STRIPAK Dependent and Independent Phosphorylation of the SIN Kinase DBF2 Controls Fruiting Body Development and Cytokinesis during Septation and Ascospore Formation in Sordaria macrospora
Abstract
:1. Introduction
2. Material and Methods
2.1. Strains and Growth Conditions
2.2. Plasmid Construction and Generation of Deletion Strains
2.3. Sequencing of DNA
2.4. Genetic Crosses of S. macrospora
2.5. Growth and Stress Test
2.6. Quantification of Fruiting Body Formation
2.7. Microscopic Investigation
2.8. Isolation of Proteins from S. macrospora
2.9. Western Blot and Immunodetection
3. Results
3.1. Construction of dbf2 Deletion Strains for Functional Analysis
3.2. The DBF2 Kinase Affects Hyphal Septation and Fruiting Body Formation
3.3. Phospho-Mimetic and Phospho-Deficient dbf2 Mutants Show a Septation Phenotype and Altered Stress Responses
3.4. Overexpression of dbf2 Results in Strains with a Disturbed Cytokinesis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goudreault, M.; D’Ambrosio, L.M.; Kean, M.J.; Mullin, M.J.; Larsen, B.G.; Sanchez, A.; Chaudhry, S.; Chen, G.I.; Sicheri, F.; Nesvizhskii, A.I.; et al. PP2A phosphatase high density interaction network identifies a novel Striatin-Interacting Phosphatase and kinase complex linked to the cerebral cavernous malformation 3 (CCM3) protein. Mol. Cell Proteom. 2009, 8, 157–171. [Google Scholar] [CrossRef]
- Ribeiro, P.S.; Josué, F.; Wepf, A.; Wehr, M.C.; Rinner, O.; Kelly, G.; Tapon, N.; Gstaiger, M. Combined functional genomic and proteomic approaches identify a PP2A complex as a negative regulator of hippo signaling. Mol. Cell 2010, 39, 521–534. [Google Scholar] [CrossRef] [PubMed]
- Kück, U.; Radchenko, D.; Teichert, I. STRIPAK, a highly conserved signaling complex, controls multiple eukaryotic cellular and developmental processes and is linked with human diseases. Biol. Chem. 2019, 400, 1005–1022. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Xie, R.; Meng, Z.; Ma, S.; Guan, K.-L. STRIPAK integrates upstream signals to initiate the hippo kinase cascade. Nat. Cell Biol. 2019, 21, 1565–1577. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Wang, J.; Yun, Y.; Wang, J.; Xu, C.; Wu, S.; Xu, L.; Li, B.; Kolodkin-Gal, I.; Dawood, D.H.; et al. The NDR Kinase-MOB complex FgCot1-Mob2 regulates polarity and lipid metabolism in Fusarium graminearum. Environ. Microbiol. 2021, 23, 5505–5524. [Google Scholar] [CrossRef] [PubMed]
- Islam, K.T.; Bond, J.P.; Fakhoury, A.M. FvSTR1, a striatin orthologue in Fusarium virguliforme, is required for asexual development and virulence. Appl. Microbiol. Biotechnol. 2017, 101, 6431–6445. [Google Scholar] [CrossRef] [PubMed]
- Kück, U.; Stein, V. STRIPAK, a key regulator of fungal development, operates as a multifunctional signaling hub. J. Fungi 2021, 7, 443. [Google Scholar] [CrossRef] [PubMed]
- Green, K.A.; Becker, Y.; Fitzsimons, H.L.; Scott, B. An Epichloë festucae homologue of MOB3, a component of the STRIPAK complex, is required for the establishment of a mutualistic symbiotic interaction with Lolium perenne. Mol. Plant Pathol. 2016, 17, 1480–1492. [Google Scholar] [CrossRef]
- Reschka, E.J.; Nordzieke, S.; Valerius, O.; Braus, G.H.; Pöggeler, S. A novel STRIPAK complex component mediates hyphal fusion and fruiting-body development in filamentous fungi. Mol. Microbiol. 2018, 110, 513–532. [Google Scholar] [CrossRef]
- Shi, Z.; Jiao, S.; Zhou, Z. STRIPAK complexes in cell cignaling and cancer. Oncogene 2016, 35, 4549–4557. [Google Scholar] [CrossRef]
- Li, A.X.; Martin, T.A.; Lane, J.; Jiang, W.G. Cellular impacts of striatins and the STRIPAK complex and their roles in the development and metastasis in clinical cancers (Review). Cancers 2023, 16, 76. [Google Scholar] [CrossRef]
- Li, A.X.; Zeng, J.J.; Martin, T.A.; Ye, L.; Ruge, F.; Sanders, A.J.; Khan, E.; Dou, Q.P.; Davies, E.; Jiang, W.G. Striatins and STRIPAK complex partners in clinical outcomes of patients with breast cancer and responses to drug treatment. Chin. J. Cancer Res. 2023, 35, 365–385. [Google Scholar] [CrossRef]
- Stein, V.; Blank-Landeshammer, B.; Märker, R.; Sickmann, A.; Kück, U. Targeted quantification of phosphorylation sites identifies STRIPAK-dependent phosphorylation of the hippo pathway-related kinase SmKIN3. mBio 2021, 12, e00658-21. [Google Scholar] [CrossRef]
- Yu, F.-X.; Zhao, B.; Guan, K.-L. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 2015, 163, 811–828. [Google Scholar] [CrossRef]
- Sinha, D.; Ivan, D.; Gibbs, E.; Chetluru, M.; Goss, J.; Chen, Q. Fission yeast polycystin Pkd2p promotes cell size expansion and antagonizes the hippo-related SIN pathway. J. Cell Sci. 2022, 135, jcs259046. [Google Scholar] [CrossRef] [PubMed]
- Hergovich, A.; Stegert, M.R.; Schmitz, D.; Hemmings, B.A. NDR kinases regulate essential cell processes from yeast to humans. Nat. Rev. Mol. Cell Biol. 2006, 7, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Heilig, Y.; Dettmann, A.; Mouriño-Pérez, R.R.; Schmitt, K.; Valerius, O.; Seiler, S. Proper actin ring formation and septum constriction requires coordinated regulation of SIN and MOR pathways through the germinal centre kinase MST-1. PLoS Genet. 2014, 10, e1004306. [Google Scholar] [CrossRef] [PubMed]
- Duhart, J.C.; Raftery, L.A. Regulatory partners in hippo and hippo-like intracellular signaling pathways. Front. Cell Dev. Biol. 2020, 8, 161. [Google Scholar] [CrossRef]
- Sharif, A.A.D.; Hergovich, A. The NDR/LATS protein kinases in immunology and cancer biology. Semin. Cancer Biol. 2018, 48, 104–114. [Google Scholar] [CrossRef]
- Rock, J.M.; Lim, D.; Stach, L.; Ogrodowicz, R.W.; Keck, J.M.; Jones, M.H.; Wong, C.C.L.; Yates, J.R.; Winey, M.; Smerdon, S.J.; et al. Activation of the yeast hippo pathway by phosphorylation-dependent assembly of signaling complexes. Science 2013, 340, 871–875. [Google Scholar] [CrossRef]
- Chen, B.; Liu, B.; Yu, T.; Han, Y.-F.; Wu, C.; Wang, Z.-Y. Nuclear Dbf2-Related kinase 1 functions as tumor suppressor in glioblastoma by phosphorylation of yes-associated protein. Chin. Med. J. 2021, 134, 2054–2065. [Google Scholar] [CrossRef]
- Liu, H.Y.; Toyn, J.H.; Chiang, Y.C.; Draper, M.P.; Johnston, L.H.; Denis, C.L. DBF2, a cell cycle-regulated protein kinase, is physically and functionally associated with the CCR4 transcriptional regulatory complex. EMBO J. 1997, 16, 5289–5298. [Google Scholar] [CrossRef] [PubMed]
- Grandin, N.; Charbonneau, M. Dbf2 Is Implicated in a Cbt1-dependent pathway following a shift from glucose to galactose or non-fermentable carbon sources in Saccharomyces cerevisiae. Mol. Gen. Genet. 1999, 261, 402–407. [Google Scholar] [CrossRef]
- Wilson, W.A.; Wang, Z.; Roach, P.J. Systematic identification of the genes affecting glycogen storage in the yeast Saccharomyces cerevisiae: Implication of the vacuole as a determinant of glycogen level. Mol. Cell Proteom. 2002, 1, 232–242. [Google Scholar] [CrossRef] [PubMed]
- González-Novo, A.; Labrador, L.; Pablo-Hernando, M.E.; Correa-Bordes, J.; Sánchez, M.; Jiménez, J.; Vázquez de Aldana, C.R. Dbf2 Is essential for cytokinesis and correct mitotic spindle formation in Candida albicans. Mol. Microbiol. 2009, 72, 1364–1378. [Google Scholar] [CrossRef]
- Kim, J.-M.; Lu, L.; Shao, R.; Chin, J.; Liu, B. Isolation of mutations that bypass the requirement of the septation initiation network for septum formation and conidiation in Aspergillus nidulans. Genetics 2006, 173, 685–696. [Google Scholar] [CrossRef]
- Zhou, X.; Ye, J.; Zheng, L.; Jiang, P.; Lu, L. A new identified suppressor of Cdc7p/SepH kinase, PomA, regulates fungal asexual reproduction via affecting phosphorylation of MAPK-HogA. PLoS Genet. 2019, 15, e1008206. [Google Scholar] [CrossRef]
- Dvash, E.; Kra-Oz, G.; Ziv, C.; Carmeli, S.; Yarden, O. T A new identified suppressor of Cdc7p/SepH kinase, PomA, regulates fungal asexual reproduction via affecting phosphorylation of MAPK-HogA. Eukaryot. Cell 2010, 9, 502–513. [Google Scholar] [CrossRef] [PubMed]
- Teichert, I.; Pöggeler, S.; Nowrousian, M. Sordaria macrospora: 25 years as a model organism for studying the molecular mechanisms of fruiting body development. Appl. Microbiol. Biotechnol. 2020, 104, 3691–3704. [Google Scholar] [CrossRef]
- Masliantsev, K.; Karayan-Tapon, L.; Guichet, P.-O. Hippo signaling pathway in gliomas. Cells 2021, 10, 184. [Google Scholar] [CrossRef]
- Lei, L.; Huang, Y.; Shi, L.; Ye, W.; Lv, X.; Ying, L.; Yu, X.; Cheng, S.H.-C.; Zheng, Y. Palbociclib sensitizes ER-positive breast cancer cells to fulvestrant by promoting the ubiquitin-mediated degradation of ER-α via SNHG17/Hippo-YAP axis. Breast Cancer Res. Treat. 2024, 203, 613–625. [Google Scholar] [CrossRef]
- Aylon, Y.; Furth, N.; Mallel, G.; Friedlander, G.; Nataraj, N.B.; Dong, M.; Hassin, O.; Zoabi, R.; Cohen, B.; Drendel, V.; et al. Breast cancer plasticity is restricted by a LATS1-NCOR1 repressive axis. Nat. Commun. 2022, 13, 7199. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Feng, Y.; Yu, D.; Li, H.; Li, W.; Chen, H.; Chen, L. A review of nuclear Dbf2-related kinase 1 (NDR1) protein interaction as promising new target for cancer therapy. Int. J. Biol. Macromol. 2024, 259, 129188. [Google Scholar] [CrossRef] [PubMed]
- Sambrook, J.; Russell, D.W. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2001; ISBN 978-0-87969-577-4. [Google Scholar]
- Jerpseth, B.; Greener, A.; Short, J.; Viola, J.; Kretz, P. XL1-Blue MRF = E. coli cells: McrA-, McrCB-, McrF-, Mmr-, HsdR- derivative of XL1-blue cells. Strategies 1992, 5, 81–83. [Google Scholar]
- Kamerewerd, J.; Jansson, M.; Nowrousian, M.; Pöggeler, S.; Kück, U. Three alpha-subunits of heterotrimeric G proteins and an adenylyl cyclase have distinct roles in fruiting body development in the homothallic fungus Sordaria macrospora. Genetics 2008, 180, 191–206. [Google Scholar] [CrossRef]
- Engh, I.; Würtz, C.; Witzel-Schlömp, K.; Zhang, H.Y.; Hoff, B.; Nowrousian, M.; Rottensteiner, H.; Kück, U. The WW domain protein PRO40 is required for fungal fertility and associates with Woronin bodies. Eukaryot. Cell 2007, 6, 831–843. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Kunes, S.; Schatz, P.J.; Botstein, D. Plasmid construction by homologous recombination in yeast. Gene 1987, 58, 201–216. [Google Scholar] [CrossRef]
- Dahlmann, T.A.; Terfehr, D.; Becker, K.; Teichert, I. Golden gate vectors for efficient gene fusion and gene deletion in diverse filamentous fungi. Curr. Genet. 2021, 67, 317–330. [Google Scholar] [CrossRef]
- Esser, K.; Rathke, H.-J.; Hackston, M.G.; Webster, J. Cryptogams: Cyanobacteria, Algae, Fungi, Lichens Texbook and Practical Guide; Cambridge University Press: Cambridge, MA, USA; London, UK; New York, NY, USA, 1982; ISBN 978-0-521-23621-8. [Google Scholar]
- Schmidt, S.; Märker, R.; Ramšak, B.; Beier-Rosberger, A.M.; Teichert, I.; Kück, U. Crosstalk between pheromone signaling and NADPH oxidase complexes coordinates fungal developmental processes. Front. Microbiol. 2020, 11, 1722. [Google Scholar] [CrossRef]
- Rech, C.; Engh, I.; Kück, U. Detection of hyphal fusion in filamentous fungi using differently fluorescence-labeled histones. Curr. Genet. 2007, 52, 259–266. [Google Scholar] [CrossRef]
- Bloemendal, S.; Bernhards, Y.; Bartho, K.; Dettmann, A.; Voigt, O.; Teichert, I.; Seiler, S.; Wolters, D.A.; Pöggeler, S.; Kück, U. A homologue of the human STRIPAK complex controls sexual development in fungi. Mol. Microbiol. 2012, 84, 310–323. [Google Scholar] [CrossRef]
- Bayram, O.; Krappmann, S.; Ni, M.; Bok, J.W.; Helmstaedt, K.; Valerius, O.; Braus-Stromeyer, S.; Kwon, N.-J.; Keller, N.P.; Yu, J.-H.; et al. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 2008, 320, 1504–1506. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Teichert, I.; Wolff, G.; Kück, U.; Nowrousian, M. Combining laser microdissection and RNA-Seq to chart the transcriptional landscape of fungal development. BMC Genom. 2012, 13, 511. [Google Scholar] [CrossRef] [PubMed]
- Punt, P.J.; Kramer, C.; Kuyvenhoven, A.; Pouwels, P.H.; van den Hondel, C.A. An Upstream Activating Sequence from the Aspergillus Nidulans GpdA Gene. Gene 1992, 120, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Punt, P.J.; Dingemanse, M.A.; Kuyvenhoven, A.; Soede, R.D.; Pouwels, P.H.; van den Hondel, C.A. Functional elements in the promoter region of the Aspergillus nidulans GpdA gene encoding glyceraldehyde-3-phosphate dehydrogenase. Gene 1990, 93, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Märker, R.; Blank-Landeshammer, B.; Beier-Rosberger, A.; Sickmann, A.; Kück, U. Phosphoproteomic analysis of STRIPAK mutants identifies a conserved serine phosphorylation site in PAK Kinase CLA4 to be important in fungal sexual development and polarized growth. Mol. Microbiol. 2020, 113, 1053–1069. [Google Scholar] [CrossRef] [PubMed]
- Mamun, M.A.A.; Katayama, T.; Cao, W.; Nakamura, S.; Maruyama, J.-I. A novel Pezizomycotina-specific protein with gelsolin domains regulates contractile actin ring assembly and constriction in perforated septum formation. Mol. Microbiol. 2020, 113, 964–982. [Google Scholar] [CrossRef] [PubMed]
- Simanis, V. Pombe’s Thirteen—Control of Fission Yeast Cell Division by the Septation Initiation Network. J. Cell Sci. 2015, 128, 1465–1474. [Google Scholar] [CrossRef]
- Steinberg, G.; Peñalva, M.A.; Riquelme, M.; Wösten, H.A.; Harris, S.D. Cell biology of hyphal growth. Microbiol. Spectr. 2017, 5. [Google Scholar] [CrossRef]
- Heilig, Y.; Schmitt, K.; Seiler, S. Phospho-Regulation of the Neurospora crassa Septation Initiation Network. PLoS ONE 2013, 8, e79464. [Google Scholar] [CrossRef]
- Radchenko, D.; Teichert, I.; Pöggeler, S.; Kück, U. A hippo pathway-related GCK controls both sexual and vegetative developmental processes in the fungus Sordaria macrospora. Genetics 2018, 210, 137–153. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.C.O.; Martin-Vicente, A.; Nywening, A.V.; Ge, W.; Lowes, D.J.; Peters, B.M.; Fortwendel, J.R. Loss of septation initiation network (SIN) kinases blocks tissue invasion and unlocks Echinocandin cidal activity against Aspergillus fumigatus. PLoS Pathog. 2021, 17, e1009806. [Google Scholar] [CrossRef]
- Kück, U.; Beier, A.M.; Teichert, I. T The composition and function of the striatin-interacting phosphatases and kinases (STRIPAK) complex in fungi. Fungal Genet. Biol. 2016, 90, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Lichius, A.; Lord, K.M. Chemoattractive mechanisms in filamentous fungi. Open Mycol. J. 2014, 8, 28–57. [Google Scholar] [CrossRef]
- Teichert, I.; Lutomski, M.; Märker, R.; Nowrousian, M.; Kück, U. New insights from an Old mutant: SPADIX4 governs fruiting body development but not hyphal fusion in Sordaria macrospora. Mol. Genet. Genom. 2017, 292, 93–104. [Google Scholar] [CrossRef]
- Voigt, O.; Pöggeler, S. Autophagy genes Smatg8 and Smatg4 are required for fruiting-body development, vegetative growth and ascospore germination in the filamentous ascomycete Sordaria macrospora. Autophagy 2013, 9, 33–49. [Google Scholar] [CrossRef]
- Walker, L.A.; Lenardon, M.D.; Preechasuth, K.; Munro, C.A.; Gow, N.A.R. Cell wall stress induces alternative fungal cytokinesis and septation strategies. J. Cell Sci. 2013, 126, 2668–2677. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, M.K.; Bi, E.; Glotzer, M. Comparative analysis of cytokinesis in budding yeast, fission yeast and animal cells. Curr. Biol. 2004, 14, R806–R818. [Google Scholar] [CrossRef]
- Eggert, U.S.; Mitchison, T.J.; Field, C.M. Animal cytokinesis: From parts list to mechanisms. Annu. Rev. Biochem. 2006, 75, 543–566. [Google Scholar] [CrossRef] [PubMed]
- Pollard, T.D.; Wu, J.-Q. Understanding cytokinesis: Lessons from fission yeast. Nat. Rev. Mol. Cell Biol. 2010, 11, 149–155. [Google Scholar] [CrossRef] [PubMed]
- McCollum, D.; Gould, K.L. Timing is everything: Regulation of mitotic exit and cytokinesis by the MEN and SIN. Trends Cell Biol. 2001, 11, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Krapp, A.; Collin, P.; Cokoja, A.; Dischinger, S.; Cano, E.; Simanis, V. The Schizosaccharomyces Pombe Septation Initiation Network (SIN) Is Required for Spore Formation in Meiosis. J. Cell Sci. 2006, 119, 2882–2891. [Google Scholar] [CrossRef] [PubMed]
- Krapp, A.; Simanis, V. An Overview of the fission yeast septation initiation network (SIN). Biochem. Soc. Trans. 2008, 36, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A.E.; Park, J.-S.; Inoue, I.; Tachikawa, H.; Neiman, A.M. The anaphase promoting complex targeting subunit Ama1 links meiotic exit to cytokinesis during sporulation in Saccharomyces cerevisiae. Mol. Biol. Cell 2009, 20, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Hao, C.; Niu, G.; Wang, W.; Wang, G.; Xiang, P.; Xu, J.-R.; Zhang, X. FgPal1 regulates morphogenesis and pathogenesis in Fusarium graminearum. Environ. Microbiol. 2020, 22, 5373–5386. [Google Scholar] [CrossRef]
- Pöggeler, S.; Kück, U. Highly efficient generation of signal transduction knockout mutants using a fungal strain deficient in the mammalian Ku70 ortholog. Gene 2006, 378, 1–10. [Google Scholar] [CrossRef]
- Hamer, J.E.; Timberlake, W.E. Functional organization of the Aspergillus nidulans TrpC promoter. Mol. Cell Biol. 1987, 7, 2352–2359. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shariatnasery, M.; Stein, V.; Teichert, I.; Kück, U. STRIPAK Dependent and Independent Phosphorylation of the SIN Kinase DBF2 Controls Fruiting Body Development and Cytokinesis during Septation and Ascospore Formation in Sordaria macrospora. J. Fungi 2024, 10, 177. https://doi.org/10.3390/jof10030177
Shariatnasery M, Stein V, Teichert I, Kück U. STRIPAK Dependent and Independent Phosphorylation of the SIN Kinase DBF2 Controls Fruiting Body Development and Cytokinesis during Septation and Ascospore Formation in Sordaria macrospora. Journal of Fungi. 2024; 10(3):177. https://doi.org/10.3390/jof10030177
Chicago/Turabian StyleShariatnasery, Maria, Valentina Stein, Ines Teichert, and Ulrich Kück. 2024. "STRIPAK Dependent and Independent Phosphorylation of the SIN Kinase DBF2 Controls Fruiting Body Development and Cytokinesis during Septation and Ascospore Formation in Sordaria macrospora" Journal of Fungi 10, no. 3: 177. https://doi.org/10.3390/jof10030177
APA StyleShariatnasery, M., Stein, V., Teichert, I., & Kück, U. (2024). STRIPAK Dependent and Independent Phosphorylation of the SIN Kinase DBF2 Controls Fruiting Body Development and Cytokinesis during Septation and Ascospore Formation in Sordaria macrospora. Journal of Fungi, 10(3), 177. https://doi.org/10.3390/jof10030177