Seasonal Dynamics of Culturable Yeasts in Ornithogenically Influenced Soils in a Temperate Forest and Evaluation of Extracellular Enzyme Secretion in Tausonia pullulans at Different Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location, Sample Processing, Yeast Cultivation and Isolation
2.2. Molecular Identification (DNA Extraction, Amplification, Sequencing and Analysis)
2.3. Evaluation of Esterase, Lipase and Protease Extracellular Enzyme Activities for Strains of Tausonia pullulans at 2, 4, 10, 15 and 20 °C
2.4. Statistical Data Analyses
3. Results
3.1. Yeast Abundance
3.2. Yeast Diversity
3.3. Comparison of Yeast Groups
3.4. Production of Hydrolytic Enzymes
4. Discussion
4.1. Yeast Abundance
4.2. Yeast Diversity
4.3. Extracellular Enzyme Secretion by T. pullulans
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yurkov, A.M. Yeasts of the soil–obscure but precious. Yeast 2018, 35, 369–378. [Google Scholar] [CrossRef]
- Botha, A. Yeasts in soil. In Biodiversity and Ecophysiology of Yeasts. The Yeast Handbook; Gabor, P., Rosa, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 221–240. [Google Scholar] [CrossRef]
- Botha, A. The importance and ecology of yeasts in soil. Soil Biol. Biochem. 2011, 43, 1–8. [Google Scholar] [CrossRef]
- Mozzachiodi, S.; Bai, F.Y.; Baldrian, P.; Bell, G.; Boundy-Mills, K.; Buzzini, P.; Čadež, N.; Riffo, F.C.; Dashko, S.; Dimitrov, R.; et al. Yeasts from temperate forests. Yeast 2022, 39, 4–24. [Google Scholar] [CrossRef] [PubMed]
- Sláviková, E.; Vadkertiová, R. The occurrence of yeasts in the forest soils. J. Basic Microbiol. 2000, 40, 207–212. [Google Scholar] [CrossRef]
- Yurkov, A.; Inácio, J.; Chernov, I.Y.; Fonseca, A. Yeast biogeography and the effects of species recognition approaches: The case study of widespread basidiomycetous species from birch forests in Russia. Curr. Microbiol. 2015, 70, 587–601. [Google Scholar] [CrossRef]
- Yurkov, A.M.; Kemler, M.; Begerow, D. Assessment of yeast diversity in soils under different management regimes. Fungal Ecol. 2012, 5, 24–35. [Google Scholar] [CrossRef]
- Yurkov, A.M.; Röhl, O.; Pontes, A.; Carvalho, C.; Maldonado, C.; Sampaio, J.P. Local climatic conditions constrain soil yeast diversity patterns in Mediterranean forests, woodlands and scrub biome. FEMS Yeast Res. 2016, 16, fov103. [Google Scholar] [CrossRef]
- Yurkov, A.M.; Kemler, M.; Begerow, D. Species accumulation curves and incidence-based species richness estimators to appraise the diversity of cultivable yeasts from beech forest soils. PLoS ONE 2011, 6, 236–247. [Google Scholar] [CrossRef] [PubMed]
- Maksimova, I.A.; Glushakova, A.M.; Kachalkin, A.V.; Chernov, I.Y.; Panteleeva, S.N.; Reznikova, Z.I. Yeast communities of Formica aquilonia colonies. Microbiology 2016, 85, 124–129. [Google Scholar] [CrossRef]
- Byzov, B.A.; Thanh, V.N.; Babjeva, I.P. Yeasts associated with soil invertebrates. Biol. Fert. Soils 1993, 16, 183–187. [Google Scholar] [CrossRef]
- Chryssanthou, E.; Wennberg, H.; Bonnedahl, J.; Olsen, B. Occurrence of yeasts in faecal samples from Antarctic and South American seabirds. Mycoses 2011, 54, e811–e815. [Google Scholar] [CrossRef] [PubMed]
- Francesca, N.; Carvalho, C.; Sannino, C.; Guerreiro, M.A.; Almeida, P.M.; Settanni, L.; Massa, B.; Sampaio, J.P.; Moschetti, G. Yeasts vectored by migratory birds collected in the Mediterranean island of Ustica and description of Phaffomyces usticensis fa sp. nov., a new species related to the cactus ecoclade. FEMS Yeast Res. 2014, 14, 910–921. [Google Scholar] [CrossRef] [PubMed]
- Moschetti, G.; Alfonzo, A.; Francesca, N. Yeasts in Birds. In Yeasts in Natural Ecosystems: Diversity; Buzzini, P., Lachance, M.A., Yurkov, A., Eds.; Springer: Cham, Switzerland, 2017; pp. 435–454. [Google Scholar] [CrossRef]
- Rhimi, W.; Sgroi, G.; Aneke, C.I.; Annoscia, G.; Latrofa, M.S.; Mosca, A.; Veneziano, V.; Otranto, D.; Alastruey-Izquierdo, A.; Cafarchia, C. Wild boar (Sus scrofa) as reservoir of zoonotic yeasts: Bioindicator of environmental quality. Mycopathologia 2022, 187, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Yurkov, A.M.; Wehde, T.; Federici, J.; Schäfer, A.M.; Ebinghaus, M.; Lotze-Engelhard, S.; Mittelbach, M.; Prior, P.; Richter, C.; Röhl, O.; et al. Yeast diversity and species recovery rates from beech forest soils. Mycol. Prog. 2016, 15, 845–859. [Google Scholar] [CrossRef]
- Mašínová, T.; Bahnmann, B.D.; Větrovský, T.; Tomšovský, M.; Merunková, K.; Baldrian, P. Drivers of yeast community composition in the litter and soil of a temperate forest. FEMS Microbiol. Ecol. 2017, 93, fiw223. [Google Scholar] [CrossRef] [PubMed]
- Mestre, M.C.; Rosa, C.A.; Safar, S.V.; Libkind, D.; Fontenla, S.B. Yeast communities associated with the bulk-soil, rhizosphere and ectomycorrhizosphere of a Nothofagus pumilio forest in northwestern Patagonia, Argentina. FEMS Microbiol. Ecol. 2011, 78, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Takashima, M.; Sugita, T.; Van, B.H.; Nakamura, M.; Endoh, R.; Ohkuma, M. Taxonomic richness of yeasts in Japan within subtropical and cool temperate areas. PLoS ONE 2012, 7, e50784. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.; Cavello, I.; Garmendia, G.; Rufo, C.; Cavalitto, S.; Vero, S. Yeasts from sub-Antarctic region: Biodiversity, enzymatic activities and their potential as oleaginous microorganisms. Extremophiles 2016, 20, 759–769. [Google Scholar] [CrossRef]
- Francesca, N.; Guerreiro, M.A.; Carvalho, C.; Coelho, M.; Alfonzo, A.; Randazzo, W.; Sampaio, J.P.; Moschetti, G. Jaminaea phylloscopi sp. nov. (Microstromatales), a basidiomycetous yeast isolated from migratory birds in the Mediterranean Basin. Int. J. Syst. Evol. Microbiol. 2016, 66, 824–829. [Google Scholar] [CrossRef]
- Glushakova, A.; Kachalkin, A. Wild and partially synanthropic bird yeast diversity, in vitro virulence, and antifungal susceptibility of Candida parapsilosis and Candida tropicalis strains isolated from feces. Int. Microbiol. 2023, 27, 883–897. [Google Scholar] [CrossRef]
- Vaz, A.B.; Rosa, L.H.; Vieira, M.L.; Garcia, V.D.; Brandão, L.R.; Teixeira, L.C.; Moline, M.; Lipkind, D.; van Broock, M.; Rosa, C.A. The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz. J. Microbiol. 2011, 42, 937–947. [Google Scholar] [CrossRef]
- Duarte, A.W.F.; Dayo-Owoyemi, I.; Nobre, F.S.; Pagnocca, F.C.; Chaud, L.C.S.; Pessoa, A.; Felipe, M.G.A.; Sette, L.D. Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Extremophiles 2013, 17, 1023–1035. [Google Scholar] [CrossRef]
- de Sousa, J.R.; Goncalves, V.N.; de Holanda, R.A.; Santos, D.A.; Bueloni, C.F.; Costa, A.O.; Petry, M.V.; Rosa, C.A.; Rosa, L.H. Pathogenic potential of environmental resident fungi from ornithogenic soils of Antarctica. Fungal Biol. 2017, 121, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, V.N.; Pimenta, R.S.; Lopes, F.A.; Santos, K.C.; Silva, M.C.; Convey, P.; Câmara, P.E.A.S.; Rosa, L.H. Fungal and fungal-like diversity present in ornithogenically influenced maritime Antarctic soils assessed using metabarcoding. J. Basic Microbiol. 2024, 64. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Nam-Ing Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS), Vienna, Austria, 2022.
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Fungal Barcoding Consortium; Fungal Barcoding Consortium Author List; Bolchacova, E.; et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. Available online: https://www.pnas.org/doi/10.1073/pnas.1117018109 (accessed on 4 June 2024). [CrossRef]
- Vu, D.; Groenewald, M.; Szöke, S.; Cardinali, G.; Eberhardt, U.; Stielow, B.; de Vries, M.; Verkleij, G.J.M.; Crous, P.W.; Boekhout, T.; et al. DNA barcoding analysis of more than 9000 yeast isolates contributes to quantitative thresholds for yeast species and genera delimitation. Stud. Mycol. 2016, 85, 91–105. Available online: https://pubmed.ncbi.nlm.nih.gov/28050055/ (accessed on 4 June 2024). [CrossRef] [PubMed]
- Glushakova, A.M.; Kachalkin, A.V. Endophytic yeasts in Malus domestica and Pyrus communis fruits under anthropogenic impact. Microbiology 2017, 86, 128–135. [Google Scholar] [CrossRef]
- Kachalkin, A.V.; Glushakova, A.M.; Venzhik, A.S. Presence of clinically significant endophytic yeasts in agricultural crops: Monitoring and ecological safety assessment. IOP Conf. Ser. Earth Environ. Sci. 2021, 723, 042005. Available online: https://iopscience.iop.org/article/10.1088/1755-1315/723/4/042005/meta (accessed on 28 May 2024). [CrossRef]
- Troncoso, E.; Barahona, S.; Carrasco, M.; Villarreal, P.; Alcaíno, J.; Cifuentes, V.; Baeza, M. Identification and characterization of yeasts isolated from the South Shetland Islands and the Antarctic Peninsula. Polar Biol. 2017, 40, 649–658. [Google Scholar] [CrossRef]
- Robinson, C.H. Cold adaptation in Arctic and Antarctic fungi. New Phytol. 2001, 151, 341–353. [Google Scholar] [CrossRef]
- Plou, F.J.; Ferrer, M.; Nuero, O.M.; Calvo, M.V.; Alcalde, M.; Reyes, F.; Ballesteros, A. Analysis of Tween 80 as an esterase/lipase substrate for lipolytic activity assay. Biotechnol. Tech. 1998, 12, 183–186. [Google Scholar] [CrossRef]
- da Silva, M.K.; da Silva, A.V.; Fernandez, P.M.; Montone, R.C.; Alves, R.P.; de Queiroz, A.C.; de Oliveira, V.M.; dos Santos, V.P.; Putzke, J.; Rosa, L.H.; et al. Extracellular hydrolytic enzymes produced by yeasts from Antarctic lichens. An. Acad. Bras. Cienc. 2022, 94, e20210540. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Lim, W.J.; Suh, H.J. Feather-degrading Bacillus species from poultry waste. Process. Biochem. 2001, 37, 287–291. [Google Scholar] [CrossRef]
- Tsuji, M. Genetic diversity of yeasts from East Ongul Island, East Antarctica and their extracellular enzymes secretion. Polar Biol. 2018, 41, 249–258. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Mob. Comput. Commun. Rev. 2001, 5, 3–55. [Google Scholar] [CrossRef]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. Available online: https://palaeo-electronica.org/2001_1/past/past.pdf (accessed on 1 July 2024).
- Glushakova, A.M.; Chernov, I.Y. Seasonal dynamic of the numbers of epiphytic yeasts. Microbiology 2007, 76, 590–595. [Google Scholar] [CrossRef]
- Fonseca, Á.; Inácio, J. Phylloplane Yeasts. In Biodiversity and Ecophysiology of Yeasts. The Yeast Handbook, 1st ed.; Gabor, P., Rosa, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 263–301. [Google Scholar] [CrossRef]
- Białkowska, A.; Turkiewicz, M. Miscellaneous Cold-Active Yeast Enzymes of Industrial Importance. In Cold-adapted Yeasts; Buzzini, P., Margesin, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 277–395. [Google Scholar] [CrossRef]
- Buzzini, P.; Turchetti, B.; Yurkov, A. Extremophilic yeasts: The toughest yeasts around? Yeast 2018, 35, 487–497. [Google Scholar] [CrossRef]
- Gong, D.; Cong, H.; Liu, S.; Zhang, L.; Wei, T.; Shi, X.; Wang, Z.; Wu, X.; Song, J. Transcriptome Identification and Analysis of Fatty Acid Desaturase Gene Expression at Different Temperatures in Tausonia pullulans 6A7. Microorganisms 2023, 11, 2916. [Google Scholar] [CrossRef]
- Russell, N.J.; Cowan, D.A. 16 Handling of Psychrophilic Microorganisms. In Methods in Microbiology; Academic Press: Cambridge, MA, USA, 2006; Volume 35, pp. 371–393. [Google Scholar] [CrossRef]
- Golubev, W.I. New species of basidiomycetous yeasts, Rhodotorula creatinovora and R. yakutica, isolated from permafrost soils of Eastern-Siberian Arctic. Mykol. I Phytopathol. 1998, 32, 8–13. [Google Scholar]
- Gomes, E.C.Q.; Figueredo, H.M.; de Oliveira, F.S.; Gonçalves, C.E.; Schaefer, R.; Michel, R.F.; Rosa, C.A.; Rosa, L.H. Fungi Present in Soils of Antarctica. In Fungi of Antarctica; Rosa, L., Ed.; Springer: Cham, Switzerland, 2019; pp. 43–67. [Google Scholar] [CrossRef]
- Maeng, S.; Park, Y.; Srinivasan, S. Isolation of wild yeasts from soils collected in Pochoen-si, Korea and characterization of unrecorded yeasts. J. Species Res. 2020, 9, 204–209. [Google Scholar] [CrossRef]
- Kurosawa, A.; Nishioka, R.; Aburai, N.; Fujii, K. Isolation and Characterization of Basidiomycetous Yeasts Capable of Producing Phytase under Oligotrophic Conditions. Microorganisms 2022, 10, 2182. [Google Scholar] [CrossRef] [PubMed]
- Rusinova-Videva, S.; Ognyanov, M.; Georgiev, Y.; Petrova, A.; Dimitrova, P.; Kambourova, M. Chemical characterization and biological effect of exopolysaccharides synthesized by Antarctic yeasts Cystobasidium ongulense AL101 and Leucosporidium yakuticum AL102 on murine innate immune cells. World J. Microb. Biot. 2023, 39, 39. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Z.; Wang, Q.M.; Theelen, B.; Groenewald, M.; Bai, F.Y.; Boekhout, T. Phylogeny of tremellomycetous yeasts and related dimorphic and filamentous basidiomycetes reconstructed from multiple gene sequence analyses. Stud. Mycol. 2015, 81, 1–26. [Google Scholar] [CrossRef]
- di Menna, M.E. Yeasts in Antarctic soil. Antonie Leeuwenhoek 1966, 32, 29–38. [Google Scholar] [CrossRef]
- Cavello, I.A.; Bezus, B.; Martinez, A.; Garmendia, G.; Vero, S.; Cavalitto, S. Yeasts from Tierra Del Fuego Province (Argentina): Biodiversity, characterization and bioprospection of hydrolytic enzymes. Geomicrobiol. J. 2019, 36, 847–857. [Google Scholar] [CrossRef]
- Branda, E.; Turchetti, B.; Diolaiuti, G.; Pecci, M.; Smiraglia, C.; Buzzini, P. Yeast and yeast-like diversity in the southernmost glacier of Europe (Calderone Glacier, Apennines, Italy). FEMS Microbiol. Ecol. 2010, 72, 354–369. [Google Scholar] [CrossRef]
- Babjeva, I.; Reshetova, I. Yeast resources in natural habitats at polar circle latitude. Food Technol. Biotechnol. 1998, 36, 1–5. [Google Scholar]
- Vadkertiová, R.; Dudášová, H.; Stratilová, E.; Balaščáková, M. Diversity of yeasts in the soil adjacent to fruit trees of the Rosaceae family. Yeast 2019, 36, 617–631. [Google Scholar] [CrossRef] [PubMed]
- Yurkov, A.M.; Sannino, C.; Turchetti, B. Mrakia fibulata sp. nov., a psychrotolerant yeast from temperate and cold habitats. Antonie Leeuwenhoek 2020, 113, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Lee, H.W.; Kim, J.Y.; Kang, S.E.; Roh, S.W.; Hong, S.W.; Yoo, S.R.; Kim, T.W. Impact of fermentation conditions on the diversity of white colony-forming yeast and analysis of metabolite changes by white colony-forming yeast in kimchi. Food Res. Int. 2020, 136, 109315. [Google Scholar] [CrossRef] [PubMed]
- Libkind, D.; Brizzio, S.; Ruffini, A.; Gadanho, M.; van Broock, M.; Paulo Sampaio, J. Molecular characterization of carotenogenic yeasts from aquatic environments in Patagonia, Argentina. Antonie Leeuwenhoek 2003, 84, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zheng, G.; Chen, Z.; Ding, X.; Wu, J.; Zhang, H.; Ji, S. Psychrophilic yeasts: Insights into their adaptability to extremely cold environments. Genes 2023, 14, 158. [Google Scholar] [CrossRef] [PubMed]
- Vadkertiová, R.; Dudášová, H.; Balaščáková, M. Yeasts in agricultural and managed soils. In Yeasts in Natural Ecosystems: Diversity; Buzzini, P., Lachance, M.A., Yurkov, A.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 117–144. [Google Scholar] [CrossRef]
- Yurkov, A. Yeasts in forest soils. In Yeasts in Natural Ecosystems: Diversity; Buzzini, P., Lachance, M.A., Yurkov, A.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 88–116. [Google Scholar] [CrossRef]
- Groenewald, M.; Lombard, L.; de Vries, M.; Lopez, A.G.; Smith, M.; Crous, P.W. Diversity of yeast species from Dutch garden soil and the description of six novel ascomycetes. FEMS Yeast Res. 2018, 18, foy076. [Google Scholar] [CrossRef] [PubMed]
- Samarasinghe, H.; Lu, Y.; Aljohani, R.; Al-Amad, A.; Yoell, H.; Xu, J. Global patterns in culturable soil yeast diversity. IScience 2021, 24, 103098. [Google Scholar] [CrossRef] [PubMed]
- Kurtzman, C.P.; Fell, J.W.; Boekhout, T. The Yeasts: A Taxonomic Study, 5th ed.; Kurtzman, C.P., Fell, J.W., Boekhout, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Chernov, I.Y. Yeast in Nature; Association of Scientific Publications of KMC: Moscow, Russia, 2013. (In Russian) [Google Scholar]
- Větrovský, T.; Kohout, P.; Kopecký, M.; Machac, A.; Man, M.; Bahnmann, B.D.; Brabcová, V.; Choi, J.; Meszárošová, L.; Human, Z.R.; et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 2019, 10, 5142. [Google Scholar] [CrossRef] [PubMed]
- Sláviková, E.; Vadkertiová, R. Seasonal occurrence of yeasts and yeast-like organisms in the river Danube. Antonie Leeuwenhoek 1997, 72, 77–80. [Google Scholar] [CrossRef]
- Vadkertiová, R.; Sláviková, E. Metal tolerance of yeasts isolated from water, soil and plant environments. J. Basic Microbiol. 2006, 46, 145–152. [Google Scholar] [CrossRef]
- Herz, S.; Weber, R.W.; Anke, H.; Mucci, A.; Davoli, P. Intermediates in the oxidative pathway from torulene to torularhodin in the red yeasts Cystofilobasidium infirmominiatum and C. capitatum (Heterobasidiomycetes, Fungi). Phytochemistry 2007, 68, 2503–2511. [Google Scholar] [CrossRef] [PubMed]
- Kot, A.M.; Sęk, W.; Kieliszek, M.; Błażejak, S.; Pobiega, K.; Brzezińska, R. Diversity of red yeasts in various regions and environments of Poland and biotechnological potential of the isolated strains. Appl. Biochem. Biotechnol. 2023, 196, 3274–3316. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.Y.; Wei, X.Y.; Liu, X.Z.; Bai, F.Y. Cystofilobasidium josepaulonis sp. nov., a novel basidiomycetous yeast species. Int. J. Syst. Evol. Microbiol. 2023, 73, 005865. [Google Scholar] [CrossRef]
- Kot, A.M.; Laszek, P.; Kieliszek, M.; Pobiega, K.; Błażejak, S. Biotechnological potential of red yeast isolated from birch forests in Poland. Biotechnol. Lett. 2024, 46, 641–669. [Google Scholar] [CrossRef] [PubMed]
- Kemler, M.; Witfeld, F.; Begerow, D.; Yurkov, A. Phylloplane Yeasts in Temperate Climates. In Yeasts in Natural Ecosystems: Diversity; Buzzini, P., Lachance, M.A., Yurkov, A., Eds.; Springer: Cham, Switzerland, 2017; pp. 171–197. [Google Scholar] [CrossRef]
- Gouka, L.; Raaijmakers, J.M.; Cordovez, V. Ecology and functional potential of phyllosphere yeasts. Trends Plant Sci. 2022, 27, 1109–1123. [Google Scholar] [CrossRef] [PubMed]
- Trochine, A.; Bellora, N.; Nizovoy, P.; Duran, R.; Greif, G.; de García, V.; Batthyany, C.; Robello, C.; Libkind, D. Genomic and proteomic analysis of Tausonia pullulans reveals a key role for a GH15 glucoamylase in starch hydrolysis. Appl. Microbiol. Biotechnol. 2022, 106, 4655–4667. [Google Scholar] [CrossRef] [PubMed]
- Margesin, R.; Neuner, G.; Storey, K.B. Cold-loving microbes, plants, and animals—Fundamental and applied aspects. Naturwissenschaften 2007, 94, 77–99. [Google Scholar] [CrossRef]
- Tsuji, M.; Kudoh, S. Soil Yeasts in the Vicinity of Syowa Station, East Antarctica: Their diversity and extracellular enzymes, cold adaptation strategies, and secondary metabolites. Sustainability 2020, 12, 4518. [Google Scholar] [CrossRef]
- Duarte, A.W.F.; dos Santos, J.A.; Vianna, M.V.; Vieira, J.M.F.; Mallagutti, V.H.; Inforsato, F.J.; Wentzel, L.C.P.; Lario, L.D.; Rodrigues, A.; Pagnocca, F.C.; et al. Cold-adapted enzymes produced by fungi from terrestrial and marine Antarctic environments. Crit. Rev. Biotechnol. 2018, 38, 600–619. [Google Scholar] [CrossRef] [PubMed]
- Baeza, M.; Zúñiga, S.; Peragallo, V.; Gutierrez, F.; Barahona, S.; Alcaino, J.; Cifuentes, V. Response to cold: A comparative transcriptomic analysis in eight cold-adapted yeasts. Front. microbiol. 2022, 13, 828536. [Google Scholar] [CrossRef]
- de Souza, L.M.D.; Ogaki, M.B.; Teixeira, E.A.A.; Alves de Menezes, G.C.; Convey, P.; Rosa, C.A.; Rosa, L.H. Communities of culturable freshwater fungi present in Antarctic lakes and detection of their low-temperature-active enzymes. Braz. J. Microbiol. 2023, 54, 1923–1933. [Google Scholar] [CrossRef] [PubMed]
- Vaquero, M.E.; Barriuso, J.; Martínez, M.J.; Prieto, A. Properties, structure, and applications of microbial sterol esterases. Appl. Microbiol. Biotechnol. 2016, 100, 2047–2061. [Google Scholar] [CrossRef] [PubMed]
- Baeza, M.; Alcaíno, J.; Cifuentes, V.; Turchetti, B.; Buzzini, P. Cold-Active Enzymes from Cold-Adapted Yeasts. In Biotechnology of Yeasts and Filamentous Fungi; Sibirny, A., Ed.; Springer: Cham, Switzerland, 2017; pp. 297–324. [Google Scholar] [CrossRef]
Month | Air Day (°C) | Air Night (°C) | Topsoil (°C) |
---|---|---|---|
April | 13 | 4 | 2 |
May | 17 | 8 | 6 |
June | 19 | 9 | 12 |
July | 22 | 14 | 13.5 |
August | 24 | 15 | 16 |
September | 19 | 10 | 6 |
October | 5 | 3 | 4 |
November | 1 | −2 | −0.5 |
December | −5 | −9 | −4.5 |
January | −7 | −8 | −5.5 |
February | −4 | −6 | −5 |
March | 3 | −2 | −3 |
* Relative abundance range in percentage value (%). | ||||||
Ornithogenic soil | ||||||
Control soil | ||||||
0–5 | 5–10 | 10–15 | 15–20 | 20–25 | 25–30 | |
Yeast Species | GenBank Accession no. | Summer | Autumn | Winter | Spring | |
Ascomycota | ||||||
Arxiozyma bovina (Kurtzman & Robnett) Q.M. Wang, Yurkov & Boekhout | PP905601 | |||||
Aureobasidium pullulans (de Bary) G. Arnaud | PP905602 | |||||
Barnettozyma californica (Lodder) Kurtzman, Robnett & Basehoar-Power | PP905603 | |||||
Candida albicans (C.P. Robin) Berkhout | PP905604 | |||||
Candida parapsilosis (Ashford) Langeron & Talice | PP905605 | |||||
Candida sake (Saito & Oda) van Uden & H.R. Buckley | PP905606 | |||||
Candida santamariae Montrocher | PP905607 | |||||
Candida tropicalis (Castell.) Berkhout | PP905608 | |||||
Candida zeylanoides (Castell.) Langeron & Guerra | PP905609 | |||||
Clavispora lusitaniae Rodr. Mir. | PP905610 | |||||
Cyberlindnera misumaiensis (Y. Sasaki & Tak. Yoshida ex Kurtzman) Minter | PP905611 | |||||
Debaryomyces hansenii (Zopf) Lodder & Kreger-van Rij | PP905612 | |||||
Debaryomyces fabryi M. Ota | PP905613 | |||||
Dothiora sp. | PP905614 | |||||
Hanseniaspora uvarum (Niehaus) Shehata, Mrak & Phaff ex M.T. Sm. | PP905615 | |||||
Metschnikowia pulcherrima Pitt & M.W. Mill. | PP905616 | |||||
Meyerozyma guilliermondii (Wick.) Kurtzman & M. Suzuki | PP905617 | |||||
Nakaseomyces glabratus (H.W. Anderson) Sugita & M. Takash. | PP905618 | |||||
Starmerella vitis Čadež, Lachance, Drumonde-Neves, Sipiczki & G. Péter | PP905619 | |||||
Yamadazyma mexicana (M. Miranda, Holzschu, Phaff & Starmer) Billon-Grand (1989) | PP905620 | |||||
Yarrowia alimentaria (Knutsen, V. Robert & M.T. Sm.) Gouliam., R.A. Dimitrov, M.T. Sm. & M. Groenew. | PP481708 | |||||
Yarrowia lipolytica (Wick., Kurtzman & Herman) Van der Walt & Arx | PP905621 | |||||
Basidiomycota | ||||||
Cutaneotrichosporon moniliiforme (Weigmann & A. Wolff) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout | PP905622 | |||||
Cystofilobasidium capitatum (Fell, I.L. Hunter & Tallman) Oberw. & Bandoni | PP905623 | |||||
Cystofilobasidium infirmominiatum (Fell, I.L. Hunter & Tallman) Hamam., Sugiy. & Komag. | PP905624 | |||||
Cystofilobasidium macerans J.P. Samp. | PP905625 | |||||
Filobasidium magnum (Lodder & Kreger-van Rij) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout | PP905626 | |||||
Goffeauzyma gastrica (Reiersöl & Di Menna) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout | PP905627 | |||||
Holtermanniella festucosa (Golubev & J.P. Samp.) Libkind, Wuczk., Turchetti & Boekhout | PP905628 | |||||
Kwoniella pini (Golubev & Pfeiffer) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout | PP905629 | |||||
Leucosporidium creatinivorum (Golubev) M. Groenew. & Q.M. Wang | PP905630 | |||||
Leucosporidium intermedium (Nakase & M. Suzuki) M. Groenew. & Q.M. Wang | PP905631 | |||||
Leucosporidium yakuticum (Golubev) M. Groenew. & Q.M. Wang | PP905632 | |||||
Naganishia adeliensis (Scorzetti, I. Petrescu, Yarrow & Fell) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout | PP905633 | |||||
Naganishia albida (Saito) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout | PP905634 | |||||
Naganishia albidosimilis (Vishniac & Kurtzman) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout | PP905635 | |||||
Naganishia diffluens (Zach) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout | PP905636 | |||||
Naganishia globosa Goto | PP905637 | |||||
Naganishia vaughanmartiniae Turchetti, Blanchette & Arenz ex Yurkov | PP905638 | |||||
Papiliotrema flavescens (Saito) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout | PP905639 | |||||
Rhodotorula babjevae (Golubev) Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout | PP905640 | |||||
Rhodotorula mucilaginosa (A. Jörg.) F.C. Harrison | PP905641 | |||||
Sampaiozyma ingeniosa (Di Menna) Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout | PP905642 | |||||
Tausonia pullulans (Lindner) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout | PP905643 | |||||
Trichosporon aquatile L.R. Hedrick & P.D. Dupont | PP905644 | |||||
Vanrija albida (C. Ramírez) M. Weiß | PP905645 | |||||
Species richness (ornithogenic soil/control) | 23/25 | 28/24 | 30/25 | 39/33 | ||
Shannon index, H’ (ornithogenic soil/control) | 2.74/2.87 | 2.79/2.82 | 2.63/2.79 | 3.05/3.04 | ||
Pielou index, J’ (ornithogenic soil/control) | 0.51/0.52 | 0.51/0.52 | 0.49/0.51 | 0.56/0.56 | ||
Simpson (1-D) (ornithogenic soil/control) | 0.91/0.93 | 0.91/0.93 | 0.88/0.92 | 0.93/0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glushakova, A.; Sharova, A.; Kachalkin, A. Seasonal Dynamics of Culturable Yeasts in Ornithogenically Influenced Soils in a Temperate Forest and Evaluation of Extracellular Enzyme Secretion in Tausonia pullulans at Different Temperatures. J. Fungi 2024, 10, 532. https://doi.org/10.3390/jof10080532
Glushakova A, Sharova A, Kachalkin A. Seasonal Dynamics of Culturable Yeasts in Ornithogenically Influenced Soils in a Temperate Forest and Evaluation of Extracellular Enzyme Secretion in Tausonia pullulans at Different Temperatures. Journal of Fungi. 2024; 10(8):532. https://doi.org/10.3390/jof10080532
Chicago/Turabian StyleGlushakova, Anna, Anna Sharova, and Aleksey Kachalkin. 2024. "Seasonal Dynamics of Culturable Yeasts in Ornithogenically Influenced Soils in a Temperate Forest and Evaluation of Extracellular Enzyme Secretion in Tausonia pullulans at Different Temperatures" Journal of Fungi 10, no. 8: 532. https://doi.org/10.3390/jof10080532
APA StyleGlushakova, A., Sharova, A., & Kachalkin, A. (2024). Seasonal Dynamics of Culturable Yeasts in Ornithogenically Influenced Soils in a Temperate Forest and Evaluation of Extracellular Enzyme Secretion in Tausonia pullulans at Different Temperatures. Journal of Fungi, 10(8), 532. https://doi.org/10.3390/jof10080532