Control of Peach Leaf Curl with Foliar Applications of Plant Immunity Inducers and Insights in Elicitation of Defense Responses against Taphrina deformans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Trial and Experimental Design
2.2. Evaluation of Disease Incidence and Severity in Leaves
2.3. Evaluation of the Tested Products’ Efficacy in Mitigating Leaf Curl Severity
2.4. Statistical Analysis
2.5. Taphrina Deformans Isolation
2.6. Pre-Treatment of Plant Material with Immunity Inducers and Pathogen Inoculation
2.7. RNA Isolation and Gene Expression Analysis
3. Results
3.1. Evaluation of Field Treatments
3.2. Peach Defense-Related Gene Induction by Inducers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mix, A.J. The life history of Taphrina deformans. Phytopathology 1935, 25, 41–66. [Google Scholar]
- Rossi, V.; Bolognesi, M.; Languasco, L.; Giosuè, S. Influence of environmental conditions on infection of peach shoots by Taphrina deformans. Phytopathology 2006, 96, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Svetaz, L.A.; Bustamante, C.A.; Goldy, C.; Rivero, N.; Müller, G.L.; Valentini, G.H.; Fernie, A.R.; Drincovich, M.F.; Lara, M.V. Unravelling early events in the Taphrina deformans–Prunus persica interaction: An insight into the differential responses in resistant and susceptible genotypes. Plant Cell Environ. 2017, 40, 1456–1473. [Google Scholar] [CrossRef]
- Bassi, M.; Conti, G.G.; Barbieri, N. Cell wall degradation by Taphrina deformans in host leaf cells. Mycopathologia 1984, 88, 115–125. [Google Scholar] [CrossRef]
- Luo, C.-X.; Schnabel, G.; Hu, M.; De Cal, A. Global distribution and management of peach diseases. Phytopathol. Res. 2022, 4, 30. [Google Scholar] [CrossRef]
- Tate, K.G.; Cheah, L.H.; Gawith, L.H. Fungicide Evaluation for Control of Leaf curl of Nectarine and Peach. In Proceedings of the New Zealand Weed and Pest Control Conference. 1987; pp. 149–152. Available online: https://nzpps.org/_journal/index.php/pnzwpcc/article/view/9944 (accessed on 6 March 2024).
- Agrios, G.N. (Ed.) Plant Pathology, 5th ed.; Elsevier Academic Press: Burlington, MA, USA, 2005; p. 922. [Google Scholar]
- Fitzpatrick, R.E. The life history and parasitism of Taphrina deformans. Sci. Agric. 1934, 14, 305–326. [Google Scholar]
- Tavares, S.; Inácio, J.; Fonseca, Á.; Oliveira, C. Direct detection of Taphrina deformans on peach trees using molecular methods. Eur. J. Plant Pathol. 2004, 110, 973–982. [Google Scholar] [CrossRef]
- Buck, J.W.; Lachance, M.A.; Traquair, J.A. Mycoflora of peach bark: Population dynamics and composition. Can. J. Bot. 1998, 76, 345–354. [Google Scholar] [CrossRef]
- Follas, G.; Welsh, R.D. Control of leaf curle in stonefruit with difenoconazole. In Proceedings of the New Zealand Plant Protection Conference, Christchurch, New Zealand, 10–12 August 1993; pp. 18–20. [Google Scholar]
- Tate, K.G.; Gawith, R.S.; Cheah, L.H.; Hunt, A.W. Fungicides, rates, and timing for leaf curl control on nectarine. N. Z. J. Crop Hortic. Sci. 1991, 19, 291–295. [Google Scholar] [CrossRef]
- Dewen, Q.; Dong, Y.; Zhang, Y.; Li, S.; Shi, F. Plant immunity inducer development and application. Mol. Plant-Microbe Interact. 2017, 30, 355–360. [Google Scholar] [CrossRef]
- Köhl, J.; Kolnaar, R.; Ravensberg, W.J. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front. Plant Sci. 2019, 10, 454982. [Google Scholar] [CrossRef] [PubMed]
- European Commission. From Farm to Fork—Our Food, Our Health, Our Planet, Our Future—The European Green Deal; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Fu, Z.Q.; Dong, X. Systemic acquired resistance: Turning local infection into global defense. Annu. Rev. Plant Biol. 2013, 64, 839–863. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.A.; Sandalio, L.M. Induced resistance for plant defense. Front. Plant Sci. 2015, 6, 130045. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Lee, S.-H.; Kim, K.M.; Ryu, C.-M. Foliar application of the leaf-colonizing yeast Pseudozyma churashimaensis elicits systemic defense of pepper against bacterial and viral pathogens. Sci. Rep. 2017, 7, 39432. [Google Scholar] [CrossRef] [PubMed]
- Mauch-Mani, B.; Baccelli, I.; Luna, E.; Flors, V. Defense priming: An adaptive part of induced resistance. Annu. Rev. Plant Biol. 2017, 68, 485–512. [Google Scholar] [CrossRef] [PubMed]
- Perazzolli, M.; Ton, J.; Luna, E.; Mauch-Mani, B.; Pappas, M.L.; Roberts, M.R.; Vlot, A.C.; Flors, V. Editorial: Induced resistance and priming against pests and pathogens. Front. Plant Sci. 2022, 13, 1075783. [Google Scholar] [CrossRef] [PubMed]
- Westman, S.M.; Kloth, K.J.; Hanson, J.; Ohlsson, A.B.; Albrectsen, B.R. Defence priming in Arabidopsis—A Meta-Analysis. Sci. Rep. 2019, 9, 13309. [Google Scholar] [CrossRef] [PubMed]
- Twamley, T.; Gaffney, M.; Feechan, A. A microbial fermentation mixture primes for resistance against powdery mildew in wheat. Front. Plant Sci. 2019, 10, 01241. [Google Scholar] [CrossRef]
- Hönig, M.; Roeber, V.M.; Schmülling, T.; Cortleven, A. Chemical priming of plant defense responses to pathogen attacks. Front. Plant Sci. 2023, 14, 1146577. [Google Scholar] [CrossRef]
- Sistenich, A.J.; Fürtauer, L.; Scheele, F.; Conrath, U. Marker and readout genes for defense priming in Pseudomonas cannabina pv. alisalensis interaction aid understanding systemic immunity in Arabidopsis. Sci. Rep. 2024, 14, 3489. [Google Scholar] [CrossRef]
- Tsalgatidou, P.C.; Boutsika, A.; Papageorgiou, A.G.; Dalianis, A.; Michaliou, M.; Chatzidimopoulos, M.; Delis, C.; Tsitsigiannis, D.I.; Paplomatas, E.; Zambounis, A. Global transcriptome analysis of the peach (Prunus persica) in the interaction system of fruit–chitosan–Monilinia fructicola. Plants 2024, 13, 567. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Jia, H.; Gong, P.; Ehsan, S.; Pang, Q.; Dong, T.; Li, T.; Jin, H.; Fang, J. Chitosan induces jasmonic acid production leading to resistance of ripened fruit against Botrytis cinerea infection. Food Chem. 2021, 337, 127772. [Google Scholar] [CrossRef] [PubMed]
- Landi, L.; Peralta-Ruiz, Y.; Chaves-López, C.; Romanazzi, G. Chitosan coating enriched with Ruta graveolens L. essential oil reduces postharvest anthracnose of papaya (Carica papaya L.) and modulates defense-related gene expression. Front. Plant Sci. 2021, 12, 765806. [Google Scholar] [CrossRef] [PubMed]
- Narusaka, M.; Minami, T.; Iwabuchi, C.; Hamasaki, T.; Takasaki, S.; Kawamura, K.; Narusaka, Y. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop. PLoS ONE 2015, 10, e0115864. [Google Scholar] [CrossRef] [PubMed]
- Malerba, M.; Cerana, R. Chitosan effects on plant systems. Int. J. Mol. Sci. 2016, 17, 996. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, J.; Krzymińska, J.; Tyburski, J. Yeasts as a potential biological agent in plant disease protection and yield improvement—A short review. Agriculture 2022, 12, 1404. [Google Scholar] [CrossRef]
- Minami, T.; Tanaka, T.; Takasaki, S.; Kawamura, K.; Hiratsuka, K. In vivo bioluminescence monitoring of defense gene expression in response to treatment with yeast cell wall extract. Plant Biotechnol. 2011, 28, 481–484. [Google Scholar] [CrossRef]
- Sun, C.; Lin, M.; Fu, D.; Yang, J.; Huang, Y.; Zheng, X.; Yu, T. Yeast cell wall induces disease resistance against Penicillium expansum in pear fruit and the possible mechanisms involved. Food Chem. 2018, 241, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Heese, A.; Hann, D.R.; Gimenez-Ibanez, S.; Jones, A.M.E.; He, K.; Li, J.; Schroeder, J.I.; Peck, S.C.; Rathjen, J.P. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc. Natl. Acad. Sci. USA 2007, 104, 12217–12222. [Google Scholar] [CrossRef]
- Freimoser, F.M.; Rueda-Mejia, M.P.; Tilocca, B.; Migheli, Q. Biocontrol yeasts: Mechanisms and applications. World J. Microbiol. Biotechnol. 2019, 35, 154. [Google Scholar] [CrossRef]
- Mikhailova, Y.V.; Karpun, N.N. Effect of plant growth regulators on the induction of peach resistance to leaf curl. IOP Conf. Ser. Earth Environ. Sci. 2021, 723, 022058. [Google Scholar] [CrossRef]
- Rossi, V.; Languasco, L. Influence of environmental conditions on spore production and budding in Taphrina deformans, the causal agent of peach leaf curl. Phytopathology 2007, 97, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Cissé, O.H.; Almeida, J.M.; Fonseca, A.; Kumar, A.A.; Salojärvi, J.; Overmyer, K.; Hauser, P.M.; Pagni, M. Genome sequencing of the plant pathogen Taphrina deformans, the causal agent of peach leaf curl. mBio 2013, 4, e00055-13. [Google Scholar] [CrossRef] [PubMed]
- EPPO. Taphrina Deformans. In Efficacy Evaluation of Fungicides; EPPO: Luxembourg, 1996; pp. 112–114. [Google Scholar]
- Meier, U. Growth Stages of Mono-and Dicotyledonous Plants; Federal Biological Research Centre for Agriculture and Forestry: Bonn, Germany, 2001. [Google Scholar]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Evans, G.; Rico, O.; Luna, J.; Sosa-Ramírez, J.; Moreno-Manzano, C. Isolation and identification of Taphrina caerulescens in Quercus eduardii in Aguascalientes, Mexico. Agrociencia 2019, 53, 781–795. [Google Scholar]
- Maniatis, E.I.; Karamichali, I.; Stefanidou, E.; Boutsika, A.; Tsitsigiannis, D.I.; Paplomatas, E.; Madesis, P.; Zambounis, A. Insights into the transcriptional reprogramming of peach leaves inoculated with Taphrina deformans. Plants 2024, 13, 861. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: Cambridge, MA, USA, 1990; pp. 315–322. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.D.M.; Varanda, C.M.R.; Félix, M.R.F. Induced resistance during the interaction pathogen x plant and the use of resistance inducers. Phytochem. Lett. 2016, 15, 152–158. [Google Scholar] [CrossRef]
- Bonaterra, A.; Badosa, E.; Daranas, N.; Francés, J.; Roselló, G.; Montesinos, E. Bacteria as biological control agents of plant diseases. Microorganisms 2022, 10, 1759. [Google Scholar] [CrossRef]
- Sharif, R.; Mujtaba, M.; Ur Rahman, M.; Shalmani, A.; Ahmad, H.; Anwar, T.; Tianchan, D.; Wang, X. The multifunctional role of chitosan in horticultural crops: A review. Molecules 2018, 23, 872. [Google Scholar] [CrossRef]
- Ma, Z.; Yang, L.; Yan, H.; Kennedy, J.F.; Meng, X. Chitosan and oligochitosan enhance the resistance of peach fruit to brown rot. Carbohydr. Polym. 2013, 94, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.-Y.; Zhang, J.-L.; Bassett, C.L.; Meng, X.-H. Difference between chitosan and oligochitosan in growth of Monilinia fructicola and control of brown rot in peach fruit. LWT Food Sci. Technol. 2012, 46, 254–259. [Google Scholar] [CrossRef]
- Reglinski, T.; Elmer, P.A.G.; Taylor, J.T.; Wood, P.N.; Hoyte, S.M. Inhibition of Botrytis cinerea growth and suppression of botrytis bunch rot in grapes using chitosan. Plant Pathol. 2010, 59, 882–890. [Google Scholar] [CrossRef]
- De Miccolis Angelini, R.M.; Rotolo, C.; Gerin, D.; Abate, D.; Pollastro, S.; Faretra, F. Global transcriptome analysis and differentially expressed genes in grapevine after application of the yeast-derived defense inducer cerevisane. Pest. Manag. Sci. 2019, 75, 2020–2033. [Google Scholar] [CrossRef] [PubMed]
- Taibi, O.; Bardelloni, V.; Bove, F.; Scaglia, F.; Caffi, T.; Rossi, V. Activity of resistance inducers against Plasmopara viticola in vineyard. BIO Web Conf. 2022, 50, 03003. [Google Scholar] [CrossRef]
- Sher Khan, R.; Iqbal, A.; Malak, R.; Shehryar, K.; Attia, S.; Ahmed, T.; Ali Khan, M.; Arif, M.; Mii, M. Plant defensins: Types, mechanism of action and prospects of genetic engineering for enhanced disease resistance in plants. 3 Biotech 2019, 9, 192. [Google Scholar] [CrossRef] [PubMed]
- Zambounis, A.; Ganopoulos, I.; Valasiadis, D.; Karapetsi, L.; Madesis, P. RNA sequencing-based transcriptome analysis of kiwifruit infected by Botrytis cinerea. Physiol. Mol. Plant Pathol. 2020, 111, 101514. [Google Scholar] [CrossRef]
- Finkina, E.I.; Melnikova, D.N.; Bogdanov, I.V.; Ovchinnikova, T.V. Lipid transfer proteins as components of the plant innate immune system: Structure, functions, and applications. Acta Naturae 2016, 8, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Ma, K.; Ji, G.; Pan, L.; Zhou, Q. Lipid transfer proteins involved in plant–pathogen interactions and their molecular mechanisms. Mol. Plant Pathol. 2022, 23, 1815–1829. [Google Scholar] [CrossRef]
- Zubini, P.; Zambelli, B.; Musiani, F.; Ciurli, S.; Bertolini, P.; Baraldi, E. The RNA hydrolysis and the cytokinin binding activities of PR-10 proteins are differently performed by two isoforms of the Pru p 1 peach major allergen and are possibly functionally related. Plant Physiol. 2009, 150, 1235–1247. [Google Scholar] [CrossRef]
- Obara, N.; Mitsuhara, I.; Seo, S.; Ohashi, Y.; Hasegawa, M.; Matsuura, Y. Mechanism of PR gene expression by treatment of tobacco leaves with yeast extract (AGREVO EX). JPN J. Phytopathol. 2007, 73, 94–101. [Google Scholar] [CrossRef]
- Zheng, Z.; Uchacz, T.M.; Taylor, J.L. Isolation and characterization of novel defence-related genes induced by copper, salicylic acid, methyl jasmonate, abscisic acid and pathogen infection in Brassica carinata. Mol. Plant Pathol. 2001, 2, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Chmielowska, J.; Veloso, J.; Gutiérrez, J.; Silvar, C.; Díaz, J. Cross-protection of pepper plants stressed by copper against a vascular pathogen is accompanied by the induction of a defence response. Plant Sci. 2010, 178, 176–182. [Google Scholar] [CrossRef]
- Young, D.H.; Avila-Adame, C.; Webster, J.; Olson, B.; Ouimette, D. Enhancing the efficacy of copper fungicides through synergism with salicylaldehyde benzoylhydrazones. In Proceedings of the 18th International Reinhardsbrunn Symposium on Modern Fungicides and Antifungal Compounds VIII, Friedrichroda, Germany, 24–28 April 2016; pp. 273–278. [Google Scholar]
Treatments 5 | Incidence | Severity | AUDPC 2 | Efficacy on Severity |
---|---|---|---|---|
DOD | 1.5 3 ± 0.64 c 4 | 0.11 ± 0.07 c | 0.91 ± 0.53 c | 98.3 ± 1.2 a |
COP | 6.5 ± 1.85 bc | 0.83 ± 0.24 bc | 9.04 ± 2.97 bc | 86.1 ± 4.4 ab |
CHI | 14.75 ± 2.25 b | 2.45 ± 0.5 b | 39.18 ± 8.93 b | 62.6 ± 6.2 c |
CHI-COP | 11.5 ± 1.47 b | 1.38 ± 0.35 bc | 18.03 ± 5.16 bc | 79.5 ± 4.9 abc |
CER | 13.25 ± 2.1 b | 1.72 ± 0.32 bc | 25.59 ± 4.65 bc | 73.9 ± 7.7 bc |
CT | 35.5 ± 4.39 a | 6.88 ± 1.1 a | 100.43 ± 16.14 a | - |
Kavasila Trial Site | Arseni Trial Site | |||||||
---|---|---|---|---|---|---|---|---|
Treatments 5 | Incidence | Severity | AUDPC 2 | Efficacy on Severity | Incidence | Severity | AUDPC | Efficacy on Severity |
DOD | 0.25 3 ± 0.25 c 4 | 0.01 ± 0.01 b | 0.08 ± 0.08 b | 99.8 ± 0.2 a | 2.5 ± 0.29 c | 0.44 ± 0.12 c | 7.27 ± 2.55 c | 96.6 ± 1.3 a |
COP | 2.75 ± 1.1 bc | 0.41 ± 0.16 b | 4.08 ± 1.78 b | 92.4 ± 3.3 a | 16 ± 2.8 bc | 2.78 ± 0.51 bc | 36.49 ± 6.85 bc | 80.6 ± 2.8 abc |
CHI | 7.75 ± 1.03 b | 2.08 ± 0.39 b | 32.26 ± 6.57 b | 56.5 ± 14.8 b | 28.75 ± 3.97 b | 5.33 ± 0.99 b | 80.07 ± 10.71 b | 62.0 ± 6.5 c |
CHI-COP | 2.25 ± 0.63 bc | 0.34 ± 0.14 b | 5.01 ± 1.9 b | 93.18 ± 2.8 a | 16.75 ± 1.25 bc | 2.18 ± 0.21 bc | 45.02 ± 4.01 bc | 84.7 ± 1.6 ab |
CER | 7 ± 1.35 bc | 1.58 ± 0.96 b | 16.54 ± 6.37 b | 65.9 ± 8.6 ab | 25.5 ± 6.96 b | 4.95 ± 1.52 b | 61.26 ± 16.78 bc | 66.9 ± 8.9 bc |
CT | 21.5 ± 1.56 a | 5.23 ± 1.11 a | 92.69 ± 7.51 a | - | 59.5 ± 2.86 a | 14.23 ± 1.36 a | 266.69 ± 26.31 a | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kavroumatzi, C.K.; Matziarli, P.; Chatzidimopoulos, M.; Boutsika, A.; Tsitsigiannis, D.I.; Paplomatas, E.; Zambounis, A. Control of Peach Leaf Curl with Foliar Applications of Plant Immunity Inducers and Insights in Elicitation of Defense Responses against Taphrina deformans. J. Fungi 2024, 10, 325. https://doi.org/10.3390/jof10050325
Kavroumatzi CK, Matziarli P, Chatzidimopoulos M, Boutsika A, Tsitsigiannis DI, Paplomatas E, Zambounis A. Control of Peach Leaf Curl with Foliar Applications of Plant Immunity Inducers and Insights in Elicitation of Defense Responses against Taphrina deformans. Journal of Fungi. 2024; 10(5):325. https://doi.org/10.3390/jof10050325
Chicago/Turabian StyleKavroumatzi, Charikleia K., Paschalina Matziarli, Michael Chatzidimopoulos, Anastasia Boutsika, Dimitrios I. Tsitsigiannis, Epaminondas Paplomatas, and Antonios Zambounis. 2024. "Control of Peach Leaf Curl with Foliar Applications of Plant Immunity Inducers and Insights in Elicitation of Defense Responses against Taphrina deformans" Journal of Fungi 10, no. 5: 325. https://doi.org/10.3390/jof10050325