Molecular Diagnostics for Invasive Fungal Diseases: Current and Future Approaches
Abstract
:1. Introduction
2. Fungal Nucleic Acid Extraction
3. Broad-Range Molecular Assays
4. Pathogen-Specific Molecular Assays
4.1. Aspergillus
4.2. Pneumocystis jirovecii
4.3. Cryptococcus
4.4. Candida and Candida-like Organisms
4.5. Mucorales
4.6. Endemic Mycoses
5. Molecular Detection of Antifungal Resistance
5.1. Candida and Candida-like Organisms
5.2. Aspergillus
5.3. Other Fungi
Fungal Pathogen | Antifungal | New Commercial Platforms |
---|---|---|
Aspergillus spp. | Triazoles | AsperGenius® Resistance TR Multiplex real-time PCR [49,150] (PathoNostics, Maastricht, The Netherlands) Aspergillus fumigatus TR34 Aspergillus fumigatus TR46 Aspergillus fumigatus cyp51A (WT)—melt curve analysis allows detection of mixed infections AsperGenius® G54/M220 RUO PCR detects G54 and M220 RUO in cyp51A of A. fumigatus [155] MycoGENIE® Aspergillus fumigatus and TR34/L98H (Adamtech, Pessac, France) Fungiplex® Aspergillus Azole-R IVD PCR (Bruker Daltonik GmbH, Bremen, Germany) Aspergillus fumigatus TR34 Aspergillus fumigatus TR46 |
Dermatophytes | Terbinafine | DermaGenius® Resistance Multiplex real-time PCR [155] (PathoNostics, Maastricht, The Netherlands) T. rubrum/soudanense T. interdigitale/mentagrophytes, T. mentagrophytes (ITS type IV) T. tonsurans T. violaceum Trichophyton quinckeanum/Trichophyton schoenleinii SQLE alterations: Detected via melt curve analysis Leu393Phe, Phe397Leu (predominant mutations) Leu393Ser, Phe397Ile, Phe397Va |
P. jirovecii | Trimethoprim/sulfamethoxazole | PneumoGenius® [53] (PathoNostics, Maastricht, The Netherlands) Dihydropteroate synthase (DPHS) mutations (codon 55,57) |
5.4. Overall Considerations
- Clinical failure on appropriate antifungal therapy, experiencing a relapse or developing a new infection after prolonged antifungals.
- High local resistance rates, e.g., N. glabratus to echinocandins or A. fumigatus to voriconazole.
- Limited EUCAST/CLSI compliant phenotypic testing.
- Borderline susceptibility/resistance results from phenotypic testing, where identifying resistance mechanisms can guide clinical decisions.
6. Whole Genome Sequencing
7. Fungal Metagenomics
7.1. Respiratory Tract Infection
7.2. Central Nervous System Infection
7.3. Blood Stream Infection
7.4. Other Specimens
7.5. Challenges
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BALF | bronchoalveolar lavage fluid |
BCID | Blood Culture Identification |
BDG | β-D-glucan |
CAP | community-acquired pneumonia |
CDR | Candida Drug Resistance |
CLIA | Clinical Laboratory Improvement Amendments |
CSF | cerebrospinal fluid |
Ct | Cycle threshold |
DHFR | dihydrofolate reductase |
DHPS | dihydropteroate synthetase |
DNA | deoxyribonucleic acid |
ECMM | European Confederation of Medical Mycology |
EORTC | European Organisation for Research and Treatment of Cancer |
FFPE | formalin-fixed paraffin-embedded |
FPCRI | Fungal PCR Initiative |
HRM | high-resolution melt |
HS | Hotspot |
IA | Invasive aspergillosis |
IFD | invasive fungal disease |
ISHAM | International Society of Human and Animal Mycology |
ITS | internal transcribed spacer |
LAMP | loop mediated isothermal amplification |
MDR | Multi-Drug Resistance |
MIC | minimum inhibitory concentration |
mNGS | Metagenomic next-generation sequencing |
MSGERC | Mycology Study Group Education and Research Consortium |
mtLSU | mitochondrial large subunit |
mtSSU | mitchochondrial small subunit |
NAAT | Nucleic acid amplification tests |
NGS | next-generation sequencing |
NPV | negative predictive value |
PCP | Pneumocystis jirovecii pneumonia |
PCR | polymerase chain reaction |
PPV | positive predictive value |
qPCR | quantitative polymerase chain reaction |
RNA | ribonucleic acid |
ROC | receiver operating characteristic |
SQLE | squalene epoxidase |
TAT | turnaround time |
WGS | whole genome sequencing |
WNA | whole nucleic acid |
References
- World Health Organization. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Bongomin, F.; Gago, S.; Oladele, R.; Denning, D. Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef]
- Jenks, J.D.; Cornely, O.A.; Chen, S.C.-A.; Thompson, G.R.; Hoenigl, M. Breakthrough Invasive Fungal Infections: Who Is at Risk? Mycoses 2020, 63, 1021–1032. [Google Scholar] [CrossRef]
- Denning, D.W. Antifungal Drug Resistance: An Update. Eur. J. Hosp. Pharm. 2022, 29, 109–112. [Google Scholar] [CrossRef]
- Denning, D.W. Global Incidence and Mortality of Severe Fungal Disease. Lancet Infect. Dis. 2024, 24, E428–E438. [Google Scholar] [CrossRef]
- Nnadi, N.E.; Carter, D.A. Climate Change and the Emergence of Fungal Pathogens. PLoS Pathog. 2021, 17, e1009503. [Google Scholar] [CrossRef]
- Kidd, S.E.; Chen, S.C.-A.; Meyer, W.; Halliday, C.L. A New Age in Molecular Diagnostics for Invasive Fungal Disease: Are We Ready? Front. Microbiol. 2020, 10, 2903. [Google Scholar] [CrossRef] [PubMed]
- Jenks, J.D.; White, P.L.; Kidd, S.E.; Goshia, T.; Fraley, S.I.; Hoenigl, M.; Thompson, G.R. An Update on Current and Novel Molecular Diagnostics for the Diagnosis of Invasive Fungal Infections. Expert. Rev. Mol. Diagn. 2023, 23, 1135–1152. [Google Scholar] [CrossRef] [PubMed]
- Gudisa, R.; Harchand, R.; Rudramurthy, S.M. Nucleic-Acid-Based Molecular Fungal Diagnostics: A Way to a Better Future. Diagnostics 2024, 14, 520. [Google Scholar] [CrossRef]
- White, P.L.; Alanio, A.; Brown, L.; Cruciani, M.; Hagen, F.; Gorton, R.; Lackner, M.; Millon, L.; Morton, C.O.; Rautemaa-Richardson, R.; et al. An Overview of Using Fungal DNA for the Diagnosis of Invasive Mycoses. Expert. Rev. Mol. Diagn. 2022, 22, 169–184. [Google Scholar] [CrossRef] [PubMed]
- Cruciani, M.; White, P.L.; Barnes, R.A.; Loeffler, J.; Donnelly, J.P.; Rogers, T.R.; Heinz, W.J.; Warris, A.; Morton, C.O.; Lengerova, M.; et al. An Overview of Systematic Reviews of Polymerase Chain Reaction (PCR) for the Diagnosis of Invasive Aspergillosis in Immunocompromised People: A Report of the Fungal PCR Initiative (FPCRI)—An ISHAM Working Group. J. Fungi 2023, 9, 967. [Google Scholar] [CrossRef]
- Donnelly, J.P.; Chen, S.C.; Kauffman, C.A.; Steinbach, W.J.; Baddley, J.W.; Verweij, P.E.; Clancy, C.J.; Wingard, J.R.; Lockhart, S.R.; Groll, A.H.; et al. Revision and Update of the Consensus Definitions of Invasive Fungal Disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin. Infect. Dis. 2020, 71, 1367–1376. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.Y.; Miller, S.A. Clinical Metagenomics. Nat. Rev. Genet. 2019, 20, 341–355. [Google Scholar] [CrossRef] [PubMed]
- Sparks, R.; Halliday, C.; Chen, S.C.-A. Panfungal PCR on Formalin Fixed Paraffin Embedded Tissue—To Proceed or Not Proceed? Pathology 2023, 55, S46. [Google Scholar] [CrossRef]
- Barnes, R.A.; White, P.L.; Morton, C.O.; Rogers, T.R.; Cruciani, M.; Loeffler, J.; Donnelly, J.P. Diagnosis of Aspergillosis by PCR: Clinical Considerations and Technical Tips. Med. Mycol. 2018, 56, S60–S72. [Google Scholar] [CrossRef] [PubMed]
- White, P.L.; Bretagne, S.; Klingspor, L.; Melchers, W.J.G.; McCulloch, E.; Schulz, B.; Finnstrom, N.; Mengoli, C.; Barnes, R.A.; Donnelly, J.P.; et al. Aspergillus PCR: One Step Closer to Standardization. J. Clin. Microbiol. 2010, 48, 1231–1240. [Google Scholar] [CrossRef] [PubMed]
- Fredricks, D.N.; Smith, C.; Meier, A. Comparison of Six DNA Extraction Methods for Recovery of Fungal DNA as Assessed by Quantitative PCR. J. Clin. Microbiol. 2005, 43, 5122–5128. [Google Scholar] [CrossRef] [PubMed]
- Karakousis, A.; Tan, L.; Ellis, D.; Alexiou, H.; Wormald, P.J. An Assessment of the Efficiency of Fungal DNA Extraction Methods for Maximizing the Detection of Medically Important Fungi Using PCR. J. Microbiol. Methods 2006, 65, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Dulanto Chiang, A.; Dekker, J.P. From the Pipeline to the Bedside: Advances and Challenges in Clinical Metagenomics. J. Infect. Dis. 2020, 221, S331–S340. [Google Scholar] [CrossRef] [PubMed]
- Naureckas Li, C.; Nakamura, M.M. Utility of Broad-Range PCR Sequencing for Infectious Diseases Clinical Decision Making: A Pediatric Center Experience. J. Clin. Microbiol. 2022, 60, e02437-21. [Google Scholar] [CrossRef] [PubMed]
- Kubiak, J.; Morgan, A.; Kirmaier, A.; Arnaout, R.; Riedel, S. Universal PCR for Bacteria, Mycobacteria, and Fungi: A 10-Year Retrospective Review of Clinical Indications and Patient Outcomes. J. Clin. Microbiol. 2023, 61, e00952-23. [Google Scholar] [CrossRef]
- Valero, C.; Martín-Gómez, M.T.; Buitrago, M.J. Molecular Diagnosis of Endemic Mycoses. J. Fungi 2022, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Camp, I.; Manhart, G.; Schabereiter-Gurtner, C.; Spettel, K.; Selitsch, B.; Willinger, B. Clinical Evaluation of an In-House Panfungal Real-Time PCR Assay for the Detection of Fungal Pathogens. Infection 2020, 48, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.; Zembower, T.; Qi, C. Molecular Detection, Not Extended Culture Incubation, Contributes to Diagnosis of Fungal Infection. BMC Infect. Dis. 2021, 21, 1159. [Google Scholar] [CrossRef] [PubMed]
- Garnham, K.; Halliday, C.L.; Kok, J.; Jayawardena, M.; Ahuja, V.; Green, W.; Chen, S.C.-A. Knowledge at What Cost? An Audit of the Utility of Panfungal PCR Performed on Bronchoalveolar Lavage Fluid Specimens at a Tertiary Mycology Laboratory. Pathology 2020, 52, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Sparks, R.; Halliday, C.L.; Green, W.; Chen, S.C.-A. Panfungal PCR on Formalin-Fixed, Paraffin-Embedded Tissue: To Proceed or Not Proceed? Pathology 2023, 55, 669–672. [Google Scholar] [CrossRef] [PubMed]
- Kerkhoff, A.D.; Rutishauser, R.L.; Miller, S.; Babik, J.M. Clinical Utility of Universal Broad-Range Polymerase Chain Reaction Amplicon Sequencing for Pathogen Identification: A Retrospective Cohort Study. Clin. Infect. Dis. 2020, 71, 1554–1557. [Google Scholar] [CrossRef] [PubMed]
- Schuetz, A.N. A Laboratory’s Guide to the Universe of Broad-Range Polymerase Chain Reactions. Clin. Infect. Dis. 2020, 71, 1558–1560. [Google Scholar] [CrossRef]
- Lieberman, J.A.; Bryan, A.; Mays, J.A.; Stephens, K.; Kurosawa, K.; Mathias, P.C.; SenGupta, D.; Bourassa, L.; Salipante, S.J.; Cookson, B.T. High Clinical Impact of Broad-Range Fungal PCR in Suspected Fungal Sinusitis. J. Clin. Microbiol. 2021, 59, e00955-21. [Google Scholar] [CrossRef] [PubMed]
- Lau, A.; Chen, S.; Sorrell, T.; Carter, D.; Malik, R.; Martin, P.; Halliday, C. Development and Clinical Application of a Panfungal PCR Assay to Detect and Identify Fungal DNA in Tissue Specimens. J. Clin. Microbiol. 2007, 45, 380–385. [Google Scholar] [CrossRef]
- Ashraf, M.J.; Kord, M.; Morovati, H.; Ansari, S.; Shekarkhar, G.; Badali, H.; Pakshir, K.; Shamsizadeh, F.; Khademi, B.; Shishegar, M.; et al. Evaluating a Semi-nested PCR to Support Histopathology Reports of Fungal Rhinosinusitis in Formalin-fixed Paraffin-embedded Tissue Samples. J. Clin. Lab. Anal. 2022, 36, e24209. [Google Scholar] [CrossRef]
- Bernal-Martínez, L.; Gil, H.; Rivero-Menéndez, O.; Gago, S.; Cuenca-Estrella, M.; Mellado, E.; Alastruey-Izquierdo, A. Development and Validation of a High-Resolution Melting Assay to Detect Azole Resistance in Aspergillus fumigatus. Antimicrob. Agents Chemother. 2017, 61, e01083-17. [Google Scholar] [CrossRef] [PubMed]
- Salimnia, H.; Fairfax, M.R.; Lephart, P.R.; Schreckenberger, P.; DesJarlais, S.M.; Johnson, J.K.; Robinson, G.; Carroll, K.C.; Greer, A.; Morgan, M.; et al. Evaluation of the FilmArray Blood Culture Identification Panel: Results of a Multicenter Controlled Trial. J. Clin. Microbiol. 2016, 54, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Radmard, S.; Reid, S.; Ciryam, P.; Boubour, A.; Ho, N.; Zucker, J.; Sayre, D.; Greendyke, W.G.; Miko, B.A.; Pereira, M.R.; et al. Clinical Utilization of the FilmArray Meningitis/Encephalitis (ME) Multiplex Polymerase Chain Reaction (PCR) Assay. Front. Neurol. 2019, 10, 281. [Google Scholar] [CrossRef] [PubMed]
- Pardo, J.; Klinker, K.P.; Borgert, S.J.; Butler, B.M.; Giglio, P.G.; Rand, K.H. Clinical and Economic Impact of Antimicrobial Stewardship Interventions with the FilmArray Blood Culture Identification Panel. Diagn. Microbiol. Infect. Dis. 2016, 84, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Gits-Muselli, M.; White, P.L.; Mengoli, C.; Chen, S.; Crowley, B.; Dingemans, G.; Fréalle, E.; L Gorton, R.; Guiver, M.; Hagen, F.; et al. The Fungal PCR Initiative’s Evaluation of in-House and Commercial Pneumocystis jirovecii QPCR Assays: Toward a Standard for a Diagnostics Assay. Med. Mycol. 2020, 58, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Rocchi, S.; Scherer, E.; Mengoli, C.; Alanio, A.; Botterel, F.; Bougnoux, M.E.; Bretagne, S.; Cogliati, M.; Cornu, M.; Dalle, F.; et al. Interlaboratory Evaluation of Mucorales PCR Assays for Testing Serum Specimens: A Study by the Fungal PCR Initiative and the Modimucor Study Group. Med. Mycol. 2021, 59, 126–138. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.T.; Yau, Y.C.W.; Campigotto, A.; Gharabaghi, F.; Richardson, S.E.; Tadros, M. Assessment of Panfungal PCR Performance with Formalin-Fixed Paraffin-Embedded Tissue Specimens. Med. Mycol. 2022, 60, myac004. [Google Scholar] [CrossRef]
- Moncada, P.A.; Budvytiene, I.; Ho, D.Y.; Deresinski, S.C.; Montoya, J.G.; Banaei, N. Utility of DNA Sequencing for Direct Identification of Invasive Fungi from Fresh and Formalin-Fixed Specimens. Am. J. Clin. Pathol. 2013, 140, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Buitrago, M.J.; Bernal-Martinez, L.; Castelli, M.V.; Rodriguez-Tudela, J.L.; Cuenca-Estrella, M. Performance of Panfungal- and Specific-PCR-Based Procedures for Etiological Diagnosis of Invasive Fungal Diseases on Tissue Biopsy Specimens with Proven Infection: A 7-Year Retrospective Analysis from a Reference Laboratory. J. Clin. Microbiol. 2014, 52, 1737–1740. [Google Scholar] [CrossRef]
- Irinyi, L.; Serena, C.; Garcia-Hermoso, D.; Arabatzis, M.; Desnos-Ollivier, M.; Vu, D.; Cardinali, G.; Arthur, I.; Normand, A.-C.; Giraldo, A.; et al. International Society of Human and Animal Mycology (ISHAM)-ITS Reference DNA Barcoding Database—The Quality Controlled Standard Tool for Routine Identification of Human and Animal Pathogenic Fungi. Med. Mycol. 2015, 53, 313–337. [Google Scholar] [CrossRef]
- White, P.L.; Bretagne, S.; Caliendo, A.M.; Loeffler, J.; Patterson, T.F.; Slavin, M.; Wingard, J.R. Aspergillus Polymerase Chain Reaction—An Update on Technical Recommendations, Clinical Applications, and Justification for Inclusion in the Second Revision of the EORTC/MSGERC Definitions of Invasive Fungal Disease. Clin. Infect. Dis. 2021, 72, S95–S101. [Google Scholar] [CrossRef]
- Morton, C.O.; White, P.L.; Barnes, R.A.; Klingspor, L.; Cuenca-Estrella, M.; Lagrou, K.; Bretagne, S.; Melchers, W.; Mengoli, C.; Caliendo, A.M.; et al. Determining the Analytical Specificity of PCR-Based Assays for the Diagnosis of IA: What Is Aspergillus? Med. Mycol. 2016, 55, 402–413. [Google Scholar] [CrossRef]
- Loeffler, J.; Mengoli, C.; Springer, J.; Bretagne, S.; Cuenca-Estrella, M.; Klingspor, L.; Lagrou, K.; Melchers, W.J.G.; Morton, C.O.; Barnes, R.A.; et al. Analytical Comparison of in vitro -Spiked Human Serum and Plasma for PCR-Based Detection of Aspergillus fumigatus DNA: A Study by the European Aspergillus PCR Initiative. J. Clin. Microbiol. 2015, 53, 2838–2845. [Google Scholar] [CrossRef] [PubMed]
- Cruciani, M.; Mengoli, C.; Barnes, R.; Donnelly, J.P.; Loeffler, J.; Jones, B.L.; Klingspor, L.; Maertens, J.; Morton, C.O.; White, L.P. Polymerase Chain Reaction Blood Tests for the Diagnosis of Invasive Aspergillosis in Immunocompromised People. Cochrane Database Syst. Rev. 2019, 2019, CD009551. [Google Scholar] [CrossRef] [PubMed]
- Alanio, A.; Dellière, S.; Fodil, S.; Bretagne, S.; Mégarbane, B. Prevalence of Putative Invasive Pulmonary Aspergillosis in Critically Ill Patients with COVID-19. Lancet Respir. Med. 2020, 8, e48–e49. [Google Scholar] [CrossRef]
- White, P.L.; Mengoli, C.; Bretagne, S.; Cuenca-Estrella, M.; Finnstrom, N.; Klingspor, L.; Melchers, W.J.G.; McCulloch, E.; Barnes, R.A.; Donnelly, J.P.; et al. Evaluation of Aspergillus PCR Protocols for Testing Serum Specimens. J. Clin. Microbiol. 2011, 49, 3842–3848. [Google Scholar] [CrossRef]
- Cruciani, M.; White, P.L.; Mengoli, C.; Löffler, J.; Morton, C.O.; Klingspor, L.; Buchheidt, D.; Maertens, J.; Heinz, W.J.; Rogers, T.R.; et al. The Impact of Anti-Mould Prophylaxis on Aspergillus PCR Blood Testing for the Diagnosis of Invasive Aspergillosis. J. Antimicrob. Chemother. 2021, 76, 635–638. [Google Scholar] [CrossRef] [PubMed]
- Huygens, S.; Dunbar, A.; Buil, J.B.; Klaassen, C.H.W.; Verweij, P.E.; van Dijk, K.; de Jonge, N.; Janssen, J.J.W.M.; van der Velden, W.J.F.M.; Biemond, B.J.; et al. Clinical Impact of Polymerase Chain Reaction–Based Aspergillus and Azole Resistance Detection in Invasive Aspergillosis: A Prospective Multicenter Study. Clin. Infect. Dis. 2023, 77, 38–45. [Google Scholar] [CrossRef]
- Lamberink, H.; Wagemakers, A.; Sigaloff, K.C.E.; van Houdt, R.; de Jonge, N.A.; van Dijk, K. The Impact of the Updated EORTC/MSG Criteria on the Classification of Hematological Patients with Suspected Invasive Pulmonary Aspergillosis. Clin. Microbiol. Infect. 2022, 28, 1120–1125. [Google Scholar] [CrossRef]
- Fan, L.-C.; Lu, H.-W.; Cheng, K.-B.; Li, H.-P.; Xu, J.-F. Evaluation of PCR in Bronchoalveolar Lavage Fluid for Diagnosis of Pneumocystis jirovecii Pneumonia: A Bivariate Meta-Analysis and Systematic Review. PLoS ONE 2013, 8, e73099. [Google Scholar] [CrossRef]
- Salsé, M.; Mercier, V.; Carles, M.; Lechiche, C.; Sasso, M. Performance of the RealStar® Pneumocystis jirovecii PCR Kit for the Diagnosis of Pneumocystis Pneumonia. Mycoses 2021, 64, 1230–1237. [Google Scholar] [CrossRef] [PubMed]
- Guegan, H.; Roojee, M.; Le Gal, S.; Artus, M.; Nevez, G.; Gangneux, J.-P.; Robert-Gangneux, F. Evaluation of the PneumoGenius® PCR Assay for the Diagnosis of Pneumocystis Pneumonia and the Detection of Pneumocystis Dihydropteroate Synthase Mutations in Respiratory Samples. Med. Mycol. 2023, 61, myad032. [Google Scholar] [CrossRef]
- Dellière, S.; Gits-Muselli, M.; White, P.L.; Mengoli, C.; Bretagne, S.; Alanio, A. Quantification of Pneumocystis jirovecii: Cross-Platform Comparison of One QPCR Assay with Leading Platforms and Six Master Mixes. J. Fungi 2019, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Lagrou, K.; Chen, S.; Masur, H.; Viscoli, C.; Decker, C.F.; Pagano, L.; Groll, A.H. Pneumocystis jirovecii Disease: Basis for the Revised EORTC/MSGERC Invasive Fungal Disease Definitions in Individuals without Human Immunodeficiency Virus. Clin. Infect. Dis. 2021, 72, S114–S120. [Google Scholar] [CrossRef] [PubMed]
- Senécal, J.; Smyth, E.; Del Corpo, O.; Hsu, J.M.; Amar-Zifkin, A.; Bergeron, A.; Cheng, M.P.; Butler-Laporte, G.; McDonald, E.G.; Lee, T.C. Non-Invasive Diagnosis of Pneumocystis jirovecii Pneumonia: A Systematic Review and Meta-Analysis. Clin. Microbiol. Infect. 2022, 28, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Van, T.T.; Kim, T.H.; Butler-Wu, S.M. Evaluation of the Biofire FilmArray Meningitis/Encephalitis Assay for the Detection of Cryptococcus neoformans/gattii. Clin. Microbiol. Infect. 2020, 26, 1375–1379. [Google Scholar] [CrossRef] [PubMed]
- Lau, A.; Sorrell, T.C.; Chen, S.; Stanley, K.; Iredell, J.; Halliday, C. Multiplex Tandem PCR: A Novel Platform for Rapid Detection and Identification of Fungal Pathogens from Blood Culture Specimens. J. Clin. Microbiol. 2008, 46, 3021–3027. [Google Scholar] [CrossRef] [PubMed]
- Lewis, P.O.; Lanier, C.G.; Patel, P.D.; Krolikowski, W.D.; Krolikowski, M.A. False Negative Diagnostic Errors with Polymerase Chain Reaction for the Detection of Cryptococcal Meningoencephalitis. Med. Mycol. 2020, 58, 408–410. [Google Scholar] [CrossRef] [PubMed]
- Tay, E.; Chen, S.C.-A.; Green, W.; Lopez, R.; Halliday, C.L. Development of a Real-Time PCR Assay to Identify and Distinguish between Cryptococcus neoformans and Cryptococcus gattii Species Complexes. J. Fungi 2022, 8, 462. [Google Scholar] [CrossRef] [PubMed]
- Mbangiwa, T.; Sturny-Leclère, A.; Lechiile, K.; Kajanga, C.; Boyer-Chammard, T.; Hoving, J.C.; Leeme, T.; Moyo, M.; Youssouf, N.; Lawrence, D.S.; et al. Development and Validation of Quantitative PCR Assays for HIV-Associated Cryptococcal Meningitis in Sub-Saharan Africa: A Diagnostic Accuracy Study. Lancet Microbe 2024, 5, e261–e271. [Google Scholar] [CrossRef]
- White, P.L.; Price, J.S.; Cordey, A.; Backx, M. Molecular Diagnosis of Yeast Infections. Curr. Fungal. Infect. Rep. 2021, 15, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Avni, T.; Leibovici, L.; Paul, M. PCR Diagnosis of Invasive Candidiasis: Systematic Review and Meta-Analysis. J. Clin. Microbiol. 2011, 49, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Clancy, C.J.; Nguyen, M.H. Finding the “Missing 50%” of Invasive Candidiasis: How Nonculture Diagnostics Will Improve Understanding of Disease Spectrum and Transform Patient Care. Clin. Infect. Dis. 2013, 56, 1284–1292. [Google Scholar] [CrossRef] [PubMed]
- Arendrup, M.C.; Andersen, J.S.; Holten, M.K.; Krarup, K.B.; Reiter, N.; Schierbeck, J.; Helleberg, M. Diagnostic Performance of T2Candida among ICU Patients with Risk Factors for Invasive Candidiasis. Open Forum Infect. Dis. 2019, 6, ofz136. [Google Scholar] [CrossRef]
- Fortún, J.; Buitrago, M.J.; Gioia, F.; Gómez-Ga de la Pedrosa, E.; Alvarez, M.E.; Martín-Dávila, P.; Pintado, V.; Cobeta, P.; Martinez-Castro, N.; Soriano, C.; et al. Roles of the Multiplex Real-Time PCR Assay and β-D-Glucan in a High-Risk Population for Intra-Abdominal Candidiasis (IAC). Med. Mycol. 2020, 58, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Zacharioudakis, I.; Zervou, F.; Mylonakis, E. T2 Magnetic Resonance Assay: Overview of Available Data and Clinical Implications. J. Fungi 2018, 4, 45. [Google Scholar] [CrossRef] [PubMed]
- Neely, L.A.; Audeh, M.; Phung, N.A.; Min, M.; Suchocki, A.; Plourde, D.; Blanco, M.; Demas, V.; Skewis, L.R.; Anagnostou, T.; et al. T2 Magnetic Resonance Enables Nanoparticle-Mediated Rapid Detection of Candidemia in Whole Blood. Sci. Transl. Med. 2013, 5, 182ra54. [Google Scholar] [CrossRef]
- Mylonakis, E.; Clancy, C.J.; Ostrosky-Zeichner, L.; Garey, K.W.; Alangaden, G.J.; Vazquez, J.A.; Groeger, J.S.; Judson, M.A.; Vinagre, Y.-M.; Heard, S.O.; et al. T2 Magnetic Resonance Assay for the Rapid Diagnosis of Candidemia in Whole Blood: A Clinical Trial. Clin. Infect. Dis. 2015, 60, 892–899. [Google Scholar] [CrossRef]
- Tang, D.-L.; Chen, X.; Zhu, C.-G.; Li, Z.; Xia, Y.; Guo, X.-G. Pooled Analysis of T2Candida for Rapid Diagnosis of Candidiasis. BMC Infect. Dis. 2019, 19, 798. [Google Scholar] [CrossRef]
- Hamula, C.L.; Hughes, K.; Fisher, B.T.; Zaoutis, T.E.; Singh, I.R.; Velegraki, A. T2Candida Provides Rapid and Accurate Species Identification in Pediatric Cases of Candidemia. Am. J. Clin. Pathol. 2016, 145, 858–861. [Google Scholar] [CrossRef]
- Fuchs, S.; Lass-Flörl, C.; Posch, W. Diagnostic Performance of a Novel Multiplex PCR Assay for Candidemia among ICU Patients. J. Fungi 2019, 5, 86. [Google Scholar] [CrossRef] [PubMed]
- Bernal-Martínez, L.; Buitrago, M.J.; Castelli, M.V.; Rodriguez-Tudela, J.L.; Cuenca-Estrella, M. Development of a Single Tube Multiplex Real-Time PCR to Detect the Most Clinically Relevant Mucormycetes Species. Clin. Microbiol. Infect. 2013, 19, E1–E7. [Google Scholar] [CrossRef] [PubMed]
- Millon, L.; Larosa, F.; Lepiller, Q.; Legrand, F.; Rocchi, S.; Daguindau, E.; Scherer, E.; Bellanger, A.-P.; Leroy, J.; Grenouillet, F. Quantitative Polymerase Chain Reaction Detection of Circulating DNA in Serum for Early Diagnosis of Mucormycosis in Immunocompromised Patients. Clin. Infect. Dis. 2013, 56, e95–e101. [Google Scholar] [CrossRef] [PubMed]
- Springer, J.; Goldenberger, D.; Schmidt, F.; Weisser, M.; Wehrle-Wieland, E.; Einsele, H.; Frei, R.; Löffler, J. Development and Application of Two Independent Real-Time PCR Assays to Detect Clinically Relevant Mucorales Species. J. Med. Microbiol. 2016, 65, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Lengerova, M.; Racil, Z.; Hrncirova, K.; Kocmanova, I.; Volfova, P.; Ricna, D.; Bejdak, P.; Moulis, M.; Pavlovsky, Z.; Weinbergerova, B.; et al. Rapid Detection and Identification of Mucormycetes in Bronchoalveolar Lavage Samples from Immunocompromised Patients with Pulmonary Infiltrates by Use of High-Tesolution Melt Snalysis. J. Clin. Microbiol. 2014, 52, 2824–2828. [Google Scholar] [CrossRef] [PubMed]
- Baldin, C.; Soliman, S.S.M.; Jeon, H.H.; Alkhazraji, S.; Gebremariam, T.; Gu, Y.; Bruno, V.M.; Cornely, O.A.; Leather, H.L.; Sugrue, M.W.; et al. PCR-Based Approach Targeting Mucorales-Specific Gene Family for Diagnosis of Mucormycosis. J. Clin. Microbiol. 2018, 56, e00746-18. [Google Scholar] [CrossRef]
- Millon, L.; Caillot, D.; Berceanu, A.; Bretagne, S.; Lanternier, F.; Morio, F.; Letscher-Bru, V.; Dalle, F.; Denis, B.; Alanio, A.; et al. Evaluation of Serum Mucorales Polymerase Chain Reaction (PCR) for the Diagnosis of Mucormycoses: The MODIMUCOR Prospective Trial. Clin. Infect. Dis. 2022, 75, 777–785. [Google Scholar] [CrossRef] [PubMed]
- Guegan, H.; Iriart, X.; Bougnoux, M.-E.; Berry, A.; Robert-Gangneux, F.; Gangneux, J.-P. Evaluation of MucorGenius® Mucorales PCR Assay for the Diagnosis of Pulmonary Mucormycosis. J. Infect. 2020, 81, 311–317. [Google Scholar] [CrossRef]
- Millon, L.; Herbrecht, R.; Grenouillet, F.; Morio, F.; Alanio, A.; Letscher-Bru, V.; Cassaing, S.; Chouaki, T.; Kauffmann-Lacroix, C.; Poirier, P.; et al. Early Diagnosis and Monitoring of Mucormycosis by Detection of Circulating DNA in Serum: Retrospective Analysis of 44 Cases Collected through the French Surveillance Network of Invasive Fungal Infections (RESSIF). Clin. Microbiol. Infect. 2016, 22, 810.e1–810.e8. [Google Scholar] [CrossRef] [PubMed]
- Imbert, S.; Portejoie, L.; Pfister, E.; Tauzin, B.; Revers, M.; Uthurriague, J.; Hernandez-Grande, M.; Lafon, M.-E.; Jubert, C.; Issa, N.; et al. A Multiplex PCR and DNA-Sequencing Workflow on Serum for the Diagnosis and Species Identification for Invasive Aspergillosis and Mucormycosis. J. Clin. Microbiol. 2023, 61, e01409-22. [Google Scholar] [CrossRef]
- Bongomin, F.; Govender, N.P.; Chakrabarti, A.; Robert-Gangneux, F.; Boulware, D.R.; Zafar, A.; Oladele, R.O.; Richardson, M.D.; Gangneux, J.-P.; Alastruey-Izquierdo, A.; et al. Essential in vitro Diagnostics for Advanced HIV and Serious Fungal Diseases: International Experts’ Consensus Recommendations. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1581–1584. [Google Scholar] [CrossRef] [PubMed]
- Wilmes, D.; Hagen, F.; Verissimo, C.; Alanio, A.; Rickerts, V.; Buitrago, M.J. A Multicentre External Quality Assessment: A First Step to Standardise PCR Protocols for the Diagnosis of Histoplasmosis and Coccidioidomycosis. Mycoses 2023, 66, 774–786. [Google Scholar] [CrossRef] [PubMed]
- Bialek, R.; Fischer, J.; Feucht, A.; Najvar, L.K.; Dietz, K.; Knobloch, J.; Graybill, J.R. Diagnosis and Monitoring of Murine Histoplasmosis by a Nested PCR Assay. J. Clin. Microbiol. 2001, 39, 1506–1509. [Google Scholar] [CrossRef] [PubMed]
- Buitrago, M.J.; Berenguer, J.; Mellado, E.; Rodríguez-Tudela, J.L.; Cuenca-Estrella, M. Detection of Imported Histoplasmosis in Serum of HIV-Infected Patients Using a Real-Time PCR-Based Assay. Eur. J. Clin. Microbiol. Infect. Dis. 2006, 25, 665–668. [Google Scholar] [CrossRef] [PubMed]
- Gago, S.; Esteban, C.; Valero, C.; Zaragoza, Ó.; Puig de la Bellacasa, J.; Buitrago, M.J. A Multiplex Real-Time PCR Assay for Identification of Pneumocystis jirovecii, Histoplasma capsulatum, and Cryptococcus neoformans/Cryptococcus gattii in Samples from AIDS Patients with Opportunistic Pneumonia. J. Clin. Microbiol. 2014, 52, 1168–1176. [Google Scholar] [CrossRef] [PubMed]
- Martagon-Villamil, J.; Shrestha, N.; Sholtis, M.; Isada, C.M.; Hall, G.S.; Bryne, T.; Lodge, B.A.; Reller, L.B.; Procop, G.W. Identification of Histoplasma capsulatum from Culture Extracts by Real-Time PCR. J. Clin. Microbiol. 2003, 41, 1295–1298. [Google Scholar] [CrossRef] [PubMed]
- Simon, S.; Veron, V.; Boukhari, R.; Blanchet, D.; Aznar, C. Detection of Histoplasma capsulatum DNA in Human Samples by Real-Time Polymerase Chain Reaction. Diagn. Microbiol. Infect. Dis. 2010, 66, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Alanio, A.; Gits-Muselli, M.; Lanternier, F.; Sturny-Leclère, A.; Benazra, M.; Hamane, S.; Rodrigues, A.M.; Garcia-Hermoso, D.; Lortholary, O.; Dromer, F.; et al. Evaluation of a New Histoplasma spp. Quantitative RT-PCR Assay. J. Mol. Diagn. 2021, 23, 698–709. [Google Scholar] [CrossRef] [PubMed]
- Bracca, A.; Tosello, M.E.; Girardini, J.E.; Amigot, S.L.; Gomez, C.; Serra, E. Molecular Detection of Histoplasma capsulatum var. capsulatum in Human Clinical Samples. J. Clin. Microbiol. 2003, 41, 1753–1755. [Google Scholar] [CrossRef]
- De Matos Guedes, H.L.; Guimarães, A.J.; Muniz, M.D.M.; Pizzini, C.V.; Hamilton, A.J.; Peralta, J.M.; Deepe, G.S., Jr.; Zancopé-Oliveira, R.M. PCR Assay for Identification of Histoplasma capsulatum Based on the Nucleotide Sequence of the M Antigen. J. Clin. Microbiol. 2003, 41, 535–539. [Google Scholar] [CrossRef]
- López, L.F.; Muñoz, C.O.; Cáceres, D.H.; Tobón, Á.M.; Loparev, V.; Clay, O.; Chiller, T.; Litvintseva, A.; Gade, L.; González, Á.; et al. Standardization and Validation of Real Time PCR Assays for the Diagnosis of Histoplasmosis Using Three Molecular Targets in an Animal Model. PLoS ONE 2017, 12, e0190311. [Google Scholar] [CrossRef]
- Maubon, D.; Simon, S.; Aznar, C. Histoplasmosis Diagnosis Using a Polymerase Chain Reaction Method. Application on Human Samples in French Guiana, South America. Diagn. Microbiol. Infect. Dis. 2007, 58, 441–444. [Google Scholar] [CrossRef] [PubMed]
- Rickerts, V.; Bialek, R.; Tintelnot, K.; Jacobi, V.; Just-Nübling, G. Rapid PCR-Based Diagnosis of Disseminated Histoplasmosis in an AIDS Patient. Eur. J. Clin. Microbiol. Infect. Dis. 2002, 21, 821–823. [Google Scholar] [CrossRef] [PubMed]
- Gallo, J.E.; Torres, I.; Gómez, O.M.; Rishishwar, L.; Vannberg, F.; Jordan, I.K.; McEwen, J.G.; Clay, O.K. New Histoplasma Diagnostic Assays Designed via Whole Genome Comparisons. J. Fungi 2021, 7, 544. [Google Scholar] [CrossRef] [PubMed]
- Buitrago, M.J.; Canteros, C.E.; Frías De León, G.; González, Á.; Marques-Evangelista De Oliveira, M.; Muñoz, C.O.; Ramirez, J.A.; Toranzo, A.I.; Zancope-Oliveira, R.; Cuenca-Estrella, M. Comparison of PCR Protocols for Detecting Histoplasma capsulatum DNA through a Multicenter Study. Rev. Iberoam. Micol. 2013, 30, 256–260. [Google Scholar] [CrossRef]
- Azar, M.M.; Hage, C.A. Laboratory Diagnostics for Histoplasmosis. J. Clin. Microbiol. 2017, 55, 1612–1620. [Google Scholar] [CrossRef]
- Binnicker, M.J.; Buckwalter, S.P.; Eisberner, J.J.; Stewart, R.A.; McCullough, A.E.; Wohlfiel, S.L.; Wengenack, N.L. Detection of Coccidioides Species in Clinical Specimens by Real-Time PCR. J. Clin. Microbiol. 2007, 45, 173–178. [Google Scholar] [CrossRef]
- Gago, S.; Buitrago, M.J.; Clemons, K.V.; Cuenca-Estrella, M.; Mirels, L.F.; Stevens, D.A. Development and Validation of a Quantitative Real-Time PCR Assay for the Early Diagnosis of Coccidioidomycosis. Diagn. Microbiol. Infect. Dis. 2014, 79, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Bialek, R.; Kern, J.; Herrmann, T.; Tijerina, R.; Ceceñas, L.; Reischl, U.; González, G.M. PCR Assays for Identification of Coccidioides posadasii Based on the Nucleotide Sequence of the Antigen 2/Proline-Rich Antigen. J. Clin. Microbiol. 2004, 42, 778–783. [Google Scholar] [CrossRef]
- Zangeneh, T.T.; Al-Obaidi, M.M. Diagnostic Approach to Coccidioidomycosis in Solid Organ Transplant Recipients. J. Fungi 2023, 9, 513. [Google Scholar] [CrossRef]
- Saubolle, M.A.; Wojack, B.R.; Wertheimer, A.M.; Fuayagem, A.Z.; Young, S.; Koeneman, B.A. Multicenter Clinical Validation of a Cartridge-Based Real-Time PCR System for Detection of Coccidioides spp. in Lower Respiratory Specimens. J. Clin. Microbiol. 2018, 56, e01277-17. [Google Scholar] [CrossRef]
- Rocha-Silva, F.; Maria de Figueiredo, S.; Rutren La Santrer, E.F.; Machado, A.S.; Fernandes, B.; Assunção, C.B.; Góes, A.M.; Caligiorne, R.B. Paracoccidioidomycosis: Detection of Paracoccidioides brasiliensis’ Genome in Biological Samples by Quantitative Chain Reaction Polymerase (QPCR). Microb. Pathog. 2018, 121, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Gaviria, M.; Rivera, V.; Muñoz-Cadavid, C.; Cano, L.E.; Naranjo, T.W. Validation and Clinical Application of a Nested PCR for Paracoccidioidomycosis Diagnosis in Clinical Samples from Colombian Patients. Braz. J. Infect. Dis. 2015, 19, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Buitrago, M.J.; Merino, P.; Puente, S.; Gomez-Lopez, A.; Arribi, A.; Zancopé-Oliveira, R.M.; Gutierrez, M.C.; Rodriguez-Tudela, J.L.; Cuenca-Estrella, M. Utility of Real-Time PCR for the Detection of Paracoccidioides brasiliensis DNA in the Diagnosis of Imported Paracoccidioidomycosis. Med. Mycol. 2009, 47, 879–882. [Google Scholar] [CrossRef] [PubMed]
- Sidamonidze, K.; Peck, M.K.; Perez, M.; Baumgardner, D.; Smith, G.; Chaturvedi, V.; Chaturvedi, S. Real-Time PCR Assay for Identification of Blastomyces dermatitidis in Culture and in Tissue. J. Clin. Microbiol. 2012, 50, 1783–1786. [Google Scholar] [CrossRef]
- Babady, N.E.; Buckwalter, S.P.; Hall, L.; Le Febre, K.M.; Binnicker, M.J.; Wengenack, N.L. Detection of Blastomyces dermatitidis and Histoplasma capsulatum from Culture Isolates and Clinical Specimens by Use of Real-Time PCR. J. Clin. Microbiol. 2011, 49, 3204–3208. [Google Scholar] [CrossRef]
- Pornprasert, S.; Praparattanapan, J.; Khamwan, C.; Pawichai, S.; Pimsarn, P.; Samleerat, T.; Leechanachai, P.; Supparatpinyo, K. Development of TaqMan Real-time Polymerase Chain Reaction for the Detection and Identification of Penicillium marneffei. Mycoses 2009, 52, 487–492. [Google Scholar] [CrossRef]
- Pongpom, M.; Sirisanthana, T.; Vanittanakom, N. Application of Nested PCR to Detect Penicillium marneffei in Serum Samples. Med. Mycol. 2009, 47, 549–553. [Google Scholar] [CrossRef]
- Sun, J.; Li, X.; Zeng, H.; Xie, Z.; Lu, C.; Xi, L.; de Hoog, G.S. Development and Evaluation of Loop-Mediated Isothermal Amplification (LAMP) for the Rapid Diagnosis of Penicillium marneffei in Archived Tissue Samples. FEMS Immunol. Med. Microbiol. 2010, 58, 381–388. [Google Scholar] [CrossRef]
- Lu, S.; Li, X.; Calderone, R.; Zhang, J.; Ma, J.; Cai, W.; Xi, L. Whole Blood Nested PCR and Real-Time PCR Amplification of Talaromyces marneffei Specific DNA for Diagnosis. Med. Mycol. 2016, 54, 162–168. [Google Scholar] [CrossRef]
- Li, X.; Zheng, Y.; Wu, F.; Mo, D.; Liang, G.; Yan, R.; Khader, J.A.; Wu, N.; Cao, C. Evaluation of Quantitative Real-Time PCR and Platelia Galactomannan Assays for the Diagnosis of Disseminated Talaromyces marneffei Infection. Med. Mycol. 2019, 58, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Berkow, E.L.; Lockhart, S.R.; Ostrosky-Zeichner, L. Antifungal Susceptibility Testing: Current Approaches. Clin. Microbiol. Rev. 2020, 33, e00069-19. [Google Scholar] [CrossRef]
- Gonçalves, S.S.; Souza, A.C.R.; Chowdhary, A.; Meis, J.F.; Colombo, A.L. Epidemiology and Molecular Mechanisms of Antifungal Resistance in Candida and Aspergillus. Mycoses 2016, 59, 198–219. [Google Scholar] [CrossRef] [PubMed]
- Doorley, L.A.; Barker, K.S.; Zhang, Q.; Rybak, J.M.; Rogers, P.D. Mutations in TAC1 and ERG11 Are Major Drivers of Triazole Antifungal Resistance in Clinical Isolates of Candida parapsilosis. Clin. Microbiol. Infect. 2023, 29, 1602.e1–1602.e7. [Google Scholar] [CrossRef]
- Kim, T.Y.; Huh, H.J.; Lee, G.Y.; Choi, M.J.; Yu, H.-J.; Cho, S.Y.; Chang, Y.S.; Kim, Y.-J.; Shin, J.H.; Lee, N.Y. Evolution of Fluconazole Resistance Mechanisms and Clonal Types of Candida parapsilosis Isolates from a Tertiary Care Hospital in South Korea. Antimicrob. Agents Chemother. 2022, 66, e00889-22. [Google Scholar] [CrossRef] [PubMed]
- Biswas, C.; Wang, Q.; van Hal, S.J.; Eyre, D.W.; Hudson, B.; Halliday, C.L.; Mazsewska, K.; Kizny Gordon, A.; Lee, A.; Irinyi, L.; et al. Genetic Heterogeneity of Australian Candida auris Isolates: Insights from a Nonoutbreak Setting Using Whole-Genome Sequencing. Open Forum Infect. Dis. 2020, 7, ofaa158. [Google Scholar] [CrossRef] [PubMed]
- Pristov, K.E.; Ghannoum, M.A. Resistance of Candida to Azoles and Echinocandins Worldwide. Clin. Microbiol. Infect. 2019, 25, 792–798. [Google Scholar] [CrossRef]
- Spampinato, C.; Leonardi, D. Candida Infections, Causes, Targets, and Resistance Mechanisms: Traditional and Alternative Antifungal Agents. Biomed. Res. Int. 2013, 2013, 204237. [Google Scholar] [CrossRef]
- Perlin, D.S.; Wiederhold, N.P. Culture-Independent Molecular Methods for Detection of Antifungal Resistance Mechanisms and Fungal Identification. J. Infect. Dis. 2017, 216, S458–S465. [Google Scholar] [CrossRef]
- Czajka, K.M.; Venkataraman, K.; Brabant-Kirwan, D.; Santi, S.A.; Verschoor, C.; Appanna, V.D.; Singh, R.; Saunders, D.P.; Tharmalingam, S. Molecular Mechanisms Associated with Antifungal Resistance in Pathogenic Candida Species. Cells 2023, 12, 2655. [Google Scholar] [CrossRef]
- Ferrari, S.; Ischer, F.; Calabrese, D.; Posteraro, B.; Sanguinetti, M.; Fadda, G.; Rohde, B.; Bauser, C.; Bader, O.; Sanglard, D. Gain of Function Mutations in CgPDR1 of Candida glabrata Not Only Mediate Antifungal Resistance but Also Enhance Virulence. PLoS Pathog. 2009, 5, e1000268. [Google Scholar] [CrossRef]
- Castanheira, M.; Deshpande, L.M.; Davis, A.P.; Carvalhaes, C.G.; Pfaller, M.A. Azole Resistance in Candida glabrata Clinical Isolates from Global Surveillance Is Associated with Efflux Overexpression. J. Glob. Antimicrob. Resist. 2022, 29, 371–377. [Google Scholar] [CrossRef]
- Rybak, J.M.; Cuomo, C.A.; David Rogers, P. The Molecular and Genetic Basis of Antifungal Resistance in the Emerging Fungal Pathogen Candida auris. Curr. Opin. Microbiol. 2022, 70, 102208. [Google Scholar] [CrossRef] [PubMed]
- Arrieta-Aguirre, I.; Menéndez-Manjón, P.; Carrano, G.; Diez, A.; Fernandez-de-Larrinoa, Í.; Moragues, M.-D. Molecular Identification of Fungal Species through Multiplex-QPCR to Determine Candidal Vulvovaginitis and Antifungal Susceptibility. J. Fungi 2023, 9, 1145. [Google Scholar] [CrossRef]
- Lackner, M.; Tscherner, M.; Schaller, M.; Kuchler, K.; Mair, C.; Sartori, B.; Istel, F.; Arendrup, M.C.; Lass-Flörl, C. Positions and Numbers of FKS Mutations in Candida albicans Selectively Influence in vitro and in vivo Susceptibilities to Echinocandin Treatment. Antimicrob. Agents Chemother. 2014, 58, 3626–3635. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Puumala, E.; Robbins, N.; Cowen, L.E. Antifungal Drug Resistance: Molecular Mechanisms in Candida albicans and Beyond. Chem. Rev. 2021, 121, 3390–3411. [Google Scholar] [CrossRef]
- Posteraro, B.; Torelli, R.; Vella, A.; Leone, P.M.; De Angelis, G.; De Carolis, E.; Ventura, G.; Sanguinetti, M.; Fantoni, M. Pan-Echinocandin-Resistant Candida glabrata Bloodstream Infection Complicating COVID-19: A Fatal Case Report. J. Fungi 2020, 6, 163. [Google Scholar] [CrossRef]
- Szymankiewicz, M.; Kamecki, K.; Jarzynka, S.; Koryszewska-Bagińska, A.; Olędzka, G.; Nowikiewicz, T. Case Report: Echinocandin-Resistance Candida glabrata FKS Mutants from Patient Following Radical Cystoprostatectomy Due to Muscle-Invasive Bladder Cancer. Front. Oncol. 2021, 11, 794235. [Google Scholar] [CrossRef] [PubMed]
- Biswas, C.; Chen, S.C.-A.; Halliday, C.; Martinez, E.; Rockett, R.J.; Wang, Q.; Timms, V.J.; Dhakal, R.; Sadsad, R.; Kennedy, K.J.; et al. Whole Genome Sequencing of Candida glabrata for Detection of Markers of Antifungal Drug Resistance. J. Vis. Exp. 2017, 130, e56714. [Google Scholar] [CrossRef]
- Khalaf, R.A.; Fattouh, N.; Medvecky, M.; Hrabak, J. Whole Genome Sequencing of a Clinical Drug Resistant Candida albicans Isolate Reveals Known and Novel Mutations in Genes Involved in Resistance Acquisition Mechanisms. J. Med. Microbiol. 2021, 70, 1351. [Google Scholar] [CrossRef]
- Chew, K.L.; Octavia, S.; Jureen, R.; Lin, R.T.P.; Teo, J.W.P. Targeted Amplification and MinION Nanopore Sequencing of Key Azole and Echinocandin Resistance Determinants of Clinically Relevant Candida spp. from Blood Culture Bottles. Lett. Appl. Microbiol. 2021, 73, 286–293. [Google Scholar] [CrossRef]
- Rogers, T.R.; Verweij, P.E.; Castanheira, M.; Dannaoui, E.; White, P.L.; Arendrup, M.C.; Arendrup, M.C.; Arikan-Akdagli, S.; Barchiesi, F.; Buil, J.; et al. Molecular Mechanisms of Acquired Antifungal Drug Resistance in Principal Fungal Pathogens and EUCAST Guidance for Their Laboratory Detection and Clinical Implications. J. Antimicrob. Chemother. 2022, 77, 2053–2073. [Google Scholar] [CrossRef]
- Carolus, H.; Pierson, S.; Muñoz, J.F.; Subotić, A.; Cruz, R.B.; Cuomo, C.A.; Van Dijck, P. Genome-Wide Analysis of Experimentally Evolved Candida auris Reveals Multiple Novel Mechanisms of Multidrug Resistance. mBio 2021, 12, e03333-20. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Robbins, N.; Cowen, L.E. Molecular Mechanisms Governing Antifungal Drug Resistance. npj Antimicrob. Resist. 2023, 1, 5. [Google Scholar] [CrossRef]
- Morio, F.; Jensen, R.H.; Le Pape, P.; Arendrup, M.C. Molecular Basis of Antifungal Drug Resistance in Yeasts. Int. J. Antimicrob. Agents 2017, 50, 599–606. [Google Scholar] [CrossRef]
- Maroc, L.; Shaker, H.; Shapiro, R.S. Functional Genetic Characterization of Stress Tolerance and Biofilm Formation in Nakaseomyces (Candida) glabrata via a Novel CRISPR Activation System. mSphere 2024, 9, e00761-23. [Google Scholar] [CrossRef] [PubMed]
- Gervais, N.C.; La Bella, A.A.; Wensing, L.F.; Sharma, J.; Acquaviva, V.; Best, M.; Cadena López, R.O.; Fogal, M.; Uthayakumar, D.; Chavez, A.; et al. Development and Applications of a CRISPR Activation System for Facile Genetic Overexpression in Candida albicans. G3 Genes Genomes Genet. 2023, 13, jkac301. [Google Scholar] [CrossRef]
- Abdolrasouli, A.; Rhodes, J.; Beale, M.A.; Hagen, F.; Rogers, T.R.; Chowdhary, A.; Meis, J.F.; Armstrong-James, D.; Fisher, M.C. Genomic Context of Azole Resistance Mutations in Aspergillus fumigatus Determined Using Whole-Genome Sequencing. mBio 2015, 6, e00536-15. [Google Scholar] [CrossRef] [PubMed]
- Risum, M.; Hare, R.K.; Gertsen, J.B.; Kristensen, L.; Rosenvinge, F.S.; Sulim, S.; Abou-Chakra, N.; Bangsborg, J.; Røder, B.L.; Marmolin, E.S.; et al. Azole Resistance in Aspergillus fumigatus. The First 2-year’s Data from the Danish National Surveillance Study, 2018–2020. Mycoses 2022, 65, 419–428. [Google Scholar] [CrossRef]
- Resendiz Sharpe, A.; Lagrou, K.; Meis, J.F.; Chowdhary, A.; Lockhart, S.R.; Verweij, P.E. Triazole Resistance Surveillance in Aspergillus fumigatus. Med. Mycol. 2018, 56, S83–S92. [Google Scholar] [CrossRef]
- Jiménez-Ortigosa, C.; Moore, C.; Denning, D.W.; Perlin, D.S. Emergence of Echinocandin Resistance Due to a Point Mutation in the Fks1 Gene of Aspergillus fumigatus in a Patient with Chronic Pulmonary Aspergillosis. Antimicrob. Agents Chemother. 2017, 61, e01277-17. [Google Scholar] [CrossRef] [PubMed]
- Satish, S.; Perlin, D.S. Echinocandin Resistance in Aspergillus fumigatus Has Broad Implications for Membrane Lipid Perturbations That Influence Drug-Target Interactions. Microbiol. Insights 2019, 12, 1178636119897034. [Google Scholar] [CrossRef] [PubMed]
- Etienne, K.A.; Berkow, E.L.; Gade, L.; Nunnally, N.; Lockhart, S.R.; Beer, K.; Jordan, I.K.; Rishishwar, L.; Litvintseva, A.P. Genomic Diversity of Azole-Resistant Aspergillus fumigatus in the United States. mBio 2021, 12, e01803-21. [Google Scholar] [CrossRef]
- Nargesi, S.; Valadan, R.; Abastabar, M.; Kaboli, S.; Thekkiniath, J.; Hedayati, M.T. A Whole Genome Sequencing-Based Approach to Track down Genomic Variants in Itraconazole-Resistant Species of Aspergillus from Iran. J. Fungi 2022, 8, 1091. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.C.O.; Ge, W.; Wiederhold, N.P.; Rybak, J.M.; Fortwendel, J.R.; Rogers, P.D. HapE and Hmg1 Mutations Are Drivers of Cyp51A-Independent Pan-Triazole Resistance in an Aspergillus fumigatus Clinical Isolate. Microbiol. Spectr. 2023, 11, e05188-22. [Google Scholar] [CrossRef] [PubMed]
- Gómez Londoño, L.F.; Brewer, M.T. Detection of Azole-Resistant Aspergillus fumigatus in the Environment from Air, Plant Debris, Compost, and Soil. PLoS ONE 2023, 18, e0282499. [Google Scholar] [CrossRef] [PubMed]
- van der Torre, M.H.; Novak-Frazer, L.; Rautemaa-Richardson, R. Detecting Azole-Antifungal Resistance in Aspergillus fumigatus by Pyrosequencing. J. Fungi 2020, 6, 12. [Google Scholar] [CrossRef] [PubMed]
- Rivero-Menendez, O.; Soto-Debran, J.C.; Medina, N.; Lucio, J.; Mellado, E.; Alastruey-Izquierdo, A. Molecular Identification, Antifungal Susceptibility Testing, and Mechanisms of Azole Resistance in Aspergillus Species Received within a Surveillance Program on Antifungal Resistance in Spain. Antimicrob. Agents Chemother. 2019, 63, e00865-19. [Google Scholar] [CrossRef] [PubMed]
- Scharmann, U.; Kirchhoff, L.; Hain, A.; Buer, J.; Koldehoff, M.; Steinmann, J.; Rath, P.-M. Evaluation of Three Commercial PCR Assays for the Detection of Azole-Resistant Aspergillus fumigatus from Respiratory Samples of Immunocompromised Patients. J. Fungi 2021, 7, 132. [Google Scholar] [CrossRef]
- Kano, R.; Noguchi, H.; Harada, K.; Hiruma, M. Rapid Molecular Detection of Terbinafine-Resistant Dermatophytes. Med. Mycol. J. 2021, 62, 41–44. [Google Scholar] [CrossRef]
- Singh, A.; Singh, P.; Dingemans, G.; Meis, J.F.; Chowdhary, A. Evaluation of DermaGenius® Resistance Real-time Polymerase Chain Reaction for Rapid Detection of Terbinafine-resistant Trichophyton Species. Mycoses 2021, 64, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Walzer, P.D.; Foy, J.; Steele, P.; Kim, C.K.; White, M.; Klein, R.S.; Otter, B.A.; Allegra, C. Activities of Antifolate, Antiviral, and Other Drugs in an Immunosuppressed Rat Model of Pneumocystis carinii Pneumonia. Antimicrob. Agents Chemother. 1992, 36, 1935–1942. [Google Scholar] [CrossRef] [PubMed]
- Huovinen, P.; Sundström, L.; Swedberg, G.; Sköld, O. Trimethoprim and Sulfonamide Resistance. Antimicrob. Agents Chemother. 1995, 39, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Sharma, B.; Mahto, K.K.; Meis, J.F.; Chowdhary, A. High-Frequency Direct Detection of Triazole Resistance in Aspergillus fumigatus from Patients with Chronic Pulmonary Fungal Diseases in India. J. Fungi 2020, 6, 67. [Google Scholar] [CrossRef] [PubMed]
- Tsang, C.-C.; Teng, J.L.L.; Lau, S.K.P.; Woo, P.C.Y. Rapid Genomic Diagnosis of Fungal Infections in the Age of Gext-Generation Sequencing. J. Fungi 2021, 7, 636. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Chen, Y.; Han, S.; Lv, L.; Li, L. Next-Generation Sequencing Applications for the Study of Fungal Pathogens. Microorganisms 2022, 10, 1882. [Google Scholar] [CrossRef] [PubMed]
- Douglas, A.P.; Stewart, A.G.; Halliday, C.L.; Chen, S.C.-A. Outbreaks of Fungal Infections in Hospitals: Epidemiology, Detection, and Management. J. Fungi 2023, 9, 1059. [Google Scholar] [CrossRef] [PubMed]
- Bougnoux, M.-E.; Brun, S.; Zahar, J.-R. Healthcare-Associated Fungal Outbreaks: New and Uncommon Species, New Molecular Tools for Investigation and Prevention. Antimicrob. Resist. Infect. Control 2018, 7, 45. [Google Scholar] [CrossRef] [PubMed]
- Lücking, R.; Aime, M.C.; Robbertse, B.; Miller, A.N.; Ariyawansa, H.A.; Aoki, T.; Cardinali, G.; Crous, P.W.; Druzhinina, I.S.; Geiser, D.M.; et al. Unambiguous Identification of Fungi: Where Do We Stand and How Accurate and Precise Is Fungal DNA Barcoding? IMA Fungus 2020, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Gostinčar, C. Towards Genomic Criteria for Delineating Fungal Species. J. Fungi 2020, 6, 246. [Google Scholar] [CrossRef]
- Salem-Bango, Z.; Price, T.K.; Chan, J.L.; Chandrasekaran, S.; Garner, O.B.; Yang, S. Fungal Whole-Genome Sequencing for Species Identification: From Test Development to Clinical Utilization. J. Fungi 2023, 9, 183. [Google Scholar] [CrossRef] [PubMed]
- Lumpe, J.; Gumbleton, L.; Gorzalski, A.; Libuit, K.; Varghese, V.; Lloyd, T.; Tadros, F.; Arsimendi, T.; Wagner, E.; Stephens, C.; et al. GAMBIT (Genomic Approximation Method for Bacterial Identification and Tracking): A Methodology to Rapidly Leverage Whole Genome Sequencing of Bacterial Isolates for Clinical Identification. PLoS ONE 2023, 18, e0277575. [Google Scholar] [CrossRef] [PubMed]
- Ambrosio, F.J.; Scribner, M.R.; Wright, S.M.; Otieno, J.R.; Doughty, E.L.; Gorzalski, A.; Siao, D.D.; Killian, S.; Hua, C.; Schneider, E.; et al. TheiaEuk: A Species-Agnostic Bioinformatics Workflow for Fungal Genomic Characterization. Front. Public Health 2023, 11, 1198213. [Google Scholar] [CrossRef]
- Yu, P.-L.; Fulton, J.C.; Hudson, O.H.; Huguet-Tapia, J.C.; Brawner, J.T. Next-Generation Fungal Identification Using Target Enrichment and Nanopore Sequencing. BMC Genom. 2023, 24, 581. [Google Scholar] [CrossRef] [PubMed]
- Sharma, C.; Kumar, N.; Pandey, R.; Meis, J.F.; Chowdhary, A. Whole Genome Sequencing of Emerging Multidrug Resistant Candida auris Isolates in India Demonstrates Low Genetic Variation. New Microbes New Infect. 2016, 13, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Jeffery-Smith, A.; Taori, S.K.; Schelenz, S.; Jeffery, K.; Johnson, E.M.; Borman, A.; Manuel, R.; Brown, C.S. Candida auris: A Review of the Literature. Clin. Microbiol. Rev. 2018, 31, e00029-17. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, R.A.C.; Steenwyk, J.L.; Rivero-Menendez, O.; Mead, M.E.; Silva, L.P.; Bastos, R.W.; Alastruey-Izquierdo, A.; Goldman, G.H.; Rokas, A. Genomic and Phenotypic Heterogeneity of Clinical Isolates of the Human Pathogens Aspergillus fumigatus, Aspergillus lentulus, and Aspergillus fumigatiaffinis. Front. Genet. 2020, 11, 459. [Google Scholar] [CrossRef] [PubMed]
- Teo, J.W.P.; Cheng, J.W.S.; Chew, K.L.; Lin, R.T.P. Whole Genome Characterization of Trichophyton indotineae Isolated in Singapore. Med. Mycol. 2024, 62, myae012. [Google Scholar] [CrossRef] [PubMed]
- Spettel, K.; Barousch, W.; Makristathis, A.; Zeller, I.; Nehr, M.; Selitsch, B.; Lackner, M.; Rath, P.-M.; Steinmann, J.; Willinger, B. Analysis of Antifungal Resistance Genes in Candida albicans and Candida glabrata Using next Generation Sequencing. PLoS ONE 2019, 14, e0210397. [Google Scholar] [CrossRef]
- Alastruey-Izquierdo, A.; Martín-Galiano, A.J. The Challenges of the Genome-Based Identification of Antifungal Resistance in the Clinical Routine. Front. Microbiol. 2023, 14, 1134755. [Google Scholar] [CrossRef]
- McTaggart, L.R.; Cabrera, A.; Cronin, K.; Kus, J.V. Antifungal Susceptibility of Clinical Yeast Isolates from a Large Canadian Reference Laboratory and Application of Whole-Genome Sequence Analysis to Elucidate Mechanisms of Acquired Resistance. Antimicrob. Agents Chemother. 2020, 64, e00402-20. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Li, Z.; Li, D.; Zhao, J.; Chen, Y.; Wang, Z.; Chen, F.; Han, L. Long Terminal Repeat Retrotransposon Afut4 Promotes Azole Resistance of Aspergillus fumigatus by Enhancing the Expression of Sac1 Gene. Antimicrob. Agents Chemother. 2021, 65, e00291-21. [Google Scholar] [CrossRef] [PubMed]
- Uddin, W.; Dhabalia, D.; Prakash, S.M.U.; Kabir, M.A. Systematic Truncations of Chromosome 4 and Their Responses to Antifungals in Candida albicans. J. Genet. Eng. Biotechnol. 2021, 19, 92. [Google Scholar] [CrossRef] [PubMed]
- Menu, E.; Criscuolo, A.; Desnos-Ollivier, M.; Cassagne, C.; D’Incan, E.; Furst, S.; Ranque, S.; Berger, P.; Dromer, F. Saprochaete clavata Outbreak Infecting Cancer Center through Dishwasher. Emerg. Infect. Dis. 2020, 26, 2031–2038. [Google Scholar] [CrossRef] [PubMed]
- Di Pilato, V.; Codda, G.; Ball, L.; Giacobbe, D.R.; Willison, E.; Mikulska, M.; Magnasco, L.; Crea, F.; Vena, A.; Pelosi, P.; et al. Molecular Epidemiological Investigation of a Nosocomial Cluster of C. auris: Evidence of Recent Emergence in Italy and Ease of Transmission during the COVID-19 Pandemic. J. Fungi 2021, 7, 140. [Google Scholar] [CrossRef] [PubMed]
- Gorzalski, A.; Ambrosio, F.J.; Massic, L.; Scribner, M.R.; Siao, D.D.; Hua, C.; Dykema, P.; Schneider, E.; Njoku, C.; Libuit, K.; et al. The Use of Whole-Genome Sequencing and Development of Bioinformatics to Monitor Overlapping Outbreaks of Candida auris in Southern Nevada. Front. Public Health 2023, 11, 1198189. [Google Scholar] [CrossRef] [PubMed]
- Hiel, S.J.P.; Hendriks, A.C.A.; Eijkenboom, J.J.A.; Bosch, T.; Coolen, J.P.M.; Melchers, W.J.G.; Anröchte, P.; Camps, S.M.T.; Verweij, P.E.; Zhang, J.; et al. Aspergillus Outbreak in an Intensive Care Unit: Source Analysis with Whole Genome Sequencing and Short Tandem Repeats. J. Fungi 2024, 10, 51. [Google Scholar] [CrossRef] [PubMed]
- Pilo, P.; Tiley, A.M.M.; Lawless, C.; Karki, S.J.; Burke, J.; Feechan, A. A Rapid Fungal DNA Extraction Method Suitable for PCR Screening Fungal Mutants, Infected Plant Tissue and Spore Trap Samples. Physiol. Mol. Plant Pathol. 2022, 117, 101758. [Google Scholar] [CrossRef]
- Bellemare, A.; John, T.; Marqueteau, S. Fungal Genomic DNA Extraction Methods for Rapid Genotyping and Genome Sequencing. In Methods in Molecular Biology; Humana Press: New York, NY, USA, 2018; pp. 11–20. [Google Scholar]
- Petersen, C.; Sørensen, T.; Westphal, K.R.; Fechete, L.I.; Sondergaard, T.E.; Sørensen, J.L.; Nielsen, K.L. High Molecular Weight DNA Extraction Methods Lead to High Quality Filamentous Ascomycete Fungal Genome Assemblies Using Oxford Nanopore Sequencing. Microb. Genom. 2022, 8, 816. [Google Scholar] [CrossRef] [PubMed]
- Thomma, B.P.H.J.; Seidl, M.F.; Shi-Kunne, X.; Cook, D.E.; Bolton, M.D.; van Kan, J.A.L.; Faino, L. Mind the Gap; Seven Reasons to Close Fragmented Genome Assemblies. Fungal Genet. Biol. 2016, 90, 24–30. [Google Scholar] [CrossRef]
- Araujo, R.; Sampaio-Maia, B. Fungal Genomes and Genotyping. In Advances in Applied Microbiology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 37–81. [Google Scholar]
- Farrer, R.A.; Fisher, M.C. Describing Genomic and Epigenomic Traits Underpinning Emerging Fungal Pathogens. In Advances in Genetics; Elsevier: Amsterdam, The Netherlands, 2017; pp. 73–140. [Google Scholar]
- Stavrou, A.A.; Mixão, V.; Boekhout, T.; Gabaldón, T. Misidentification of Genome Assemblies in Public Databases: The Case of Naumovozyma dairenensis and Proposal of a Protocol to Correct Misidentifications. Yeast 2018, 35, 425–429. [Google Scholar] [CrossRef]
- Matute, D.R.; Sepúlveda, V.E. Fungal Species Boundaries in the Genomics Era. Fungal Genet. Biol. 2019, 131, 103249. [Google Scholar] [CrossRef] [PubMed]
- Stengel, A.; Stanke, K.M.; Quattrone, A.C.; Herr, J.R. Improving Taxonomic Delimitation of Fungal Species in the Age of Genomics and Phenomics. Front. Microbiol. 2022, 13, 847067. [Google Scholar] [CrossRef]
- Xu, J. Fungal Species Concepts in the Genomics Era. Genome 2020, 63, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Ahrendt, S.R.; Mondo, S.J.; Haridas, S.; Grigoriev, I.V. MycoCosm, the JGI’s Fungal Genome Portal for Comparative Genomic and Multiomics Data Analyses. In Methods in Molecular Biology; Humana: New York, NY, USA, 2023; pp. 271–291. [Google Scholar]
- Grigoriev, I.V.; Nikitin, R.; Haridas, S.; Kuo, A.; Ohm, R.; Otillar, R.; Riley, R.; Salamov, A.; Zhao, X.; Korzeniewski, F.; et al. MycoCosm Portal: Gearing up for 1000 Fungal Genomes. Nucleic Acids Res. 2014, 42, D699–D704. [Google Scholar] [CrossRef] [PubMed]
- Skrzypek, M.S.; Binkley, J.; Binkley, G.; Miyasato, S.R.; Simison, M.; Sherlock, G. The Candida Genome Database (CGD): Incorporation of Assembly 22, Systematic Identifiers and Visualization of High Throughput Sequencing Data. Nucleic Acids Res. 2017, 45, D592–D596. [Google Scholar] [CrossRef] [PubMed]
- Kersey, P.J.; Allen, J.E.; Armean, I.; Boddu, S.; Bolt, B.J.; Carvalho-Silva, D.; Christensen, M.; Davis, P.; Falin, L.J.; Grabmueller, C.; et al. Ensembl Genomes 2016: More Genomes, More Complexity. Nucleic Acids Res. 2016, 44, D574–D580. [Google Scholar] [CrossRef] [PubMed]
- Basenko, E.; Pulman, J.; Shanmugasundram, A.; Harb, O.; Crouch, K.; Starns, D.; Warrenfeltz, S.; Aurrecoechea, C.; Stoeckert, C.; Kissinger, J.; et al. FungiDB: An Integrated Bioinformatic Resource for Fungi and Oomycetes. J. Fungi 2018, 4, 39. [Google Scholar] [CrossRef]
- Zoll, J.; Snelders, E.; Verweij, P.E.; Melchers, W.J.G. Next-Generation Sequencing in the Mycology Lab. Curr. Fungal. Infect. Rep. 2016, 10, 37–42. [Google Scholar] [CrossRef]
- Fourgeaud, J.; Regnault, B.; Ok, V.; Da Rocha, N.; Sitterlé, É.; Mekouar, M.; Faury, H.; Milliancourt-Seels, C.; Jagorel, F.; Chrétien, D.; et al. Performance of Clinical Metagenomics in France: A Prospective Observational Study. Lancet Microbe 2024, 5, e52–e61. [Google Scholar] [CrossRef]
- Qi, Y.; Lin, W.-Q.; Liao, B.; Chen, J.-W.; Chen, Z.-S. Blood Plasma Metagenomic Next-Generation Sequencing for Identifying Pathogens of Febrile Neutropenia in Acute Leukemia Patients. Sci. Rep. 2023, 13, 20297. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Duan, Z.; Zeng, W.; Xie, S.; Xie, M.; Fu, H.; Ye, Q.; Xu, T.; Xie, L. Clinical Metagenomics Assessments Improve Diagnosis and Outcomes in Community-Acquired Pneumonia. BMC Infect. Dis. 2021, 21, 352. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.R.; Naccache, S.N.; Samayoa, E.; Biagtan, M.; Bashir, H.; Yu, G.; Salamat, S.M.; Somasekar, S.; Federman, S.; Miller, S.; et al. Actionable Diagnosis of Neuroleptospirosis by Next-Generation Sequencing. N. Engl. J. Med. 2014, 370, 2408–2417. [Google Scholar] [CrossRef] [PubMed]
- Hilt, E.E.; Ferrieri, P. Next Generation and Other Sequencing Technologies in Diagnostic Microbiology and Infectious Diseases. Genes 2022, 13, 1566. [Google Scholar] [CrossRef] [PubMed]
- Cameron, A.; Bohrhunter, J.L.; Taffner, S.; Malek, A.; Pecora, N.D. Clinical Pathogen Genomics. Clin. Lab. Med. 2020, 40, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Quince, C.; Walker, A.W.; Simpson, J.T.; Loman, N.J.; Segata, N. Shotgun Metagenomics, from Sampling to Analysis. Nat. Biotechnol. 2017, 35, 833–844. [Google Scholar] [CrossRef] [PubMed]
- Loman, N.J.; Constantinidou, C.; Christner, M.; Rohde, H.; Chan, J.Z.-M.; Quick, J.; Weir, J.C.; Quince, C.; Smith, G.P.; Betley, J.R.; et al. A Culture-Independent Sequence-Based Metagenomics Approach to the Investigation of an Outbreak of Shiga-Toxigenic Escherichia coli O104:H4. JAMA 2013, 309, 1502. [Google Scholar] [CrossRef] [PubMed]
- Oniciuc, E.; Likotrafiti, E.; Alvarez-Molina, A.; Prieto, M.; Santos, J.; Alvarez-Ordóñez, A. The Present and Future of Whole Genome Sequencing (WGS) and Whole Metagenome Sequencing (WMS) for Surveillance of Antimicrobial Resistant Microorganisms and Antimicrobial Resistance Genes across the Food Chain. Genes 2018, 9, 268. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, D.; Du, J.; Zhou, Y.; Cai, Y.; Sun, R.; Zhou, J.; Tian, J.; Wu, H.; Lu, M.; et al. Rapid Diagnosis of Talaromyces marneffei Infection Assisted by Metagenomic Next-Generation Sequencing in a HIV-Negative Patient. IDCases 2021, 23, e01055. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Jiang, E.; Yang, D.; Wei, J.; Zhao, M.; Feng, J.; Cao, J. Metagenomic Next-Generation Sequencing versus Traditional Pathogen Detection in the Diagnosis of Peripheral Pulmonary Infectious Lesions. Infect. Drug Resist. 2020, 13, 567–576. [Google Scholar] [CrossRef]
- Lin, P.; Chen, Y.; Su, S.; Nan, W.; Zhou, L.; Zhou, Y.; Li, Y. Diagnostic Value of Metagenomic Next-Generation Sequencing of Bronchoalveolar Lavage Fluid for the Diagnosis of Suspected Pneumonia in Immunocompromised Patients. BMC Infect. Dis. 2022, 22, 416. [Google Scholar] [CrossRef]
- Jin, X.; Li, J.; Shao, M.; Lv, X.; Ji, N.; Zhu, Y.; Huang, M.; Yu, F.; Zhang, C.; Xie, L.; et al. Improving Suspected Pulmonary Infection Diagnosis by Bronchoalveolar Lavage Fluid Metagenomic Next-Generation Sequencing: A Multicenter Retrospective Study. Microbiol. Spectr. 2022, 10, e02473-21. [Google Scholar] [CrossRef]
- Sun, H.; Wang, F.; Zhang, M.; Xu, X.; Li, M.; Gao, W.; Wu, X.; Han, H.; Wang, Q.; Yao, G.; et al. Diagnostic Value of Bronchoalveolar Lavage Fluid Metagenomic Next-Generation Sequencing in Pneumocystis jirovecii Pneumonia in Non-HIV Immunosuppressed Patients. Front. Cell Infect. Microbiol. 2022, 12, 872813. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Li, H.; Chen, H.; Li, Z.; Ding, W.; Wang, J.; Yin, Y.; Jin, L.; Sun, S.; Jing, C.; et al. Metagenomic Next-Generation Sequencing to Identify Pathogens and Cancer in Lung Biopsy Tissue. eBioMedicine 2021, 73, 103639. [Google Scholar] [CrossRef]
- Wang, J.; Han, Y.; Feng, J. Metagenomic Next-Generation Sequencing for Mixed Pulmonary Infection Diagnosis. BMC Pulm. Med. 2019, 19, 252. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, K.; Li, Y.; Li, W.; Liu, D. Joint Application of Metagenomic Next-Generation Sequencing and Histopathological Examination for the Diagnosis of Pulmonary Infectious Disease. Microbiol. Spectr. 2024, 12, e00586-23. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.R.; O’Donovan, B.D.; Gelfand, J.M.; Sample, H.A.; Chow, F.C.; Betjemann, J.P.; Shah, M.P.; Richie, M.B.; Gorman, M.P.; Hajj-Ali, R.A.; et al. Chronic Meningitis Investigated via Metagenomic Next-Generation Sequencing. JAMA Neurol. 2018, 75, 947. [Google Scholar] [CrossRef] [PubMed]
- Qian, M.; Li, C.; Zhang, M.; Zhan, Y.; Zhu, B.; Wang, L.; Shen, Q.; Yue, L.; Chen, H.; Cheng, Y. Blood Metagenomics Next-Generation Sequencing Has Advantages in Detecting Difficult-to-Cultivate Pathogens, and Mixed Infections: Results from a Real-World Cohort. Front. Cell Infect. Microbiol. 2023, 13, 1268281. [Google Scholar] [CrossRef]
- Gu, W.; Deng, X.; Lee, M.; Sucu, Y.D.; Arevalo, S.; Stryke, D.; Federman, S.; Gopez, A.; Reyes, K.; Zorn, K.; et al. Rapid Pathogen Detection by Metagenomic Next-Generation Sequencing of Infected Body Fluids. Nat. Med. 2021, 27, 115–124. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, F.; Liu, X.; Huang, J. Clinical Application of Metagenomic Next-Generation Sequencing in Patients with Different Organ System Infection: A Retrospective Observational Study. Medicine 2024, 103, e36745. [Google Scholar] [CrossRef]
- Jia, K.; Huang, S.; Shen, C.; Li, H.; Zhang, Z.; Wang, L.; Zhao, G.; Wu, Z.; Lin, Y.; Xia, H.; et al. Enhancing Urinary Tract Infection Diagnosis for Negative Culture Patients with Metagenomic Next-Generation Sequencing (MNGS). Front. Cell Infect. Microbiol. 2023, 13, 1119020. [Google Scholar] [CrossRef] [PubMed]
- Hoang, M.T.V.; Irinyi, L.; Hu, Y.; Schwessinger, B.; Meyer, W. Long-Reads-Based Metagenomics in Clinical Diagnosis with a Special Focus on Fungal Infections. Front. Microbiol. 2022, 12, 708550. [Google Scholar] [CrossRef]
- McIntyre, A.B.R.; Ounit, R.; Afshinnekoo, E.; Prill, R.J.; Hénaff, E.; Alexander, N.; Minot, S.S.; Danko, D.; Foox, J.; Ahsanuddin, S.; et al. Comprehensive Benchmarking and Ensemble Approaches for Metagenomic Classifiers. Genome Biol. 2017, 18, 182. [Google Scholar] [CrossRef] [PubMed]
- Blauwkamp, T.A.; Thair, S.; Rosen, M.J.; Blair, L.; Lindner, M.S.; Vilfan, I.D.; Kawli, T.; Christians, F.C.; Venkatasubrahmanyam, S.; Wall, G.D.; et al. Analytical and Clinical Validation of a Microbial Cell-Free DNA Sequencing Test for Infectious Disease. Nat. Microbiol. 2019, 4, 663–674. [Google Scholar] [CrossRef]
- Miller, S.; Naccache, S.N.; Samayoa, E.; Messacar, K.; Arevalo, S.; Federman, S.; Stryke, D.; Pham, E.; Fung, B.; Bolosky, W.J.; et al. Laboratory Validation of a Clinical Metagenomic Sequencing Assay for Pathogen Detection in Cerebrospinal Fluid. Genome Res. 2019, 29, 831–842. [Google Scholar] [CrossRef] [PubMed]
- Schlaberg, R.; Chiu, C.Y.; Miller, S.; Procop, G.W.; Weinstock, G. Validation of Metagenomic Next-Generation Sequencing Tests for Universal Pathogen Detection. Arch. Pathol. Lab. Med. 2017, 141, 776–786. [Google Scholar] [CrossRef]
Assay | Manufacturer | Method | Target | Species | Samples |
---|---|---|---|---|---|
A. fumigatus Bio-Evolution | Bio-Evolution, Brysur-Marne, France | Real-time PCR | ITS1 region | A. fumigatus | Serum, BALF, sinus biopsy |
artus® Aspergillus diff. RG PCR | Qiagen, Düsseldorf, Germany | Multiplex real-time PCR | Target unknown | A. fumigatus, A. terreus, A. flavus | Blood |
AsperGenius® Species and AsperGenius® Resistance | PathoNostics B.V, Maastrict, the Netherlands | Multiplex real-time PCR | 28S rDNA | A. fumigatus complex, A. terreus, Aspergillus spp. TR34/L98H, Tr46/Y112F/T289A mutations | BALF, serum, plasma |
Aspergillus spp. ELITe MGB® Kit | ELITechGroup S.p.A, Turin, Italy | Quantitative real-time PCR | 18S rDNA | A. niger, A. nidulans, A. terreus, A. flavus, A. versicolor, A. glaucus | BALF, aspirate, plasma |
AspID | OlmDiagnostics, Newcastle, United Kingdom | Multiplex real-time PCR | Target unknown | Aspergillus spp., A. terreus | BALF, serum, plasma |
FungiPlex® Aspergillus and Fungiplex® Aspergillus Azole_R | Bruker Daltonik GmbH, Bremen, Germany | Multiplex real-time PCR | Target unknown | A. fumigatus, A. flavus, A. niger, A. terreus TR34 and TR46 mutations | BALF, serum, plasma |
LightCycler Septifast | Roche Diagnostics, Mannheim, Germany | Multiplex real-time PCR | ITS region | A. fumigatus (and Candida spp.) | Blood |
Magicplex Sepsis Real-Time Test | Seegene, Seoul, Republic of Korea | Multiplex real-time PCR | Target unknown | A. fumigatus (and Candida spp.) | Blood |
MycoReal Aspergillus | Ingenetix GmbH, Vienna, Austria | Real-time PCR with melt curve analysis | ITS2 region | A. fumigatus, A. flavus, A. niudulans, A. niger, A. terreus | BALF, blood, aspirate, CSF, tissue |
MycoGENIE® Aspergillus Species and MycoGENIE® Aspergillus fumigatus and resistance TR34/L98H | Ademtech, Pessac, France | Duplex real-time PCR assay | 28S rDNA | Aspergillus spp., A. fumigatus TR34/L98H mutations | Serum, biopsy, lower respiratory tract samples |
Assay | Manufacturer | Method | Target | Samples |
---|---|---|---|---|
RealStar® Pneumocystis jirovecii | Altona Diagnostics GmbH, Hamburg, Germany | Real-time PCR | mtLSU | Unspecified |
PneumoGenius® | PathoNostics B.V., Maastricht, The Netherlands | Multiplex real-time PCR | mtLSU, DHPS mutations | BALF |
AusDiagnostics Respiratory panel, pneumonia panel, atypical pneumonia panel | AusDiagnostics Pty Ltd., Mascot, NSW, Australia | Multiplex real-time PCR | Unknown | Swabs, sputum, BALF, tissue, nasopharyngeal aspirate |
Bio-Evolution Pneumocystis | Bio-Evolution, Brysur-Marne, France | Real-time PCR | mtLSU | BALF |
Pneumocystis ELITe MGB | ELITechGroup S.p.A, Turin, Italy | Quantitative real-time PCR | mtLSU | Bronchial aspirate, sputum |
PneumID | OlmDiagnostics, Newcastle, United Kingdom | Real-time PCR | mtLSU | BALF, washings |
Fungiplex® Pneumocystis IVD | Bruker Daltonik GmbH, Bremen, Germany | Multiplex real-time PCR | Unknown | BALF, throat swabs |
MycoReal® Pneumocystis | Ingenetix GmbH, Vienna, Austria | Real-time PCR | mtLSU | BALF |
MycoGENIE® Pneumocystis jirovecii | Ademtech, Pessac, France | Real-time PCR | mtLSU | Respiratory tract samples |
AmpliSens® Pneumocystis jirovecii-FRT | Ecoli Dx, s.r.o., Prague, Czechia | Real-time PCR | mtLSU | BALF, sputum, oropharyngeal and tracheal aspirates, lung biopsy, oropharyngeal washes, swabs |
RIDA®GENE Pneumocystis jirovecii | R-Biopharm, Darmstadt, Germany | Multiplex Real-time PCR | mtLSU | BALF |
Pneumocystis jirovecii (carinii) Real-TM | Sacace, Como, Italy | Real-time PCR | mtLSU | Sputum, BALF, tissue, swabs |
LightMix Modular Pneumocystis jiroveci | Roche Diagnostics, Mannheim, Germany | Real-time PCR | MSG | Unspecified |
RealCycler PJIR | Progenie-molecular, Valencia, Spain | Real-time PCR | mtLSU | BALF |
Assay | Manufacturer | Method | Target | Samples |
---|---|---|---|---|
Cryptococcus neoformans real-TM | Sacace, Como, Italy | Real-time PCR | Unknown | CSF, BALF, sputum, blood, skin lesions aspirate, viscera biopsy and autopsy material |
BioFire® FilmArray® Meningitis/Encephalitis (ME) Panel & Blood Culture Identification (BCID) Panel | bioMérieux, Marcy-l’Étoile, France | Integrated extraction and amplification with multiplex PCR and high-resolution melt analysis | Unknown | CSF, blood |
Multiplex Tandem PCR (MT-PCR) CSF and Atypical Pneumonia panels | AusDiagnostics Pty Ltd., Mascot, NSW, Australia | Multiplex PCR | Unknown | CSF, swabs, sputum, BALF, tissue, nasopharyngeal aspirate |
Assay | Manufacturer | Method | Target | Species | Samples |
---|---|---|---|---|---|
T2Candida® | T2 Biosystems, Lexington, MA, USA | Integrated extraction and T2 magnetic resonance | ITS2 | C. albicans/C. tropicalis, N. glabratus complex/P. kudriavzevii, C. parapsilosis complex | Whole blood |
AusDiagnostics Sepsis panel | AusDiagnostics Pty Ltd., Mascot, NSW, Australia | Multiplex tandem PCR | ITS1 or ITS2 | C. albicans, N. glabratus, P. kudriavzevii, C. parapsilosis, C. tropicalis | Unknown |
CandID® and AurisID® | OlmDiagnostics, Newcastle, UK | Multiplex real-time PCR | Target unknown | C. albicans, C. dublinensis, N. glabratus, P. kudriavzevii, C. parapsilosis and C. tropicalis and C. auris | Surveillance swabs (axilla/groin, nasopharyngeal), serum, plasma |
BioFire® FilmArray® Blood Culture Identification (BCID) Panel | bioMérieux, Marcy-l’Étoile, France | Integrated extraction and amplification with multiplex PCR and high-resolution melt analysis | Target unknown | C. albicans, N. glabratus, P. kudriavzevii, C. parapsilosis, C. tropicalis | Positive blood culture |
FungiPlex® Candida and FungiPlex® Candida auris | Bruker Daltonik GmbH, Bremen, Germany | Multiplex real-time PCR | Target unknown | Candida spp. (C. albicans, C. parapsilosis, C. dublinensis, C. tropicalis), N. glabratus, P. kudriavzevii and C. auris | (FungiPlex Candida) DNA extract from whole blood, serum, plasma (FungiPlex Candida auris) DNA extract from samples |
MagicPlex Sepsis Real-Time test | Seegene, Seoul, Republic of Korea | Multiplex real-time PCR | Target unknown | C. albicans, N. glabratus, P. kudriavzevii, C. parapsilosis and C. tropicalis (and A. fumigatus) | Whole blood |
MycoReal Candida & A. fumigatus | Ingenetix, Vienna, Austria | Real-time PCR with melt curve analysis | ITS2 | C. albicans, C. dubliniensis, N. glabratus, P. kudriavzevii, C. lusitaniae, C. parapsilosis and C. tropicalis, A. fumigatus | Whole blood, aspirates, punctates, CSF, BAL, tissue and FFPE |
SeptiFast Real-time PCR | Roche Diagnostics, Mannheim, Germany | Multiplex real-time PCR | Target unknown | C. albicans, N. glabratus, P. kudriavzevii, C. parapsilosis and C. tropicalis | Blood |
SepsiTest-UMD | Molzym Molecular Diagnostics, Bremen, Germany | PCR and Sanger sequencing | 18S rDNA | All fungal species | Whole blood, blood cultures, CSF, BALF, fluids, tissue, swabs, ultrasonic fluids (prostheses) |
Sepsis Flow Chip | Master Diagnostica, Granada, Spain | Multiplex PCR and hybridisation with DNA microarray (no specific DNA extraction step required) | ITS2 | C. albicans/C. tropicalis, N. glabratus complex/P. kudriavzevii and C. parapsilosis complex | Blood cultures, rectal exudates, colonies |
Assay | Manufacturer | Method | Target | Species | Samples |
---|---|---|---|---|---|
MucorGenius® | PathoNostics B.V., Masstricht, The Netherlands | Multiplex Real-Time PCR | 28S rDNA | Rhizopus spp., Mucor spp., Lichtheimia spp., Cunninghamella spp., Rhizomucor spp. | BALF, biopsies, paraffin-embedded tissue, serum |
MycoGenie® Aspergillus spp./Mucorales spp. | Ademtech, Pessac, France | Duplex Real-Time PCR | 28S rDNA | Aspergillus spp., Rhizomucor pusillus, Mucor indicius, M. circinelloides, M. plombeus, Rhizophus arrhizus, R. stolonifera, Lichtheimia corymbifera, L. glauca, Cunninghamella bertholletiae and Mycotypha spp. | Serum, biopsies, lower respiratory tract samples |
FungiPlex® Mucorales | Bruker Daltonik, GmbH, Bremen, Germany | Real-Time PCR | Target unknown | Rhizopus spp., Lichtheimia spp., Cunninghamella spp., Rhizomucor spp., Mucor spp., Actinomucor spp., Apophysomyces spp., Saksenaea spp., Syncephalastrum spp. | Serum, plasma, whole blood |
Antifungal Class | Molecular Resistance Mechanism | Phenotype |
---|---|---|
Azoles | UPC2 or ERG11 point mutations | Decreased target enzyme (lanosterol 14-ademethylase) affinity for drug |
ERG3 point mutations | Inactivation of C5 sterol desaturase altering ergosterol synthetic pathway | |
ERG11 upregulation by gene duplication and transcription factor regulation | Increased concentration of target enzyme | |
CDR1/CDR2 and MDR1 upregulation by point mutations in TAC1, MRR1 and MRR2 transcription factors | Decreased intracellular drug concentration (efflux pump upregulation) | |
Echinocandins | FKS1 and FKS2 mutations | Decreased glucan synthase |
Antifungal Class | Molecular Resistance Mechanism | Phenotype |
---|---|---|
Azoles | cyp51A point mutations | Decreased target enzyme 14α-demethylase affinity for drug |
cyp51A tandem repeat in the promoter region with or without accompanying mutations | Increases the protein level of expression and alters the docking of azoles conferring resistance | |
Non-cyp51A: Overexpression of ATP binding cassette | Decrease in intracellular drug concentrations (efflux pump upregulation) | |
Echinocandins | FKS1 mutation dependent-mutations in hotspot regions | BDG synthase enzyme with highly reduced sensitivity to echinocandin drugs |
FKS1 mutation independent-caspofungin mediated alteration of the glucan synthetase lipid microenvironment and off-target effect on mitochondria leading to increased reactive oxygen species | Alters the enzyme drug-binding affinity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, D.; Sivalingam, V.; Tang, H.M.; Montgomery, J.M.; Chen, S.C.-A.; Halliday, C.L. Molecular Diagnostics for Invasive Fungal Diseases: Current and Future Approaches. J. Fungi 2024, 10, 447. https://doi.org/10.3390/jof10070447
Pham D, Sivalingam V, Tang HM, Montgomery JM, Chen SC-A, Halliday CL. Molecular Diagnostics for Invasive Fungal Diseases: Current and Future Approaches. Journal of Fungi. 2024; 10(7):447. https://doi.org/10.3390/jof10070447
Chicago/Turabian StylePham, David, Varsha Sivalingam, Helen M. Tang, James M. Montgomery, Sharon C.-A. Chen, and Catriona L. Halliday. 2024. "Molecular Diagnostics for Invasive Fungal Diseases: Current and Future Approaches" Journal of Fungi 10, no. 7: 447. https://doi.org/10.3390/jof10070447
APA StylePham, D., Sivalingam, V., Tang, H. M., Montgomery, J. M., Chen, S. C. -A., & Halliday, C. L. (2024). Molecular Diagnostics for Invasive Fungal Diseases: Current and Future Approaches. Journal of Fungi, 10(7), 447. https://doi.org/10.3390/jof10070447