. Triazole Resistance in Aspergillus Species: An Emerging Problem. Drugs 2017, 77, 599–613. [Google Scholar] [CrossRef]
- Verweij, P.E.; Snelders, E.; Kema, G.H.; Mellado, E.; Melchers, W.J. Azole resistance in Aspergillus fumigatus: A side-effect of environmental fungicide use? Lancet Infect. Dis. 2009, 9, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Burks, C.; Darby, A.; Gómez Londoño, L.; Momany, M.; Brewer, M.T. Azole-resistant Aspergillus fumigatus in the environment: Identifying key reservoirs and hotspots of antifungal resistance. PLoS Pathog. 2021, 17, e1009711. [Google Scholar] [CrossRef]
- Sabino, R.; Gonçalves, P.; Martins Melo, A.; Simões, D.; Oliveira, M.; Francisco, M.; Viegas, C.; Carvalho, D.; Martins, C.; Ferreira, T.; et al. Trends on Aspergillus Epidemiology—Perspectives from a National Reference Laboratory Surveillance Program. J. Fungi 2021, 7, 28. [Google Scholar] [CrossRef]
- Pham, C.D.; Reiss, E.; Hagen, F.; Meis, J.F.; Lockhart, S.R. Passive surveillance for azole-resistant Aspergillus fumigatus, United States, 2011–2013. Emerg. Infect. Dis. 2014, 20, 1498–1503. [Google Scholar] [CrossRef]
- Lockhart, S.R.; Frade, J.P.; Etienne, K.A.; Pfaller, M.A.; Diekema, D.J.; Balajee, S.A. Azole resistance in Aspergillus fumigatus isolates from the ARTEMIS global surveillance study is primarily due to the TR/L98H mutation in the cyp51A gene. Antimicrob. Agents Chemother. 2011, 55, 4465–4468. [Google Scholar] [CrossRef]
- Sharma, C.; Nelson-Sathi, S.; Singh, A.; Radhakrishna Pillai, M.; Chowdhary, A. Genomic perspective of triazole resistance in clinical and environmental Aspergillus fumigatus isolates without cyp51A mutations. Fungal Genet. Biol. 2019, 132, 103265. [Google Scholar] [CrossRef]
- Snelders, E.; Karawajczyk, A.; Schaftenaar, G.; Verweij, P.E.; Melchers, W.J. Azole resistance profile of amino acid changes in Aspergillus fumigatus CYP51A based on protein homology modeling. Antimicrob. Agents Chemother. 2010, 54, 2425–2430. [Google Scholar] [CrossRef]
- Perez-Cantero, A.; Lopez-Fernandez, L.; Guarro-Artigas, J.; Capilla, J. Update and recent advances on azole resistance mechanisms in Aspergillus. Int. J. Antimicrob. Agents 2019, 55, 105807. [Google Scholar] [CrossRef]
- Le Pape, P.; Lavergne, R.A.; Morio, F.; Alvarez-Moreno, C. Multiple Fungicide-Driven Alterations in Azole-Resistant Aspergillus fumigatus, Colombia, 2015. Emerg. Infect. Dis. 2016, 22, 156–157. [Google Scholar] [CrossRef] [PubMed]
- Mellado, E.; Garcia-Effron, G.; Alcazar-Fuoli, L.; Melchers, W.J.; Verweij, P.E.; Cuenca-Estrella, M.; Rodriguez-Tudela, J.L. A new Aspergillus fumigatus resistance mechanism conferring in vitro cross-resistance to azole antifungals involves a combination of cyp51A alterations. Antimicrob. Agents Chemother. 2007, 51, 1897–1904. [Google Scholar] [CrossRef] [PubMed]
- Snelders, E.; van der Lee, H.A.; Kuijpers, J.; Rijs, A.J.; Varga, J.; Samson, R.A.; Mellado, E.; Donders, A.R.; Melchers, W.J.; Verweij, P.E. Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism. PLoS Med. 2008, 5, e219. [Google Scholar] [CrossRef] [PubMed]
- Leonardelli, F.; Theill, L.; Nardin, M.E.; Macedo, D.; Dudiuk, C.; Mendez, E.; Gamarra, S.; Garcia-Effron, G. First itraconazole resistant Aspergillus fumigatus clinical isolate harbouring a G54E substitution in Cyp51Ap in South America. Rev. Iberoam. Micol. 2017, 34, 46–48. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Tudela, J.L.; Alcazar-Fuoli, L.; Mellado, E.; Alastruey-Izquierdo, A.; Monzon, A.; Cuenca-Estrella, M. Epidemiological cutoffs and cross-resistance to azole drugs in Aspergillus fumigatus. Antimicrob. Agents Chemother. 2008, 52, 2468–2472. [Google Scholar] [CrossRef] [PubMed]
- Howard, S.J.; Cerar, D.; Anderson, M.J.; Albarrag, A.; Fisher, M.C.; Pasqualotto, A.C.; Laverdiere, M.; Arendrup, M.C.; Perlin, D.S.; Denning, D.W. Frequency and evolution of Azole resistance in Aspergillus fumigatus associated with treatment failure. Emerg. Infect. Dis. 2009, 15, 1068–1076. [Google Scholar] [CrossRef] [PubMed]
- Pontes, L.; Gualtieri Beraquet, C.A.; Arai, T.; Watanabe, A.; Moretti, M.L.; Schreiber, A.Z. Selection of Aspergillus fumigatus isolates carrying the G448S substitution in CYP 51A gene after long-term treatment with voriconazole in an immunocompromised patient. Med. Mycol. Case Rep. 2022, 36, 5–9. [Google Scholar] [CrossRef]
- Liu, M.; Zheng, N.; Li, D.; Zheng, H.; Zhang, L.; Ge, H.; Liu, W. cyp51A-based mechanism of azole resistance in Aspergillus fumigatus: Illustration by a new 3D Structural Model of Aspergillus fumigatus CYP51A protein. Med. Mycol. 2016, 54, 400–408. [Google Scholar] [CrossRef]
- Limper, A.H.; Knox, K.S.; Sarosi, G.A.; Ampel, N.M.; Bennett, J.E.; Catanzaro, A.; Davies, S.F.; Dismukes, W.E.; Hage, C.A.; Marr, K.A.; et al. An official American Thoracic Society statement: Treatment of fungal infections in adult pulmonary and critical care patients. Am. J. Respir. Crit. Care Med. 2011, 183, 96–128. [Google Scholar] [CrossRef]
- Reichert-Lima, F.; Lyra, L.; Pontes, L.; Moretti, M.L.; Pham, C.D.; Lockhart, S.R.; Schreiber, A.Z. Surveillance for azoles resistance in Aspergillus spp. highlights a high number of amphotericin B-resistant isolates. Mycoses 2018, 61, 360–365. [Google Scholar] [CrossRef]
- Patterson, T.F.; Thompson, G.R., 3rd; Denning, D.W.; Fishman, J.A.; Hadley, S.; Herbrecht, R.; Kontoyiannis, D.P.; Marr, K.A.; Morrison, V.A.; Nguyen, M.H.; et al. Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 63, e1–e60. [Google Scholar] [CrossRef]
- Denning, D.W.; Cadranel, J.; Beigelman-Aubry, C.; Ader, F.; Chakrabarti, A.; Blot, S.; Ullmann, A.J.; Dimopoulos, G.; Lange, C. Chronic pulmonary aspergillosis: Rationale and clinical guidelines for diagnosis and management. Eur. Respir. J. 2016, 47, 45–68. [Google Scholar] [CrossRef] [PubMed]
- Resendiz-Sharpe, A.; Dewaele, K.; Merckx, R.; Bustamante, B.; Vega-Gomez, M.C.; Rolon, M.; Jacobs, J.; Verweij, P.E.; Maertens, J.; Lagrou, K. Triazole-Resistance in Environmental Aspergillus fumigatus in Latin American and African Countries. J. Fungi 2021, 7, 292. [Google Scholar] [CrossRef] [PubMed]
- Brito Devoto, T.; Hermida-Alva, K.; Posse, G.; Finquelievich, J.L.; García-Effrón, G.; Cuestas, M.L. High prevalence of triazole-resistant Aspergillus fumigatus sensu stricto in an Argentinean cohort of patients with cystic fibrosis. Mycoses 2020, 63, 937–941. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Moreno, C.; Lavergne, R.A.; Hagen, F.; Morio, F.; Meis, J.F.; Le Pape, P. Azole-resistant Aspergillus fumigatus harboring TR34/L98H, TR46/Y121F/T289A and TR53 mutations related to flower fields in Colombia. Sci. Rep. 2017, 7, 45631. [Google Scholar] [CrossRef] [PubMed]
- Isla, G.; Leonardelli, F.; Tiraboschi, I.N.; Refojo, N.; Hevia, A.; Vivot, W.; Szusz, W.; Cordoba, S.B.; Garcia-Effron, G. First Clinical Isolation of an Azole-Resistant Aspergillus fumigatus Isolate Harboring a TR46 Y121F T289A Mutation in South America. Antimicrob. Agents Chemother. 2018, 62, e00872-18. [Google Scholar] [CrossRef] [PubMed]
- Pontes, L.; Beraquet, C.A.G.; Arai, T.; Pigolli, G.L.; Lyra, L.; Watanabe, A.; Moretti, M.L.; Schreiber, A.Z. Aspergillus fumigatus Clinical Isolates Carrying CYP51A with TR34/L98H/S297T/F495I Substitutions Detected after Four-Year Retrospective Azole Resistance Screening in Brazil. Antimicrob. Agents Chemother. 2020, 64, e02059-19. [Google Scholar] [CrossRef]
- Krasinski, K.; Holzman, R.S.; Hanna, B.; Greco, M.A.; Graff, M.; Bhogal, M. Nosocomial fungal infection during hospital renovation. Infect. Control 1985, 6, 278–282. [Google Scholar] [CrossRef]
- Iwen, P.C.; Davis, J.C.; Reed, E.C.; Winfield, B.A.; Hinrichs, S.H. Airborne fungal spore monitoring in a protective environment during hospital construction, and correlation with an outbreak of invasive aspergillosis. Infect. Control Hosp. Epidemiol. 1994, 15, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Hartung de Capriles, C.; Mata, S.; Middelveen, M. Preservation of fungi in water (Castellani): 20 years. Mycopathologia 1989, 106, 73–79. [Google Scholar] [CrossRef]
- Lacaz, C.S.; Porto, E.; Martins, J.E.C.; Heins-Vaccari, E.M.; Takahashi De Melo, N. Tratado de Micologia médica. Rev. Inst. Med. Trop. São Paulo 2002, 44, 297–298. [Google Scholar] [CrossRef]
- Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef]
- Balajee, S.A.; Kano, R.; Baddley, J.W.; Moser, S.A.; Marr, K.A.; Alexander, B.D.; Andes, D.; Kontoyiannis, D.P.; Perrone, G.; Peterson, S.; et al. Molecular identification of Aspergillus species collected for the Transplant-Associated Infection Surveillance Network. J. Clin. Microbiol. 2009, 47, 3138–3141. [Google Scholar] [CrossRef] [PubMed]
- M38-A3; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi, 3rd ed. Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2017.
- Pfaller, M.A.; Messer, S.A.; Woosley, L.N.; Jones, R.N.; Castanheira, M. Echinocandin and triazole antifungal susceptibility profiles for clinical opportunistic yeast and mold isolates collected from 2010 to 2011: Application of new CLSI clinical breakpoints and epidemiological cutoff values for characterization of geographic and temporal trends of antifungal resistance. J. Clin. Microbiol. 2013, 51, 2571–2581. [Google Scholar] [CrossRef]
- Lockhart, S.R.; Ghannoum, M.A.; Alexander, B.D. Establishment and Use of Epidemiological Cutoff Values for Molds and Yeasts by Use of the Clinical and Laboratory Standards Institute M57 Standard. J. Clin. Microbiol. 2017, 55, 1262–1268. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, H.; Li, R.; Bu, D.; Wan, Z. Mutations in the cyp51A gene and susceptibility to itraconazole in Aspergillus fumigatus serially isolated from a patient with lung aspergilloma. J. Antimicrob. Chemother. 2005, 55, 31–37. [Google Scholar] [CrossRef]
- Mellado, E.; Diaz-Guerra, T.M.; Cuenca-Estrella, M.; Rodriguez-Tudela, J.L. Identification of two different 14-alpha sterol demethylase-related genes (cyp51A and cyp51B) in Aspergillus fumigatus and other Aspergillus species. J. Clin. Microbiol. 2001, 39, 2431–2438. [Google Scholar] [CrossRef] [PubMed]
- de Valk, H.A.; Meis, J.F.; Curfs, I.M.; Muehlethaler, K.; Mouton, J.W.; Klaassen, C.H. Use of a novel panel of nine short tandem repeats for exact and high-resolution fingerprinting of Aspergillus fumigatus isolates. J. Clin. Microbiol. 2005, 43, 4112–4120. [Google Scholar] [CrossRef] [PubMed]
- The European Committee on Antimicrobial Susceptibility Testing Overview of Antifungal ECOFFs and Clinical Breakpoints for Yeasts, Moulds and Dermatophytes. EUCAST. Available online: http://www.eucast.org (accessed on 29 January 2024).
- Aruanno, M.; Glampedakis, E.; Lamoth, F. Echinocandins for the Treatment of Invasive Aspergillosis: From Laboratory to Bedside. Antimicrob. Agents Chemother. 2019, 63, e00399-19. [Google Scholar] [CrossRef] [PubMed]
- Arendrup, M.C.; Verweij, P.E.; Mouton, J.W.; Lagrou, K.; Meletiadis, J. Multicentre validation of 4-well azole agar plates as a screening method for detection of clinically relevant azole-resistant Aspergillus fumigatus. J. Antimicrob. Chemother. 2017, 72, 3325–3333. [Google Scholar] [CrossRef] [PubMed]
- Ghazanfari, M.; Abastabar, M.; Haghani, I.; Moazeni, M.; Hedayati, S.; Yaalimadad, S.; Nikoueian Shirvan, B.; Bongomin, F.; Hedayati, M.T. Azole-Containing Agar Plates and Antifungal Susceptibility Testing for the Detection of Azole-Resistant Aspergillus Species in Hospital Environmental Samples. Microb. Drug Resist. 2023, 29, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Buil, J.B.; van der Lee, H.A.L.; Rijs, A.; Zoll, J.; Hovestadt, J.; Melchers, W.J.G.; Verweij, P.E. Single-Center Evaluation of an Agar-Based Screening for Azole Resistance in Aspergillus fumigatus by Using VIPcheck. Antimicrob. Agents Chemother. 2017, 6, e01250-17. [Google Scholar] [CrossRef] [PubMed]
- Toyotome, T.; Hagiwara, D.; Kida, H.; Ogi, T.; Watanabe, A.; Wada, T.; Komatsu, R.; Kamei, K. First clinical isolation report of azole-resistant Aspergillus fumigatus with TR34/L98H-type mutation in Japan. J. Infect. Chemother. 2017, 23, 579–581. [Google Scholar] [CrossRef]
- Wiederhold, N.P.; Gil, V.G.; Gutierrez, F.; Lindner, J.R.; Albataineh, M.T.; McCarthy, D.I.; Sanders, C.; Fan, H.; Fothergill, A.W.; Sutton, D.A. First Detection of TR34 L98H and TR46 Y121F T289A Cyp51 Mutations in Aspergillus fumigatus Isolates in the United States. J. Clin. Microbiol. 2016, 54, 168–171. [Google Scholar] [CrossRef]
- Tashiro, M.; Izumikawa, K.; Minematsu, A.; Hirano, K.; Iwanaga, N.; Ide, S.; Mihara, T.; Hosogaya, N.; Takazono, T.; Morinaga, Y.; et al. Antifungal susceptibilities of Aspergillus fumigatus clinical isolates obtained in Nagasaki, Japan. Antimicrob. Agents Chemother. 2012, 56, 584–587. [Google Scholar] [CrossRef]
- Nabili, M.; Shokohi, T.; Moazeni, M.; Khodavaisy, S.; Aliyali, M.; Badiee, P.; Zarrinfar, H.; Hagen, F.; Badali, H. High prevalence of clinical and environmental triazole-resistant Aspergillus fumigatus in Iran: Is it a challenging issue? J. Med. Microbiol. 2016, 65, 468–475. [Google Scholar] [CrossRef]
- Buied, A.; Moore, C.B.; Denning, D.W. High-level expression of cyp51B in azole-resistant clinical Aspergillus fumigatus isolates. J. Antimicrob. Chemother. 2012, 68, 512–514. [Google Scholar] [CrossRef]
- Zhu, G.; Chen, S.; Zhang, Y.; Lu, L. Mitochondrial Membrane-Associated Protein Mba1 Confers Antifungal Resistance by Affecting the Production of Reactive Oxygen Species in Aspergillus fumigatus. Antimicrob. Agents Chemother. 2023, 67, e00225-23. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Han, X.; Tian, S.; Zhao, J.; Chen, F.; Su, X.; Zou, Z.; Gong, Y.; Qu, F.; et al. Elevated MIC Values of Imidazole Drugs against Aspergillus fumigatus Isolates with TR34/L98H/S297T/F495I Mutation. Antimicrob. Agents Chemother. 2018, 62, e01549-17. [Google Scholar] [CrossRef]
- Chen, Y.C.; Kuo, S.F.; Wang, H.C.; Wu, C.J.; Lin, Y.S.; Li, W.S.; Lee, C.H. Azole resistance in Aspergillus species in Southern Taiwan: An epidemiological surveillance study. Mycoses 2019, 62, 1174–1181. [Google Scholar] [CrossRef]
- Chowdhary, A.; Kathuria, S.; Xu, J.; Meis, J.F. Emergence of Azole-Resistant Aspergillus fumigatus Strains due to Agricultural Azole Use Creates an Increasing Threat to Human Health. PLoS Pathog. 2013, 9, e1003633. [Google Scholar] [CrossRef]
- Alanio, A.; Desnos-Ollivier, M.; Garcia-Hermoso, D.; Bretagne, S. Investigating Clinical Issues by Genotyping of Medically Important Fungi: Why and How? Clin. Microbiol. Rev. 2017, 30, 671–707. [Google Scholar] [CrossRef]
- Bart-Delabesse, E.; Cordonnier, C.; Bretagne, S. Usefulness of genotyping with microsatellite markers to investigate hospital-acquired invasive aspergillosis. J. Hosp. Infect. 1999, 42, 321–327. [Google Scholar] [CrossRef]
- Araujo, R.; Amorim, A.; Gusmão, L. Genetic diversity of Aspergillus fumigatus in indoor hospital environments. Med. Mycol. 2010, 48, 832–838. [Google Scholar] [CrossRef]
- de Groot, T.; Meis, J.F. Microsatellite Stability in STR Analysis Aspergillus fumigatus Depends on Number of Repeat Units. Front. Cell Infect. Microbiol. 2019, 9, 82. [Google Scholar] [CrossRef]
Aspergillus fumigatus | Antifungal Agent | MIC/MEC Distribution (µg/mL) | |||||||
---|---|---|---|---|---|---|---|---|---|
≤0.015 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | >8 | ||
Clinical (415) | ITC | 39 | 231 * | 139 | 2 | 1 | 3 | ||
VRC | 2 | 104 | 259 * | 44 | 5 | 1 | |||
POS | 27 | 233 * | 146 | 9 | |||||
AMB | 5 | 55 | 260 * | 95 | |||||
CAS | 15 | 397 * | 3 | ||||||
MFG | 415 * | ||||||||
Environmental (263E) | ITC | 1 | |||||||
VRC | 1 | ||||||||
POS | 1 | ||||||||
AMB | 1 | ||||||||
CAS | 1 | ||||||||
MFG | 1 | ||||||||
Reference Strains | MIC/MEC Distribution (µg/mL) | ||||||||
ITC | VRC | POS | AMB | CAS | MFG | ||||
Candida parapsilosis ATCC 22019 | 0.125 | 0.25 | 0.06 | 1 | 1 | 0.25 | |||
Candida krusei ATCC 6258 | 0.125 | 0.5 | 0.06 | 1 | 1 | 0.06 | |||
Aspergillus flavus ATCC 204304 | 0.5 | 0.25 | 0.25 | 1 | 0.25 | ≤0.015 |
LIF | Year | Mutations in cyp51A | MEC/MIC (µg/mL) * | |||||
---|---|---|---|---|---|---|---|---|
MCF | CAS | AMB | ITC | VRC | POS | |||
23A | 1999 | F46Y, M172V, N248T, D255E, E427 | ≤0.015 | 0.25 | 1 | 0.5 | 4 | 0.5 |
472 | 2004 | F46Y, M172V, N248T, D255E, E427K | ≤0.015 | 0.25 | 0.5 | 0.5 | 1 | 1 |
479 | 2004 | F46Y, M172V, N248T, D255E, E427K | ≤0.015 | 0.25 | 0.5 | 0.5 | 0.5 | 1 |
536 | 2004 | None | ≤0.015 | 0.25 | 0.5 | 0.5 | 1 | 1 |
543 | 2004 | F46Y, M172V, N248T, D255E, E427K | ≤0.015 | 0.25 | 1 | 4 | 4 | 1 |
621 | 2005 | None | ≤0.015 | 0.25 | 0.5 | 0.25 | 1 | 1 |
710 | 2005 | None | ≤0.015 | 0.25 | 1 | 0.5 | 1 | 1 |
737 | 2005 | None | ≤0.015 | 0.12 | 0.5 | 1 | 4 | 0.5 |
2328 | 2015 | None | ≤0.015 | 0.125 | 1 | >8 | >8 | 1 |
3760 | 2021 | TR34/L98H/S297T/F495I | ≤0.015 | 0.125 | 1 | >8 | 4 | 1 |
3763 | 2021 | TR34/L98H/S297T/F495I | ≤0.015 | 0.125 | 1 | >8 | 4 | 1 |
Environmental | ||||||||
263E | 1998 | TR46/F495I | ≤0.015 | 0.12 | 1 | >8 | 4 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pontes, L.; Arai, T.; Gualtieri Beraquet, C.A.; Giordano, A.L.P.L.; Reichert-Lima, F.; da Luz, E.A.; Fernanda de Sá, C.; Ortolan Levy, L.; Tararam, C.A.; Watanabe, A.; et al. Uncovering a Novel cyp51A Mutation and Antifungal Resistance in Aspergillus fumigatus through Culture Collection Screening. J. Fungi 2024, 10, 122. https://doi.org/10.3390/jof10020122
Pontes L, Arai T, Gualtieri Beraquet CA, Giordano ALPL, Reichert-Lima F, da Luz EA, Fernanda de Sá C, Ortolan Levy L, Tararam CA, Watanabe A, et al. Uncovering a Novel cyp51A Mutation and Antifungal Resistance in Aspergillus fumigatus through Culture Collection Screening. Journal of Fungi. 2024; 10(2):122. https://doi.org/10.3390/jof10020122
Chicago/Turabian StylePontes, Laís, Teppei Arai, Caio Augusto Gualtieri Beraquet, Ana Luisa Perini Leme Giordano, Franqueline Reichert-Lima, Edson Aparecido da Luz, Camila Fernanda de Sá, Larissa Ortolan Levy, Cibele Aparecida Tararam, Akira Watanabe, and et al. 2024. "Uncovering a Novel cyp51A Mutation and Antifungal Resistance in Aspergillus fumigatus through Culture Collection Screening" Journal of Fungi 10, no. 2: 122. https://doi.org/10.3390/jof10020122
APA StylePontes, L., Arai, T., Gualtieri Beraquet, C. A., Giordano, A. L. P. L., Reichert-Lima, F., da Luz, E. A., Fernanda de Sá, C., Ortolan Levy, L., Tararam, C. A., Watanabe, A., Moretti, M. L., & Zaninelli Schreiber, A. (2024). Uncovering a Novel cyp51A Mutation and Antifungal Resistance in Aspergillus fumigatus through Culture Collection Screening. Journal of Fungi, 10(2), 122. https://doi.org/10.3390/jof10020122