Groundbreaking Technologies and the Biocontrol of Fungal Vascular Plant Pathogens
Abstract
:1. Introduction
2. Relevance of Vascular Fungal Pathogens and the Challenge of Their Control
Traditional Biocontrol of Vascular Fungal Pathogens: A Brief Overview
3. Leveraging Meta-Omics for Biocontrol Optimization
4. Microbiome-Driven Approaches and Biocontrol
Microbiome Engineering
5. Nanotechnology and Biocontrol of Plant Fungal Vascular Diseases
5.1. Nanoparticles Biosynthesis and Potential Use in Biocontrol
5.1.1. Bacteriogenic Nanoparticles
5.1.2. Mycogenic Nanoparticles
5.1.3. Phytogenic Nanoparticles
5.1.4. Phycogenic Nanoparticles
5.1.5. Nanoparticles Derived from Waste
5.2. Nanoparticles as BCA Protectants and/or Carriers
5.2.1. Encapsulation Based on Nanopolymers
5.2.2. Encapsulation Based on Non-Polymeric Nanomaterials or Nanoemulsion
6. Artificial Intelligence in Biocontrol
6.1. Potential of AI Tools in Biological Control of Vascular Phytopathogenic Fungi
6.2. Early Detection, Accurate Diagnosis, Risk Prediction, and Infection Modelling
6.3. AI-Assisted Identification, Selection and Optimization of BCA
6.4. Predicting the Impacts of BCAs
6.5. Simulating Plant–Pathogen–Biocontrol Interactions
7. Genome Editing, RNA Interference, and Functional Peptides: Innovative, High-Potential Technologies Yet to Be Fully Implemented in Biocontrol
7.1. Genome Editing Technologies
7.2. RNA Interference
RNAi and Nanoparticles: The Synergy of Two Groundbreaking Technologies
Fungal Pathogen | Host | RNAi Approach | RNA | Target Gene (s) | Role of Target Gene (s) | Silencing Outcome | Reference |
---|---|---|---|---|---|---|---|
F. oxysporum | Soybean | HIGH | hpRNA | CYP51B | Target for azole fungicide, hyphal growth | Enhanced plant resistance | [99] |
MIGS (solid culture) | hpRNA | FoPMT2 | Fungicide target against phytopathogens | Inhibited mycelial growth | [98] | ||
Rice | MIGS | hpRNA | FoPMT2 | Fungicide target against phytopathogens | Reduced disease development | [98] | |
F. oxysporum f. sp. cubense | Liquid culture | sdRNA | 14 genes | Conidia germination | Inhibited conidia germination | [112] | |
Liquid culture | siRNA | VEL, FTF1 | Regulator of (a)sexual deveploment, secondary metabolims and virulence | Reduced mycelial growth, reduced conidiophore count | [278] | ||
Banana | HIGS | hpRNA | VEL, FTF1 | Regulator of (a)sexual deveploment, secondary metabolims and virulence | Enhanced plant resistance | [278] | |
Tranformants | hpRNA | SEG1 | Pathogen parasitic growth | Reduced conidiophore count, reduced fusarium wilt virulence | [113] | ||
Liquid culture | dsRNA | ERG6, ERG11 | Ergosterol biosynthesis | Inhibited fungicide tolerance | [303] | ||
Banana | HIGS | hpRNA | ERG6, ERG11 | Ergosterol biosynthesis | Enhanced plant resistance | [303] | |
F. oxysporum f. sp. conglutigans | Arabidopsis | HIGS | hpRNA | FRP1, OPR, FOW2 | Pathogenicity and (FRP1 and FOW2) jamonic acid synthesis (OPR) | Enhanced plant resistance | [142] |
F. oxysporum f. sp. lycopersici | Transformants | hpRNA | FMK1, HOG1, PBS2 | MAP Kinase signalling genes | Altered conidal morphology, reduced virulence on tomato | [124] | |
Transformants | hpRNA | FOW2 | Pathogenicity | Mycelial growht defects, reduced conidia production, reduced virulence on tomato | [100] | ||
Tomato/ Arabidopsis | HIGS | hpRNA | FOW2 | Pathogenicity | Enhanced plant resistance | [125] | |
Tomato | HIGS | hpRNA | CHSV | Chitin synthesis | Enhanced plant resistance | [125] | |
Transformants | hpRNA | PEX6 | Peroxisomal biogenesis | Mycelial growht defects, reduced conidia production, reduced virulence on tomato | [304] | ||
Tomato | HIGS | hpRNA | ODC | Fungal growth | Enhanced plant resistance | [126] | |
Tomato | HIGS | hpRNA | PEX6 | Peroxisomal biogenesis | Enhanced plant resistance | [127] | |
Tomato | HIGS | hpRNA | GAS1 | Fungal cell wall biosynthesis and morphogenesis | Enhanced plant resistance | [127] | |
Transformants | hpRNA | FoFLP1, FoFLP3, FoFLP4, FoFLP5 | Cell adherence | Reduced conidia production, reduced virulence on tomato | [128] | ||
Liquid culture | dsRNA | FolRDR1 | Pathogen development | Reduced conidia production | [129] | ||
Tomato seedlings | SIGS | dsRNA | FolRDR1 | Pathogen development | Inhibited disease development | [129] | |
Tomato | HIGS | hpRNA | FoFLP1, FoFLP4, FoFLP5 | Cell adherence | Enhanced plant resistance | [305] | |
F. oxysporum f. sp. radicis-lycopersici | Transformants | hpRNA | CYP51, CHS1, EF2 | Pathogenesis, chitin synthesis and ribosomal translocation. | Lower virulence on tomato | [140] | |
Liquid culture | hpRNA | CYP51, CHS1, EF2 | Inhibited mycelial growth | [140] | |||
Tomato seedling | SIGS | dsRNA | CYP51, CHS1, EF2 | Inhibited disease development | [140] | ||
Verticillium dahliae | Arabidopsis | HIGS | dsRNA/ sRNA | DCL | Vesicle trafficking | Enhanced plant resistance | [276] |
Arabidopsis/ Tomato | HIGS | dsRNA | Ave1, Sge1 and NLP1 | Pathogenicity factors | Enhanced plant resistance | [306] | |
Cotton | HIGS | dsRNA | VdRGS1 | Regulator of G protein involved in spore production, hyphal development and microsclerotia formation | Enhanced plant resistance | [148] | |
Cotton | HIGS | ds RNA | VdILV2 and VdILV6 | Branched-chain amin oacid synthesis | Drastic reduction in disease development | [307] | |
Nicothiana benthamiana/Arabidopsis thaliana | HIGS | dsRNA | VdAK | Fungal metabolism, conidiation, and pathogenicity | Enhanced plant resistance | [308] | |
Arabidopsis | SIGS | dsRNA | Vd-DCL1/2 Vd-DCTN1 VdSAC1 | Vesicle trafficking | Reduced disease symptoms and fungal biomass (55% with DCL1 + DCL2-, 60% with DCTN1 + SAC1) | [309] | |
Cotton | HIGS | dsRNA/ siRNA | VdH1 | Melanized microsclerotia formation | 50–70% reduced disease symptoms | [310] | |
Cotton/Rice | MIGS | dsRNA/ siRNA | VdPMT2 | Fungicide target against phytopathogens | Inhibited fungal growth | [98] | |
Cotton | HIGS | dsRNA | VdThit | Pathogenesis | Enhanced plant resistance | [111] |
7.3. Functional Peptides
8. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. World Population Prospects 2019: Highlights; United Nations, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2019. [Google Scholar]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef]
- Rizzo, D.M.; Lichtveld, M.; Mazet, J.A.K.; Togami, E.; Miller, S.A. Plant health and its effects on food safety and security in a One Health framework: Four case studies. One Health Outlook 2021, 3, 6. [Google Scholar] [CrossRef] [PubMed]
- FAO. The Future of Food and Agriculture: Trends and Challenges; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health 2011, 8, 1402–1419. [Google Scholar] [CrossRef]
- Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A.S.; Srivastav, A.L.; Kaushal, J. An extensive review on the consequences of chemical pesticides on human health and environment. J. Clean. Prod. 2021, 283, 124657. [Google Scholar] [CrossRef]
- Foong, S.Y.; Ma, N.L.; Lam, S.S.; Peng, W.; Low, F.; Lee, B.H.; Alstrup, A.K.O.; Sonne, C. A recent global review of hazardous chlorpyrifos pesticide in fruit and vegetables: Prevalence, remediation and actions needed. J. Hazard. Mater. 2020, 400, 123006. [Google Scholar] [CrossRef] [PubMed]
- Bebber, D.P.; Ramotowski, M.A.; Gurr, S.J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change. 2013, 3, 985–988. [Google Scholar] [CrossRef]
- Chaloner, T.M.; Gurr, S.J.; Bebber, D.P. Plant pathogen infection risk tracks global crop yields under climate change. Nat. Clim. Chang. 2021, 11, 710–715. [Google Scholar] [CrossRef]
- Fisher, M.C.; Henk, D.A.; Briggs, C.J.; Brownstein, J.S.; Madoff, L.C.; McCraw, S.L.; Gurr, S.J. Emerging fungal threats to animal, plant and ecosystem health. Nature 2012, 484, 186–194. [Google Scholar] [CrossRef]
- Panzavolta, T.; Bracalini, M.; Benigno, A.; Moricca, S. Alien invasive pathogens and pests harming trees, forests, and plantations: Pathways, global consequences and management. Forests 2021, 12, 1364. [Google Scholar] [CrossRef]
- McDonald, B.A.; Stukenbrock, E.H. Rapid emergence of pathogens in agro-ecosystems: Global threats to agricultural sustainability and food security. Philos. Trans. R. Soc. B. 2016, 371, 20160026. [Google Scholar] [CrossRef] [PubMed]
- Baedke, J.; Fábregas-Tejeda, A.; Delgado, A.N. The holobiont concept before Margulis. J. Exp. Zool. Part B Mol. Dev. Evol. 2020, 334, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Lyu, D.; Zajonc, J.; Pagé, A.; Tanney, C.A.S.; Shah, A.; Monjezi, N.; Msimbira, L.A.; Antar, M.; Nazari, M.; Backer, R.; et al. Plant holobiont hteory: The phytomicrobiome plays a central role in evolution and success. Microorganisms 2021, 9, 675. [Google Scholar] [CrossRef] [PubMed]
- Mesny, F.; Hacquard, S.; Thomma, B.P. Co-evolution within the plant holobiont drives host performance. EMBO Rep. 2023, 24, e57455. [Google Scholar] [CrossRef] [PubMed]
- Garrett, K.A.; Dendy, S.P.; Frank, E.E.; Rouse, M.N.; Travers, S.E. Climate change effects on plant disease: Genomes to ecosystems. Annu. Rev. Phytopathol. 2006, 44, 489–509. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 2018, 360, 739–742. [Google Scholar] [CrossRef] [PubMed]
- Mitra, D. Emerging plant diseases: Research status and challenges. In Emerging Trends in Plant Pathology; Singh, K.P., Jahagirdar, S., Sarma, B.K., Eds.; Springer: Singapore, 2021; pp. 1–17. [Google Scholar]
- Zhai, Z.; Martínez, J.F.; Beltran, V.; Martínez, N.L. Decision support systems for agriculture 4.0: Survey and challenges. Comput. Electron. Agric. 2020, 170, 105256. [Google Scholar] [CrossRef]
- Ma, M.; Taylor, P.W.J.; Chen, D.; Vaghefi, N.; He, J.-Z. Major soilborne pathogens of field processing tomatoes and management strategies. Microorganisms 2023, 11, 263. [Google Scholar] [CrossRef]
- Thangavelu, R.; Loganathan, M.; Arthee, R.; Prabakaran, M.; Uma, S. Fusarium wilt: A threat to banana cultivation and its management. CABI Rev. 2020, 15, 1–24. [Google Scholar] [CrossRef]
- Jacobi, W.R.; Koski, R.D.; Negron, J.F. Dutch elm disease pathogen transmission by the banded elm bark beetle Scolytus. Forest Pathology 2013, 43, 232–237. [Google Scholar] [CrossRef]
- Hughes, M.A.; Smith, J.A.; Ploetz, R.C.; Kendra, P.E.; Mayfield, A.E.; Hanula, J.L.; Hulcr, J.; Stelinski, L.L.; Cameron, S.; Riggins, J.J.; et al. Recovery plan for laurel wilt on redbay and other forest species caused by Raffaelea lauricola and disseminated by Xyleborus glabratus. Plant Health Prog. 2015, 16, 173–210. [Google Scholar] [CrossRef]
- Yadeta, K.A.; Thomma, B.P.H.J. The xylem as battleground for plant hosts and vascular wilt pathogens. Front. Plant Sci. 2013, 4, 97. [Google Scholar] [CrossRef]
- Martín, J.A.; Fuentes-Utrilla, P.; Gil, L.; Witzell, J. Ecological factors in Dutch elm disease complex in Europe—A review. Ecol. Bul. 2010, 53, 209–224. [Google Scholar]
- Harrington, T.C. Ceratocystis diseases. In Infectious Forest Diseases; Gonthier, P., Nicolotti, G., Eds.; CABI: Wallingford, UK, 2013; pp. 230–255. [Google Scholar]
- Keykhasaber, M.; Thomma, B.P.H.J.; Hiemstra, J.A. Verticillium wilt caused by Verticillium dahliae in woody plants with emphasis on olive and shade trees. Eur. J. Plant Pathol. 2018, 150, 21–37. [Google Scholar] [CrossRef]
- Bubici, G.; Kaushal, M.; Prigigallo, M.I.; Gómez-Lama Cabanás, C.; Mercado-Blanco, J. Biological control agents against Fusarium Wilt of banana. Front. Microbiol. 2019, 10, 61, Erratum in Front. Microbiol. 2019, 10, 1290. [Google Scholar] [CrossRef] [PubMed]
- Montes-Osuna, N.; Mercado-Blanco, J. Verticillium wilt of olive and its control: What did we learn during the last decade? Plants 2020, 9, 735. [Google Scholar] [CrossRef]
- Bernier, L. Dutch elm disease. In Forest Microbiology; Asiegbu, F., Kovalchuk, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 2, pp. 291–309. [Google Scholar]
- López-Escudero, F.J.; Mercado-Blanco, J. Verticillium wilt of olive: A case study to implement an integrated strategy to control a soil-borne pathogen. Plant Soil 2011, 344, 1–50. [Google Scholar] [CrossRef]
- Dita, M.; Barquero, M.; Heck, D.; Mizubuti, E.S.G.; Staver, C.P. Fusarium wilt of banana: Current knowledge on epidemiology and research needs toward sustainable disease management. Front. Plant Sci. 2018, 9, 1468. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, R.J.; Strobel, G.A. Dutch elm disease, a model tree disease for biological control. In Biocontrol of Plant Diseases; Mukerji, K.G., Garg, K.L., Eds.; CRC Press: Boca Raton, FL, USA, 2020; Volume 2, pp. 103–119. [Google Scholar]
- Bahadur, A. Current status of Fusarium and their management strategies. In Fusarium—An Overview of the Genus; Mirmajlessi, S.M., Ed.; IntechOpen: London, UK, 2021. [Google Scholar]
- Kowalska, B. Management of the soil-borne fungal pathogen—Verticillium dahliae Kleb. causing vascular wilt diseases. J. Plant Pathol. 2021, 103, 1185–1194. [Google Scholar] [CrossRef]
- Harman, G.; Howell, C.; Viterbo, A.; Chet, I.; Lorito, M. Trichoderma species—Opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2004, 2, 43–56. [Google Scholar] [CrossRef]
- Shoresh, M.; Harman, G.E.; Mastouri, F. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu. Rev. Phytopathol. 2010, 48, 21–43. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-González, M.M.; Bakker, P.A.; Prieto, P.; Mercado-Blanco, J. Arabidopsis thaliana as a tool to identify traits involved in Verticillium dahliae biocontrol by the olive root endophyte Pseudomonas fluorescens PICF7. Front. Microbiol. 2015, 6, 266. [Google Scholar] [CrossRef] [PubMed]
- Markakis, E.A.; Tjamos, S.E.; Antoniou, P.P.; Paplomatas, E.J.; Tjamos, E.C. Biological control of Verticillium wilt of olive by Paenibacillus alvei, strain K165. BioControl 2016, 61, 293–303. [Google Scholar] [CrossRef]
- Shafi, J.; Tian, H.; Ji, M. Bacillus species as versatile weapons for plant pathogens: A review. Biotechnol. Biotechnol. Equip. 2017, 31, 446–459. [Google Scholar] [CrossRef]
- Gómez-Lama Cabanás, C.; Legarda, G.; Ruano-Rosa, D.; Pizarro-Tobías, P.; Valverde-Corredor, A.; Niqui, J.L.; Triviño, J.C.; Roca, A.; Mercado-Blanco, J. Indigenous Pseudomonas spp. strains from the olive (Olea europaea L.) rhizosphere as effective biocontrol agents against Verticillium dahliae: From the host roots to the bacterial genomes. Front. Microbiol. 2018, 9, 277. [Google Scholar]
- Gómez-Lama Cabanás, C.; Ruano-Rosa, D.; Legarda, G.; Pizarro-Tobías, P.; Valverde-Corredor, A.; Triviño, J.C.; Roca, A.; Mercado-Blanco, J. Bacillales members from the olive rhizosphere are effective biological control agents against the defoliating pathotype of Verticillium dahliae. Agriculture 2018, 8, 90. [Google Scholar] [CrossRef]
- Castro, D.; Torres, M.; Sampedro, I.; Martínez-Checa, F.; Torres, B.; Béjar, V. Biological control of Verticillium Wilt on olive trees by the salt-tolerant strain Bacillus velezensis XT1. Microorganisms 2020, 8, 1080. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Lama Cabanás, C.; Fernández-González, A.J.; Cardoni, M.; Valverde-Corredor, A.; López-Cepero, J.; Fernández-López, M.; Mercado-Blanco, J. The banana root endophytome: Differences between mother plants and suckers and evaluation of selected bacteria to control Fusarium oxysporum f.sp. cubense. J. Fungi 2021, 7, 194. [Google Scholar] [CrossRef] [PubMed]
- Montes-Osuna, N.; Gómez-Lama Cabanás, C.; Valverde-Corredor, A.; Berendsen, R.L.; Prieto, P.; Mercado-Blanco, J. Assessing the involvement of selected phenotypes of Pseudomonas simiae PICF7 in olive root colonization and biological control of Verticillium dahliae. Plants 2021, 10, 412. [Google Scholar] [CrossRef]
- Mercado-Blanco, J. Pseudomonas strains that exert biocontrol of plant pathogens. In Pseudomonas; Ramos, J.-L., Goldberg, J.B., Filloux, A., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 121–172. [Google Scholar]
- Patowary, R.; Deka, H. Paenibacillus. In Beneficial Microbes in Agro-Ecology; Amaresan, N., Senthil, M.S., Kumar, Annapurna, K., Kumar, K., Sankaranarayanan, A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 339–361. [Google Scholar]
- Khan, M.; Salman, M.; Jan, S.A.; Shinwari, Z.K. Biological control of fungal phytopathogens: A comprehensive review based on Bacillus species. MOJ Biol. Med. 2021, 6, 90–92. [Google Scholar] [CrossRef]
- Yu, Y.; Gui, Y.; Li, Z.; Jiang, C.; Guo, J.; Niu, D. Induced systemic resistance for improving plant immunity by beneficial microbes. Plants 2022, 11, 386. [Google Scholar] [CrossRef] [PubMed]
- Kour, D.; Negi, R.; Sharief Khan, S.; Kumar, S.; Kaur, S.; Kaur, T.; Sharma, B.; Dasila, H.; Kour, H.; Ramniwas, S.; et al. Microbes mediated induced systemic response in plants: A review. Plant Stress 2024, 11, 100334. [Google Scholar] [CrossRef]
- Palaniyandi, S.A.; Yang, S.H.; Zhang, L.; Shu, J.-V. Effects of actinobacteria on plant disease suppression and growth promotion. Appl. Microbiol. Biotechnol. 2013, 97, 9621–9636. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Srivastava, S.; Karnwal, A.; Malik, T. Streptomyces as a promising biological control agents for plant pathogens. Front. Microbiol. 2023, 14, 1285543. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Díaz, M.; Antón-Domínguez, B.I.; Raya, M.C.; Bernal-Cabrera, A.; Medina-Marrero, R.; Trapero, A.; Agustí-Brisach, C. Streptomyces spp. strains as potential biological control agents against Verticillium Wilt of Olive. J. Fungi 2024, 10, 138. [Google Scholar]
- Alabouvette, C.; Olivain, C.; Migheli, Q.; Steinberg, C. Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytol. 2009, 184, 529–544. [Google Scholar] [CrossRef]
- Patil, S.; Sriram, S. BiologicalI control of Fusarium wilt in crop plants using non-pathogenic isolates of Fusarium species. Indian Phytopathol. 2020, 73, 11–19. [Google Scholar] [CrossRef]
- Ahmed, M.E.; Kararah, M.A.; Abada, K.A.; Eldakar, H.A. Recent approaches for management of tomato fusarium wilt. Pak. J. Phytopathol. 2023, 35, 421–438. [Google Scholar] [CrossRef]
- Çevik, R.; Demir, S.; Türkölmez, Ş.; Boyno, G. The effect of Clonostachys rosea (sch.) schroers and samuels against verticillium wilt (Verticillium dahliae Kleb.) and early blight [Alternaria solani (Ell. and G. Martin) Sor.] diseases in tomato plants. Yuz. Yıl Univ. J. Agric. Sci. 2022, 32, 372–382. [Google Scholar] [CrossRef]
- Rizk, I.M.; Mousa, I.E.; Ammar, M.M.; Abd-ElMaksoud, I. Biological control of Fusarium oxysporum and Verticillium dahliae by Trichoderma harzianum and Gliocladium virens of two mint species. Res. J. Appl. Biotechnol. 2017, 3, 24–36. [Google Scholar] [CrossRef]
- Boutaj, H.; Meddich, A.; Roche, J.; Mouzeyar, S.; El Modafar, C. The effects of mycorrhizal fungi on vascular wilt diseases. Crop Prot. 2022, 155, 105938. [Google Scholar] [CrossRef]
- Pozo, M.J.; Azcón-Aguilar, C. Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol. 2007, 10, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Villani, A.; Tommasi, F.; Paciolla, C. The arbuscular mycorrhizal fungus Glomus viscosum improves the tolerance to verticillium wilt in artichoke by modulating the antioxidant defense systems. Cells 2021, 10, 1944. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Halder, S.K.; Yadav, A.N.; Mondal, K.C. Microbial consortium with multifunctional plant growth-promoting attributes: Future perspective in agriculture. In Advances in Plant Microbiome and Sustainable Agriculture: Functional Annotation and Future Challenges; Yadav, A.N., Rastegari, A.A., Yadav, N., Kour, D., Eds.; Springer: Singapore, 2020; pp. 219–258. [Google Scholar]
- Prigigallo, M.I.; Gómez-Lama Cabanás, C.; Mercado-Blanco, J.; Bubici, G. Designing a synthetic microbial community devoted to biological control: The case study of Fusarium wilt of banana. Front. Microbiol. 2022, 13, 967885. [Google Scholar] [CrossRef] [PubMed]
- Piombo, E.; Abdelfattah, A.; Droby, S.; Wisniewski, M.; Spadaro, D.; Schena, L. Metagenomics approaches for the detection and surveillance of emerging and recurrent plant pathogens. Microorganisms 2021, 9, 188. [Google Scholar] [CrossRef]
- Fadiji, A.E.; Babalola, O.O. Metagenomics methods for the study of plant-associated microbial communities: A review. J. Microbiol. Methods 2020, 170, 105860. [Google Scholar] [CrossRef]
- Sarethy, I.P.; Saharan, A. Genomics, proteomics and transcriptomics in the biological control of plant pathogens: A review. Indian Phytopathol. 2021, 74, 3–12. [Google Scholar] [CrossRef]
- Kaushal, M.; Mahuku, G.; Swennen, R. Metagenomic insights of the root colonizing microbiome associated with symptomatic and non-symptomatic bananas in Fusarium wilt infected fields. Plants 2020, 9, 263. [Google Scholar] [CrossRef]
- Doni, F.; Miranti, M.; Mispan, M.S.; Mohamed, Z.; Uphoff, N. Multi-omics approaches for deciphering the microbial modulation of plants’ genetic potentials: What’s known and what’s next? Rhizosphere 2022, 24, 100613. [Google Scholar] [CrossRef]
- Martí, J.M.; Arias-Giraldo, L.F.; Díaz-Villanueva, W.; Arnau, V.; Rodríguez-Franco, A.; Garay, C.P. Metatranscriptomic dynamics after Verticillium dahliae infection and root damage in Olea europaea. BMC Plant Biol. 2020, 20, 79. [Google Scholar] [CrossRef]
- Khatabi, B.; Tabrizi, N.M.; Salekdeh, G.H. Holistic sequencing: Moving forward from plant microbial proteomics to metaproteomics. In Agricultural Proteomics; Salekdeh, G., Ed.; Springer: Cham, Switzerland, 2016; Volume 1, pp. 87–103. [Google Scholar]
- Salvato, F.; Kleiner, M.A. Complete metaproteomic workflow for arabidopsis roots inoculated by synthetic bacteria. Methods Mol. Biol. 2024, 2820, 57–65. [Google Scholar]
- Bertrand, C.; Gonzalez-Coloma, A.; Prigent-Combaret, C. Plant metabolomics to the benefit of crop protection and growth stimulation. In Advances in Botanical Research; Academic Press: New York, NY, USA, 2021; Volume 98, pp. 107–132. [Google Scholar]
- Mashabela, M.D.; Piater, L.A.; Dubery, I.A.; Tugizimana, F.; Mhlongo, M.I. Rhizosphere tripartite interactions and PGPR-mediated metabolic reprogramming towards ISR and plant priming: A metabolomics review. Biology 2022, 11, 346. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Puri, K.D.; Gurung, S.; Klosterman, S.J.; Wallis, C.M.; Britton, M.; Durbin-Johnson, B.; Phinney, B.; Salemi, M.; Short, D.P.G.; et al. Proteome and metabolome analyses reveal differential responses in tomato-Verticillium dahliae-interactions. J. Proteom. 2019, 207, 103449. [Google Scholar] [CrossRef] [PubMed]
- Cardoni, M.; Mercado-Blanco, J. Confronting stresses affecting olive cultivation from the holobiont perspective. Front. Plant Sci. 2023, 14, 1261754. [Google Scholar] [CrossRef]
- Berg, G.; Rybakova, D.; Grube, M.; Köberl, M. The plant microbiome explored: Implications for experimental botany. J. Exp. Bot. 2016, 67, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Champomier Vergès, M.-C.; Charles, T.; Chen, X.; Cocolin, L.; Eversole, K.; Herrero Corral, G.; et al. Microbiome definition re-visited: Old concepts and new challenges. Microbiome 2020, 8, 103. [Google Scholar]
- Berg, G.; Köberl, M.; Rybakova, D.; Müller, H.; Grosch, R.; Smalla, K. Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbial. Ecol. 2017, 93, fix050. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.X.; Qin, Y.; Bai, Y. Reductionist synthetic community approaches in root microbiome research. Curr. Opin. Microbiol. 2019, 49, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Lorente, A.I.; Romero, D.; Molina-Santiago, C. Unravelling the impact of environmental factors in shaping plant microbiomes. Microb. Biotechnol. 2024, 17, e14504. [Google Scholar] [CrossRef]
- Berendsen, R.L.; Pieterse, C.M.; Bakker, P.A. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012, 17, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Olanrewaju, O.S.; Babalola, O.O. The rhizosphere microbial complex in plant health: A review of interaction dynamics. J. Integr. Agric. 2022, 21, 2168–2182. [Google Scholar] [CrossRef]
- Stone, B.W.; Weingarten, E.A.; Jackson, C.R. The role of the phyllosphere microbiome in plant health and function. Annu. Plant Rev. Online 2018, 1, 533–556. [Google Scholar] [CrossRef]
- De Mandal, S.; Jeon, J. Phyllosphere microbiome in plant health and disease. Plants 2023, 12, 3481. [Google Scholar] [CrossRef] [PubMed]
- Mercado-Blanco, J.; Lugtenberg, B.J.J. Biotechnological applications of bacterial endophytes. Curr. Biotechnol. 2014, 3, 60–75. [Google Scholar] [CrossRef]
- Hardoim, P.R.; van Overbeek, L.S.; Berg, G.; Pirttilä, A.M.; Compant, S.; Campisano, A.; Döring, M.; Sessitsch, A. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 2015, 79, 293–320. [Google Scholar] [CrossRef] [PubMed]
- Kamoun, S.; Furzer, O.; Jones, J.D.; Judelson, H.S.; Ali, G.S.; Dalio, R.J.; Roy, S.G.; Schena, L.; Zambounis, A.; Panabières, F.; et al. The top 10 oomycete pathogens in molecular plant pathology. Mol. Plant Pathol. 2015, 16, 413–434. [Google Scholar] [CrossRef] [PubMed]
- Dey, K.K.; Ganguly, S. Plant–microbe interactions in the age of sequencing. In Plant–Microbe Interactions, 1st ed.; Sahu, J., Vaishnav, A., Singh, H.B., Eds.; CRC Press: Boca Raton, FL, USA, 2022; pp. 113–127. [Google Scholar]
- Nizamani, M.M.; Zhang, Q.; Muhae-Ud-Din, G.; Wang, Y. High-throughput sequencing in plant disease management: A comprehensive review of benefits, challenges, and future perspectives. Phytopathol. Res. 2023, 5, 44. [Google Scholar] [CrossRef]
- Arif, I.; Batool, M.; Schenk, P.M. Plant microbiome engineering: Expected benefits for improved crop growth and resilience. Trends Biotechnol. 2020, 38, 1385–1396. [Google Scholar] [CrossRef]
- Pascale, A.; Proietti, S.; Pantelides, I.S.; Stringlis, I.A. Modulation of the root microbiome by plant molecules: The basis for targeted disease suppression and plant growth promotion. Front. Plant Sci. 2020, 10, 1741. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.-E.; Teo, W.F.A.; Teoh, E.Y.; Tan, B.C. Microbiome engineering and plant biostimulants for sustainable crop improvement and mitigation of biotic and abiotic stresses. Discov. Food 2022, 2, 9. [Google Scholar] [CrossRef]
- Hu, H.; Wang, M.; Huang, Y.; Xu, Z.; Xu, P.; Nie, Y.; Tang, H. Guided by the principles of microbiome engineering: Accomplishments and perspectives for environmental use. mLife 2022, 1, 382–398. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, M.; Li, C.-H.; Ali, Q.; Zhao, W.; Chi, Y.-K.; Shafiq, M.; Ali, F.; Yu, X.-Y.; Yu, Q.; Zhao, J.-T.; et al. Bacterial and fungal biocontrol agents for plant disease protection: Journey from lab to field, current status, challenges, and global perspectives. Molecules 2023, 28, 6735. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zhao, J.; Yuan, J.; Hale, L.; Wen, T.; Huang, Q.; Vivanco, J.M.; Zhou, J.; Kowalchuk, G.A.; Shen, Q. Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth. Plant Cell Environ. 2021, 44, 613–628. [Google Scholar] [CrossRef]
- Yang, S.; Liu, H.; Xie, P.; Wen, T.; Shen, Q.; Yuan, J. Emerging pathways for engineering the rhizosphere microbiome for optimal plant health. J. Agric. Food Chem. 2023, 71, 4441–4449. [Google Scholar] [CrossRef]
- Mendes, L.W.; Mendes, R.; Raaijmakers, J.M.; Tsai, S.M. Breeding for soil-borne pathogen resistance impacts active rhizosphere microbiome of common bean. ISME J. 2018, 12, 3038–3042. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.G.; Zhao, J.H.; Zhang, B.S.; Gao, F.; Wu, X.M.; Yan, Y.S.; Zhang, J.; Guo, H.S. Microbe-induced gene silencing boosts crop protection against soil-borne fungal pathogens. Nat. Plants. 2023, 9, 1409–1418. [Google Scholar] [CrossRef] [PubMed]
- Pérez, C.E.; Cabral, G.B.; Aragão, F.J. Host-induced gene silencing for engineering resistance to Fusarium in soybean. Plant Pathol. 2021, 70, 417–425. [Google Scholar] [CrossRef]
- Shanmugam, V.; Sharma, V.; Bharti, P.; Jyoti, P.; Yadav, S.K.; Aggarwal, R.; Jain, S. RNAi induced silencing of pathogenicity genes of Fusarium spp. for vascular wilt management in tomato. Ann. Microbiol. 2017, 67, 359–369. [Google Scholar] [CrossRef]
- Schumann, U.; Smith, N.A.; Kazan, K.; Ayliffe, M.; Wang, M.B. Analysis of hairpin RNA transgene-induced gene silencing in Fusarium oxysporum. Silence 2013, 4, 1–16. [Google Scholar] [CrossRef]
- Fan, S.; Zhou, Y.; Zhu, N.; Meng, Q.; Zhao, Y.; Xu, J.; Tang, Y.; Dai, S.; Yuan, X. Exogenous Application of dsRNA—Inducing Silencing of the Fusarium oxysporum Tup1 Gene and Reducing Its Virulence. Int. J. Mol. Sci. 2024, 25, 10286. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, A.; Hassan, M.N.; Imran, M.; Iqbal, M.; Majeed, S.; Brader, G.; Sessitsch, A.; Hafeez, F.Y. Biocontrol activity of surfactin A purified from Bacillus NH-100 and NH-217 against rice bakanae disease. Microbiol Res. 2018, 209, 1–13. [Google Scholar] [CrossRef]
- Shi, M.; Chen, L.; Wang, X.W.; Zhang, T.; Zhao, P.B.; Song, X.Y.; Sun, C.Y.; Chen, X.L.; Zhou, B.C.; Zhang, Y.Z. Antimicrobial peptaibols from Trichoderma pseudokoningii induce programmed cell death in plant fungal pathogens. Microbiology 2012, 158, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Lay, F.T.; Brugliera, F.; Anderson, M.A. Isolation and properties of floral defensins from ornamental tobacco and petunia. Plant Physiol. 2003, 131, 1283–1293. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, V.; Velusamy, P. Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 106, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Win, T.T.; Khan, S.; Fu, P. Fungus (Alternaria sp.) mediated silver nanoparticles synthesis, characterization and application as phyto-pathogens growth inhibitor. J. Nanotechnol. 2020, 2020, 8828878. [Google Scholar] [CrossRef]
- Al-Zubaidi, S.; Al-Ayafi, A.; Abdelkader, H. Biosynthesis, characterization and antifungal activity of silver nanoparticles by Aspergillus Niger isolate. J. Nanotechnol. Res. 2019, 1, 23–36. [Google Scholar] [CrossRef]
- Sathiyabama, M.; Parthasarathy, R. Biological preparation of chitosan nanoparticles and its in vitro antifungal efficacy against some phytopathogenic fungi. Carbohydr. Polym. 2016, 151, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Smaoui, S.; Ennouri, K.; Chakchouk-Mtibaa, A.; Sellem, I.; Bouchaala, K.; Karray-Rebai, I.; Mellouli, L. Statistical versus artificial intelligence-based modeling for the optimization of antifungal activity against Fusarium oxysporum using Streptomyces sp. strain TN71. J. Mycol. Méd. 2018, 28, 551–560. [Google Scholar]
- Wang, Y.; Zou, Q. Deep learning meta-analysis for predicting plant soil-borne fungal disease occurrence from soil microbiome data. Appl. Soil Ecol. 2024, 202, 105532. [Google Scholar] [CrossRef]
- Mumbanza, F.M.; Kiggundu, A.; Tusiime, G.; Tushemereirwe, W.K.; Niblett, C.; Bailey, A. In vitro antifungal activity of synthetic dsRNA molecules against two pathogens of banana, Fusarium oxysporum f. sp. cubense and Mycosphaerella fijiensis. Pest Manag. Sci. 2013, 69, 1155–1162. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, J.S.; Angelo, P.C.S.; Cruz, J.C.; Santos, J.M.M.; Sousa, N.R.; Silva, G.F. Post-transcriptional silencing of the SGE1 gene induced by a dsRNA hairpin in Fusarium oxysporum f. sp. cubense, the causal agent of Panama disease. Genet. Mol. Res. 2016, 2, 1–14. [Google Scholar]
- Fei, S.; Constantin, M.; Peters, J.; Batley, J.; Aitken, E.; Mitter, N. RNAi-based management for Fusarium wilt of banana. In Proceedings of the International Symposia on Tropical and Temperate Horticulture—ISTTH2016, Cairns, Australia, 20–25 November 2016; pp. 717–720. [Google Scholar]
- Pacheco, R.; Bonilla, J.; Paguay, A.; Magdama, F.; Chong, P. In Vitro RNA-Mediated Gene Silencing of Fusarium oxysporum f. sp. cubense from Ecuador and Assessment of RNAi Molecule Stability in Banana Plants. PREPRINT (Version 1). 2024. Available online: https://www.researchsquare.com/article/rs-4837296/v1 (accessed on 30 August 2024).
- Ghag, S.B.; Shekhawat, U.K.; Ganapathi, T.R. Petunia floral defensins with unique prodomains as novel candidates for development of fusarium wilt resistance in transgenic banana plants. PLoS ONE 2012, 7, e39557. [Google Scholar] [CrossRef]
- Atienza, M.T.J.A.; Magpantay, M.D.A.; Santos, K.L.T.; Mora, N.B.; Balaraman, R.P.; Gemeinhardt, M.E.; Dela Cueva, F.M.; Paterno, E.S.; Fernando, L.M.; Kohli, P. Encapsulation of plant growth-promoting bacterial crude extract in nanoliposome and its antifungal property against Fusarium oxysporum. ACS Agr. Sci. Technol. 2021, 1, 691–701. [Google Scholar] [CrossRef]
- Selvaraj, M.G.; Vergara, A.; Ruiz, H.; Safari, N.; Elayabalan, S.; Ocimati, W.; Blomme, G. AI-powered banana diseases and pest detection. Plant Methods 2019, 15, 1–11. [Google Scholar] [CrossRef]
- Hayit, T.; Endes, A.; Hayit, F. The severity level classification of Fusarium wilt of chickpea by pre-trained deep learning models. J. Plant Pathol. 2024, 106, 93–105. [Google Scholar] [CrossRef]
- Hayit, T.; Endes, A.; Hayit, F. KNN-based approach for the classification of fusarium wilt disease in chickpea based on color and texture features. Eur. J. Plant Pathol. 2024, 168, 665–681. [Google Scholar] [CrossRef]
- Singh, R.N.; Krishnan, P.; Bharadwaj, C.; Das, B. Improving prediction of chickpea wilt severity using machine learning coupled with model combination techniques under field conditions. Ecol. Inform. 2023, 73, 101933. [Google Scholar] [CrossRef]
- Naraghi, L.; Negahban, M. Efficacy of Talaromyces flavus coated with nanoparticles in the growht inhibitory of Fusarium oxysporum f. sp. cucumerinum. 3c Tecnol. Glosas Innovación Apl. Pyme 2020, 9, 31–45. [Google Scholar] [CrossRef]
- Kaur, A.; Kukreja, V.; Aeri, M.; Tanwar, S.; Mohd, N. Nature’s secrets revealed: Unraveling Fusarium wilt diseases through CNN and SVM. In Proceedings of the 2023 4th IEEE Global Conference for Advancement in Technology (GCAT), Bangalore, India, 6–8 October 2023; pp. 1–7. [Google Scholar]
- Pareek, M.; Rajam, M.V. RNAi-mediated silencing of MAP kinase signalling genes (Fmk1, Hog1, and Pbs2) in Fusarium oxysporum reduces pathogenesis on tomato plants. Fungal Biol. 2017, 121, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Bharti, P.; Jyoti, P.; Kapoor, P.; Sharma, V.; Shanmugam, V.; Yadav, S.K. Host-induced silencing of pathogenicity genes enhances resistance to Fusarium oxysporum wilt in tomato. Mol. Biotechnol. 2017, 59, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Mukherjee, S.K.; Rajam, M.V. Silencing of the ornithine decarboxylase gene of Fusarium oxysporum f. sp. lycopersici by host-induced RNAi confers resistance to Fusarium wilt in tomato. Plant Mol. Biol. Rep. 2020, 38, 419–429. [Google Scholar]
- Tetorya, M.; Rajam, M.V. RNAi-mediated silencing of PEX6 and GAS1 genes of Fusarium oxysporum f. sp. lycopersici confers resistance against Fusarium wilt in tomato. 3 Biotech 2021, 11, 443. [Google Scholar]
- Chauhan, S.; Rajam, M.V. RNAi-mediated down-regulation of fasciclin-like proteins (FoFLPs) in Fusarium oxysporum f. sp. lycopersici results in reduced pathogenicity and virulence. Microbiol. Res. 2022, 260, 127033. [Google Scholar]
- Ouyang, S.Q.; Ji, H.M.; Feng, T.; Luo, S.J.; Cheng, L.; Wang, N. Artificial trans-kingdom RNAi of FolRDR1 is a potential strategy to control tomato wilt disease. PLoS Pathog. 2023, 19, e1011463. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.M.; Ayukawa, Y.; Yun, S.H.; Komatsu, K.; Arie, T. A putative RNA silencing component protein FoQde-2 is involved in virulence of the tomato wilt fungus Fusarium oxysporum f. sp. lycopersici. J. Gen. Plant Pathol. 2018, 84, 395–398. [Google Scholar] [CrossRef]
- Ji, H.M.; Zhao, M.; Gao, Y.; Cao, X.X.; Mao, H.Y.; Zhou, Y.; Fan, W.Y.; Borkovich, K.A.; Ouyang, S.Q.; Liu, P. FRG3, a target of slmiR482e-3p, provides resistance against the fungal pathogen Fusarium oxysporum in tomato. Front. Plant Sci. 2018, 9, 26. [Google Scholar]
- Ashraf, H.; Anjum, T.; Riaz, S.; Ahmad, I.S.; Irudayaraj, J.; Javed, S.; Qaiser, U.; Naseem, S. Inhibition mechanism of green-synthesized copper oxide nanoparticles from Cassia fistula towards Fusarium oxysporum by boosting growth and defense response in tomatoes. Environ. Sci. Nano 2021, 8, 1729–1748. [Google Scholar] [CrossRef]
- Abdelraouf, A.M.N.; Hussain, A.A.; Naguib, D.M. Nano-chitosan encapsulated Pseudomonas fluorescens greatly reduces Fusarium wilt infection in tomato. Rhizosphere 2023, 25, 100676. [Google Scholar] [CrossRef]
- Ilyina, A.; Leon-Joublanc, E.; Balvantin-Garcia, C.; Montañez-Saenz, J.C.; Rodríguez-Garza, M.M.; Segura Ceniceros, E.P.; Martínez-Hernández, J.L. Free and encapsulated chitinase and laminarinase as biological agents against Fusarium oxysporum. Afr. J. Microbiol. Res. 2013, 7, 4501–4511. [Google Scholar]
- Feng, H.; Gonzalez Viejo, C.; Vaghefi, N.; Taylor, P.W.; Tongson, E.; Fuentes, S. Early detection of Fusarium oxysporum infection in processing tomatoes (Solanum lycopersicum) and pathogen–soil interactions using a low-cost portable electronic nose and machine learning modeling. Sensors 2022, 22, 8645. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, E.S.R.; Mohamed, S.S.; Mousa, S.A.; El-Seoud, M.A.A.; Elmehlawy, A.A.; Abdou, D.A. Bifunctional role of some biogenic nanoparticles in controlling wilt disease and promoting growth of common bean. AMB Express 2023, 13, 41. [Google Scholar] [CrossRef] [PubMed]
- do Prado, E.V. Early detection of Fusarium wilt in common bean, at three levels of infestation, using leaf spectral information. Int. J. Adv. Eng. Manag. 2022, 3, 1356–1364. [Google Scholar]
- Castro-Valdecantos, P.; Egea, G.; Borrero, C.; Pérez-Ruiz, M.; Avilés, M. Detection of Fusarium wilt-induced physiological impairment in strawberry plants using hyperspectral imaging and machine learning. Precis. Agric. 2024, 25, 1–19. [Google Scholar] [CrossRef]
- Shinkado, S.; Saito, H.; Yamazaki, M.; Kotera, S.; Arazoe, T.; Arie, T.; Kamakura, T. Genome editing using a versatile vector-based CRISPR/Cas9 system in Fusarium species. Sci. Rep. 2022, 12, 16243. [Google Scholar] [CrossRef] [PubMed]
- Mosa, M.A.; Youssef, K. Topical delivery of host induced RNAi silencing by layered double hydroxide nanosheets: An efficient tool to decipher pathogenicity gene function of Fusarium crown and root rot in tomato. Physiol. Mol. Plant Pathol. 2021, 115, 101684. [Google Scholar] [CrossRef]
- Bilgili, A.; Bilgili, A.V.; Tenekeci, M.E.; Karadağ, K. Spectral characterization and classification of two different crown root rot and vascular wilt diseases (Fusarium oxysporum f. sp. radicis lycopersici and Fusarium solani) in tomato plants using different machine learning algorithms. Eur. J. Plant Pathol. 2023, 165, 271–286. [Google Scholar]
- Hu, Z.; Parekh, U.; Maruta, N.; Trusov, Y.; Botella, J.R. Down-regulation of Fusarium oxysporum endogenous genes by host-delivered RNA interference enhances disease resistance. Front. Chem. 2015, 3, 1. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Cobine, P.A.; Coleman, J.J. Efficient genome editing in Fusarium oxysporum based on CRISPR/Cas9 ribonucleoprotein complexes. Fungal Genet Biol. 2018, 117, 21–29. [Google Scholar] [CrossRef]
- Wang, Q.; Coleman, J.J. CRISPR/Cas9-mediated endogenous gene tagging in Fusarium oxysporum. Fungal Genet. Biol. 2019, 126, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Wagner, T.A.; Cai, Y.; Bell, A.A.; Puckhaber, L.S.; Magill, C.; Duke, S.E.; Liu, J. RNAi suppression of CYP82D P450 hydroxylase, an enzyme involved in gossypol biosynthesis, enhances resistance to Fusarium wilt in cotton. J. Phytopathol. 2020, 168, 103–112. [Google Scholar] [CrossRef]
- Sahayaraj, K.; Rajesh, S.; Rathi, J.M. Silver nanoparticles biosynthesis using marine alga Padina pavonica (Linn.) and its microbicidal activity. Dig. J. Nanomater. Biostruct. 2012, 7, 1557–1567. [Google Scholar]
- Manganiello, G.; Nicastro, N.; Ortenzi, L.; Pallottino, F.; Costa, C.; Pane, C. Trichoderma biocontrol performances against baby-lettuce Fusarium wilt surveyed by hyperspectral imaging-based machine learning and infrared thermography. Agriculture 2024, 14, 307. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X.; Li, Y.; Zeng, J.; Wang, G.; Deng, C.; Guo, W. Host-induced gene silencing of a regulator of G protein signalling gene (Vd RGS 1) confers resistance to Verticillium wilt in cotton. Plant Biotechnol. J. 2018, 16, 1629–1643. [Google Scholar] [CrossRef]
- Oulad Ziane, S.; Imehli, Z.; El Alaoui Talibi, Z.; Ibnsouda Koraichi, S.; Meddich, A.; El Modafar, C. Biocontrol of tomato Verticillium wilt disease by plant growth-promoting bacteria encapsulated in alginate extracted from brown seaweed. Int. J. Biol. Macromol. 2024, 276, 133800. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.Y.; Viejo, C.G.; Tongson, E.; Wiechel, T.; Taylor, P.W.; Fuentes, S. Early detection of Verticillium wilt of potatoes using near-infrared spectroscopy and machine learning modeling. Comput. Electron. Agric. 2023, 204, 107567. [Google Scholar] [CrossRef]
- Lizarazo, I.; Rodriguez, J.L.; Cristancho, O.; Olaya, F.; Duarte, M.; Prieto, F. Identification of symptoms related to potato Verticillium wilt from UAV-based multispectral imagery using an ensemble of gradient boosting machines. Smart Agric. Technol. 2023, 3, 100138. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, N.; Zhang, X.; Bai, T.; Yuan, X.; Bao, H.; He, D.; Sun, W.; He, Y. Cotton Verticillium wilt monitoring based on UAV multispectral-visible multi-source feature fusion. Comput. Electron. Agric. 2024, 217, 108628. [Google Scholar] [CrossRef]
- Blekos, K.; Tsakas, A.; Xouris, C.; Evdokidis, I.; Alexandropoulos, D.; Alexakos, C.; Katakis, S.; Makedonas, A.; Theoharato, C.; Lalos, A. Analysis, modeling and multi-spectral sensing for the predictive management of verticillium wilt in olive groves. J. Sens. Actuator Netw. 2021, 10, 15. [Google Scholar] [CrossRef]
- López-Escudero, F.J.; Romero, J.; Bocanegra-Caro, R.; Santos-Rufo, A. Predicting the risk of Verticillium wilt in olive orchards using Fuzzy Logic. Agriculture 2023, 13, 2136. [Google Scholar] [CrossRef]
- Muramoto, N.; Tanaka, T.; Shimamura, T.; Mitsukawa, N.; Hori, E.; Koda, K.; Otani, M.; Hirai, M.; Nakamura, K.; Imaeda, T. Transgenic sweet potato expressing thionin from barley gives resistance to black rot disease caused by Ceratocystis fimbriata in leaves and storage roots. Plant Cell Rep. 2012, 31, 987–997. [Google Scholar] [CrossRef]
- Souza, J.R.; Mendes, C.C.; Guizilini, V.; Vivaldini, K.C.; Colturato, A.; Ramos, F.; Wolf, D.F. Automatic detection of ceratocystis wilt in eucalyptus crops from aerial images. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 3443–3448. [Google Scholar]
- Wei, X.; Zhang, J.; Conrad, A.O.; Flower, C.E.; Pinchot, C.C.; Hayes-Plazolles, N.; Chen, Z.; Song, Z.; Fei, S.; Jin, J. Machine learning-based spectral and spatial analysis of hyper-and multi-spectral leaf images for Dutch elm disease detection and resistance screening. Artif. Intell. Agric. 2023, 10, 26–34. [Google Scholar] [CrossRef]
- Jiang, G.; Zhang, Y.; Gan, G.; Li, W.; Wan, W.; Jiang, Y.; Yang, T.; Zhang, Y.; Xu, Y.; Wang, Y.; et al. Exploring rhizo-microbiome transplants as a tool for protective plant-microbiome manipulation. ISME Comm. 2022, 2, 10. [Google Scholar] [CrossRef] [PubMed]
- Fernández-González, A.J.; Cardoni, M.; Gómez-Lama Cabanás, C.; Valverde-Corredor, A.; Villadas, P.J.; Fernández-López, M.; Mercado-Blanco, J. Linking belowground microbial network changes to different tolerance level towards Verticillium wilt of olive. Microbiome 2020, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Kwak, M.J.; Kong, H.G.; Choi, K.; Kwon, S.K.; Song, J.Y.; Lee, J.; Lee, P.A.; Choi, S.Y.; Seo, M.; Lee, H.J.; et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat. Biotechnol. 2018, 36, 1100–1109. [Google Scholar] [CrossRef]
- Bziuk, N.; Maccario, L.; Sørensen, S.J.; Schikora, A.; Smalla, K. Barley rhizosphere microbiome transplantation—A strategy to decrease susceptibility of barley grown in soils with low microbial diversity to powdery mildew. Front. Microbiol. 2022, 13, 830905. [Google Scholar] [CrossRef] [PubMed]
- Connell, J.L.; Ritschdorff, E.T.; Whiteley, M.; Shear, J.B. 3D printing of microscopic bacterial communities. Proc. Natl. Acad. Sci. USA 2013, 110, 18380–18385. [Google Scholar] [CrossRef] [PubMed]
- Ke, J.; Wang, B.; Yoshikuni, Y. Microbiome engineering: Synthetic biology of plant-associated microbiomes in sustainable agriculture. Trends Biotechnol. 2021, 39, 244–261. [Google Scholar] [CrossRef] [PubMed]
- Massalha, H.; Korenblum, E.; Malitsky, S.; Shapiro, O.H.; Aharoni, A. Live imaging of root-bacteria interactions in a microfluidics setup. Proc. Natl. Acad. Sci. USA 2017, 114, 4549–4554. [Google Scholar] [CrossRef] [PubMed]
- Massalha, H.; Korenblum, E.; Shapiro, O.H.; Aharoni, A. Tracking root interactions system (TRIS) experiment and quality control. Bio. Protoc. 2019, 9, e3211. [Google Scholar] [CrossRef]
- Nezhad, A.S. Microfluidic platforms for plant cells studies. Lab Chip 2014, 14, 3262–3274. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.H.; Jin, S.H.; Lee, B.J.; Kim, T.; Lee, C.S. Microfluidic static droplet array for analyzing microbial communication on a population gradient. Lab Chip 2015, 15, 889–899. [Google Scholar] [CrossRef]
- Mohan, R.; Sanpitakseree, C.; Desai, A.V.; Sevgen, S.E.; Schroeder, C.M.; Kenis, P.J. A microfluidic approach to study the effect of bacterial interactions on antimicrobial susceptibility in polymicrobial cultures. RSC Adv. 2015, 5, 35211–35223. [Google Scholar] [CrossRef]
- Mandolini, E.; Probst, M.; Peintner, U. Methods for studying bacterial–fungal interactions in the microenvironments of soil. App. Sci. 2021, 11, 9182. [Google Scholar] [CrossRef]
- Masters-Clark, E.; Clark, A.J.; Stanley, C.E. Microfluidic tools for probing fungal-microbial interactions at the cellular level. JoVE 2022, 184, e63917. [Google Scholar] [CrossRef]
- Orozco-Mosqueda, M.d.C.; Rocha-Granados, M.d.C.; Glick, B.R.; Santoyo, G. Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol. Res. 2018, 208, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Nandini, B.; Mawale, K.S.; Giridhar, P. Nanomaterials in agriculture for plant health and food safety: A comprehensive review on the current state of agro-nanoscience. 3 Biotech. 2023, 13, 73. [Google Scholar] [CrossRef] [PubMed]
- Boruah, S.; Dutta, P. Fungus mediated biogenic synthesis and characterization of chitosan nanoparticles and its combine effect with Trichoderma asperellum against Fusarium oxysporum, Sclerotium rolfsii and Rhizoctonia solani. Indian Phytopathol. 2021, 74, 81–93. [Google Scholar] [CrossRef]
- Das, S.; Pattanayak, S. Nanotechnological approaches in sustainable agriculture and plant disease management. In Organic Agriculture; Das, S.K., Ed.; IntechOpen: London, UK, 2020; Chapter 2; pp. 13–30. [Google Scholar]
- Namasivayam, S.K.R.; Vinodhini, R.K.; Kavisri, M.; Bharani, R.A.; Moovendhan, M. Formulation of biocontrol agents from Trichoderma viride and evaluation of viability, compatibility with metallic nanoparticles and decomposition efficacy of organic wastes. Biomass Convers. Bior. 2022, 14, 28387–28395. [Google Scholar] [CrossRef]
- Ajilogba, C.F.; Babalola, O.O.; Nikoro, D.O. Nanotechnology as vehicle for biocontrol of plant diseases in crop production. In Food Security and Safety: African Perspectives; Babalola, O.O., Ed.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 709–724. [Google Scholar]
- Kulkarni, D.; Sherkar, R.; Shirsathe, C.; Sonwane, R.; Varpe, N.; Shelke, S.; More, M.P.; Pardeshi, S.R.; Dhaneshwar, G.; Junnuthula, V.; et al. Biofabrication of nanoparticles: Sources, synthesis, and biomedical applications. Front. Bioeng. Biotechnol. 2023, 11, 1159193. [Google Scholar] [CrossRef] [PubMed]
- Omran, B.A.; Baek, K.H. Control of phytopathogens using sustainable biogenic nanomaterials: Recent perspectives, ecological safety, and challenging gaps. J. Clean. Prod. 2022, 372, 133729. [Google Scholar] [CrossRef]
- Ahmed, A.; Usman, M.; Ji, Z.; Rafiq, M.; Yu, B.; Shen, Y.; Cong, H. Nature-inspired biogenic synthesis of silver nanoparticles for antibacterial applications. Mater. Today Chem. 2023, 27, 101339. [Google Scholar] [CrossRef]
- Tomah, A.A.; Zhang, Z.; Alamer, I.S.A.; Khattak, A.A.; Ahmed, T.; Hu, M.; Wang, D.; Xu, L.; Li, B.; Wang, Y. The potential of Trichoderma-mediated nanotechnology application in sustainable development scopes. Nanomaterials 2023, 13, 2475. [Google Scholar] [CrossRef]
- Gajera, H.P.; Hirpara, D.G.; Bhadani, R.V.; Golakiya, B.A. Green synthesis and characterization of nanosilver derived from extracellular metabolites of potent Bacillus subtilis for antifungal and eco-friendly action against phytopathogen. Biometals 2022, 35, 479–497. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.A.; Wani, A.H.; Bhat, M.Y.; Siddiqui, S.; Alamri, S.A.; Alrumman, S.A. Fungal-mediated synthesis of silver nanoparticles: A novel strategy for plant disease management. Front. Microbiol. 2024, 15, 1399331. [Google Scholar] [CrossRef]
- Taheri, P.; Tarighi, S.; Ahmed, F.K. The antagonistic yeasts: Novel nano/biofungicides for controlling plant pathogens. In Nanohybrid Fungicides; Elsevier: Amstredam, The Netherlands, 2024; pp. 151–170. [Google Scholar]
- Tauseef, A.; Uddin, I. Novel Insights on Sustainable Nanoparticles in Crop Protection: Current Status and Future Prospectives. In Sustainable Nanomaterials. Sustainable Materials and Technology; Uddin, I., Ed.; Springer: Singapore, 2024; pp. 249–270. [Google Scholar]
- Ashraf, H.; Anjum, T.; Riaz, S.; Naseem, S. Microwave-assisted green synthesis and characterization of silver nanoparticles using Melia azedarach for the management of Fusarium wilt in tomato. Front. Microbiol. 2020, 11, 238. [Google Scholar] [CrossRef] [PubMed]
- Sankaranarayanan, P.; Anboli, T.A.; Suchithra, T.V. Agro-wastes-based feedstock as a source for bionanomaterials production: Outcomes and challenges. In Concepts in Pharmaceutical Biotechnology and Drug Development; Interdisciplinary Biotechnological Advances; Bose, S., Shukla, A.C., Baig, M.R., Banerjee, S., Eds.; Springer: Singapore, 2024; pp. 3–20. [Google Scholar]
- Mughal, B.; Zaidi, S.Z.J.; Zhang, X.; Hassan, S.U. Biogenic nanoparticles: Synthesis, characterisation and applications. Appl. Sci. 2021, 11, 2598. [Google Scholar] [CrossRef]
- Dikshit, P.K.; Kumar, J.; Das, A.K.; Sadhu, S.; Sharma, S.; Singh, S.; Gupta, P.K.; Kim, B.S. Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts 2021, 11, 902. [Google Scholar] [CrossRef]
- Bandeira, M.; Giovanela, M.; Roesch-Ely, M.; Devine, D.M.; da Silva Crespo, J. Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustain. Chem. Pharm. 2020, 15, 100223. [Google Scholar] [CrossRef]
- Abd El Aty, A.A.; Zohair, M.M. Green-synthesis and optimization of an eco-friendly nanobiofungicide from Bacillus amyloliquefaciens MH046937 with antimicrobial potential against phytopathogens. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100309. [Google Scholar] [CrossRef]
- Anjum, S.; Vyas, A.; Sofi, T. Fungi-mediated synthesis of nanoparticles: Characterization process and agricultural applications. J. Sci. Food Agric. 2023, 103, 4727–4741. [Google Scholar] [CrossRef]
- Ahmad, A.; Mukherjee, P.; Senapati, S.; Mandal, D.; Khan, M.I.; Kumar, R.; Sastry, M. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B Biointerfaces 2003, 28, 313–318. [Google Scholar] [CrossRef]
- Shiny, K.S.; Sundararaj, R.; Mamatha, N.; Lingappa, B. A new approach to wood protection: Preliminary study of biologically synthesized copper oxide nanoparticle formulation as an environmental friendly wood protectant against decay fungi and termites. Maderas Cienc. Tecnol. 2019, 21, 347–356. [Google Scholar] [CrossRef]
- Satti, S.H.; Raja, N.I.; Javed, B.; Akram, A.; Mashwani, Z.-u.-R.; Ahmad, M.S.; Ikram, M. Titanium dioxide nanoparticles elicited agro-morphological and physicochemical modifications in wheat plants to control Bipolaris sorokiniana. PLoS ONE 2021, 16, e0246880. [Google Scholar] [CrossRef] [PubMed]
- Satti, S.H.; Raja, N.I.; Ikram, M.; Oraby, H.F.; Mashwani, Z.U.R.; Mohamed, A.H.; Singh, A.; Omar, A.A. Plant-based titanium dioxide nanoparticles trigger biochemical and proteome modifications in Triticum aestivum L. under biotic stress of Puccinia striiformis. Molecules 2022, 27, 4274. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Rana, V.; Yadav, S.K.; Kumar, V. Nanotechnology as a powerful tool in plant sciences: Recent developments, challenges and perspectives. Plant Nano Biol. 2023, 5, 100046. [Google Scholar] [CrossRef]
- Karmous, I.; Vaidya, S.; Dimkpa, C.; Zuverza-Mena, N.; da Silva, W.; Barroso, K.A.; Milagres, J.; Bharadwaj, A.; Abdelraheem, W.; White, J.C.; et al. Biologically synthesized zinc and copper oxide nanoparticles using Cannabis sativa L. enhance soybean (Glycine max) defense against Fusarium virguliforme. Pestic. Biochem. Physiol. 2023, 194, 105486. [Google Scholar] [CrossRef]
- Del Buono, D.; Di Michele, A.; Costantino, F.; Trevisan, M.; Lucini, L. Biogenic ZnO nanoparticles synthesized using a novel plant extract: Application to enhance physiological and biochemical traits in maize. Nanomaterials 2021, 11, 1270. [Google Scholar] [CrossRef] [PubMed]
- Wohlmuth, J.; Tekielska, D.; Čechová, J.; Baránek, M. Interaction of the nanoparticles and plants in selective growth stages—Usual effects and resulting impact on usage perspectives. Plants 2022, 11, 2405. [Google Scholar] [CrossRef] [PubMed]
- LewisOscar, F.; Vismaya, S.; Arunkumar, M.; Thajuddin, N.; Dhanasekaran, D.; Nithya, C. Algal nanoparticles: Synthesis and biotechnological potentials. In Algae-Organisms for Imminent Biotechnology; IntechOpen: London, UK, 2016; Chapter 7; pp. 157–182. [Google Scholar]
- Yousefzadi, M.; Rahimi, Z.; Ghafori, V. The green synthesis, characterization and antimicrobial activities of silver nanoparticles synthesized from green alga Enteromorpha flexuosa (wulfen) J. Agardh. Mat. Lett. 2014, 137, 1–4. [Google Scholar] [CrossRef]
- Shankar, P.D.; Shobana, S.; Karuppusamy, I.; Pugazhendhi, A.; Ramkumar, V.S.; Arvindnarayan, S.; Kumar, G. A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: Formation mechanism and applications. Enzyme Microb. Technol. 2016, 95, 28–44. [Google Scholar] [CrossRef] [PubMed]
- Kokabi, M.; Yousefzadi, M. Algal nanoparticles and their potential application in agriculture. In Nano-enabled Agrochemicals in Agriculture; Ghorbanpour, M., Shahid, M.H., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 189–198. [Google Scholar]
- Waqif, H.; Munir, N.; Farrukh, M.A.; Hasnain, M.; Sohail, M.; Abideen, Z. Algal macromolecular mediated synthesis of nanoparticles for their application against citrus canker for food security. Int. J. Biol. Macromol. 2024, 263, 130259. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elsalam, K.A.; Periakaruppan, R.; Rajeshkumar, S. Agri-Waste and Microbes for Production of Sustainable Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–54. [Google Scholar]
- T-Thienprasert, N.P.; Nattanan, T.; Jiraroj, T.; Ruangtong, J.; Jaithon, T.; Huehne, P.S.; Piasai, O. Large scale synthesis of green synthesized zinc oxide nanoparticles from banana peel extracts and their inhibitory effects against Colletotrichum sp., isolate KUFC 021, causal agent of anthracnose on Dendrobium orchid. J. Nanomater. 2021, 2021, 5625199. [Google Scholar] [CrossRef]
- Goswami, P.; Mathur, J. Application of agro-waste-mediated silica nanoparticles to sustainable agriculture. Bioresour. Bioprocess 2022, 9, 9. [Google Scholar] [CrossRef] [PubMed]
- Raliya, R.; Saharan, V.; Dimkpa, C.; Biswas, P. Nanofertilizer for precision and sustainable agriculture: Current state and future perspectives. J. Agric. Food Chem. 2018, 66, 6487–6503. [Google Scholar] [CrossRef] [PubMed]
- Keswani, C.; Bisen, K.; Singh, V.; Sarma, B.K.; Singh, H.B. Formulation technology of biocontrol agents: Present status and future prospects. In Bioformulations: For Sustainable Agriculture; Arora, N., Mehnaz, S., Balestrini, R., Eds.; Springer: New Delhi, India, 2016; pp. 35–52. [Google Scholar]
- Zainab, R.; Hasnain, M.; Ali, F.; Abideen, Z.; Siddiqui, Z.S.; Jamil, F.; Hussain, M.; Park, Y.K. Prospects and challenges of nanopesticides in advancing pest management for sustainable agricultural and environmental service. Environ. Res. 2024, 261, 119722. [Google Scholar] [CrossRef]
- Hudson, D.; Margaritis, A. Biopolymer nanoparticle production for controlled release of biopharmaceuticals. Crit. Rev. Biotechnol. 2014, 34, 161–179. [Google Scholar] [CrossRef] [PubMed]
- Balla, A.; Silini, A.; Cherif-Silini, H.; Chenari Bouket, A.; Alenezi, F.N.; Belbahri, L. Recent advances in encapsulation techniques of plant growth-promoting microorganisms and their prospects in the sustainable agriculture. Appl. Sci. 2022, 12, 9020. [Google Scholar] [CrossRef]
- Vemmer, M.; Patel, A.V. Review of encapsulation methods suitable for microbial biological control agents. Biol. Control 2013, 67, 380–389. [Google Scholar] [CrossRef]
- Muñoz-Celaya, A.L.; Ortiz-García, M.; Vernon-Carter, E.J.; Jauregui-Rincón, J.; Galindo, E.; Serrano-Carreón, L. Spray-drying microencapsulation of Trichoderma harzianum conidias in carbohydrate polymers matrices. Carbohydr. Polym. 2012, 88, 1141–1148. [Google Scholar] [CrossRef]
- Pour, M.M.; Saberi-Riseh, R.; Mohammadinejad, R.; Hosseini, A. Nano-encapsulation of plant growth-promoting rhizobacteria and their metabolites using alginate-silica nanoparticles and carbon nanotube improves UCB1 pistachio micropropagation. J. Microbiol. Biotechnol. 2019, 29, 1096–1103. [Google Scholar]
- Saberi-Riseh, R.; Hassanisaadi, M.; Vatankhah, M.; Soroush, F.; Varma, R.S. Nano/microencapsulation of plant biocontrol agents by chitosan, alginate, and other important biopolymers as a novel strategy for alleviating plant biotic stresses. Int. J. Biol. Macromol. 2022, 222, 1589–1604. [Google Scholar] [CrossRef] [PubMed]
- Saberi-Riseh, R.; Moradi-Pour, M. A novel encapsulation of Streptomyces fulvissimus Uts22 by spray drying and its biocontrol efficiency against Gaeumannomyces graminis, the causal agent of take-all disease in wheat. Pest Manag. Sci. 2021, 77, 4357–4364. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.H.; Tran, T.N.M.; Vu, N.B.D. Antifungal activity of essential oil-encapsulated lipid nanoemulsions formulations against leaf spot disease on tomato caused by Alternaria alternata. Arch. Phytopathol. Plant Protect. 2021, 55, 235–257. [Google Scholar] [CrossRef]
- Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.; Pearson: London, UK, 2010; 1151p. [Google Scholar]
- Oxford. Artificial Intelligence. Oxford Dict. 2019. Available online: https://www.lexico.com/en/definition/artificial_intelligence (accessed on 19 November 2024).
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Hirschberg, J.; Manning, C.D. Advances in Natural Language Processing. Science 2015, 349, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Wakchaure, M.; Patle, B.K.; Mahindrakar, A.K. Application of AI techniques and robotics in agriculture: A review. Artif. Intell. Life Sci. 2023, 3, 100057. [Google Scholar] [CrossRef]
- Abiri, R.; Rizan, N.; Balasundram, S.K.; Shahbazi, A.B.; Abdul-Hamid, H. Application of digital technologies for ensuring agricultural productivity. Heliyon 2023, 9, e22601. [Google Scholar] [CrossRef]
- Mana, A.A.; Allouhi, A.; Hamrani, A.; Rahman, S.; el Jamaoui, I.; Jayachandran, K. Sustainable AI-based production agriculture: Exploring AI applications and implications in agricultural practices. Smart Agric. Technol. 2024, 7, 100416. [Google Scholar] [CrossRef]
- Chen, G.; Pham, T.T. Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems, 1st ed.; CRC Press: Boca Raton, FL, USA, 2000; 328p. [Google Scholar]
- Sadeghi, M.; Panahi, B.; Mazlumi, A.; Hejazi, M.A.; Komi, D.E.A.; Nami, Y. Screening of potential probiotic lactic acid bacteria with antimicrobial properties and selection of superior bacteria for application as biocontrol using machine learning models. LWT 2022, 162, 113471. [Google Scholar] [CrossRef]
- Liao, J.R.; Lee, H.C.; Chiu, M.C.; Ko, C.C. Semi-automated identification of biological control agent using artificial intelligence. Sci. Rep. 2020, 10, 14632. [Google Scholar] [CrossRef]
- El-Naggar, N.E.A.; Bashir, S.I.; Rabei, N.H.; Saber, W.I. Innovative biosynthesis, artificial intelligence-based optimization, and characterization of chitosan nanoparticles by Streptomyces microflavus and their inhibitory potential against Pectobacterium carotovorum. Sci. Rep. 2022, 12, 21851. [Google Scholar] [CrossRef]
- El-Naggar, N.E.; Sherief, A.A.; Hamza, S.S. Streptomyces aegyptia NEAE 102, a novel cellulolytic streptomycete isolated from soil in Egypt. Afr. J. Microbiol. Res. 2011, 5, 5308–5315. [Google Scholar]
- Talib, N.S.R.; Halmi, M.I.E.; Gani, S.S.A.; Zaidan, U.H.; Shukor, M.Y.A. Artificial neural networks (ANNs) and response surface methodology (RSM) approach for Modelling the optimization of chromium (VI) reduction by newly isolated Acinetobacter radioresistens strain NS-MIE from agricultural soil. BioMed Res. Int. 2019, 2019, 5785387. [Google Scholar]
- Souza, R.; Armanhi, J.; Arruda, P. From microbiome to traits: Designing synthetic microbial communities for improved crop resiliency. Front. Plant Sci. 2020, 11, 1179. [Google Scholar] [CrossRef]
- Martins, S.; Pasche, J.; Silva, H.; Selten, G.; Savastano, N.; Abreu, L.; Bais, H.; Garrett, K.; Kraisitudomsook, N.; Pieterse, C.; et al. The use of synthetic microbial communities (SynComs) to improve plant health. Phytopathology 2023, 113, 1369–1379. [Google Scholar] [CrossRef]
- Wan, T.; Zhao, H.; Wang, W. Effect of biocontrol agent Bacillus amyloliquefaciens SN16-1 and plant pathogen Fusarium oxysporum on tomato rhizosphere bacterial community composition. Biol. Control 2017, 112, 1–9. [Google Scholar] [CrossRef]
- Gómez-Lama Cabanás, C.; Wentzien, N.M.; Zorrilla-Fontanesi, Y.; Valverde-Corredor, A.; Fernández-González, A.J.; Fernández-López, M.; Mercado-Blanco, J. Impacts of the biocontrol strain Pseudomonas simiae PICF7 on the banana holobiont: Alteration of root microbial co-occurrence networks and effect on host defense responses. Front Microbiol. 2022, 13, 809126. [Google Scholar]
- Cardoni, M.; Fernández-González, A.J.; Valverde-Corredor, A.; Fernández-López, M.; Mercado-Blanco, J. Co-occurrence network analysis unveils the actual differential impact on the olive root microbiota by two Verticillium wilt biocontrol rhizobacteria. Environ. Microbiome 2023, 18, 21. [Google Scholar] [CrossRef] [PubMed]
- Kotula, H.J.; Peralta, G.; Frost, C.M.; Todd, J.H.; Tylianakis, J.M. Predicting direct and indirect non-target impacts of biocontrol agents using machine-learning approaches. PLoS ONE 2021, 16, e0252448. [Google Scholar]
- Zhao, L.; Walkowiak, S.; Fernando, W.G.D. Artificial intelligence: A promising tool in exploring the phytomicrobiome in managing disease and promoting plant health. Plants 2023, 12, 1852. [Google Scholar] [CrossRef] [PubMed]
- Sperschneider, J. Machine learning in plant–pathogen interactions: Empowering biological predictions from field scale to genome scale. New Phytol. 2020, 228, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Pane, C.; Manganiello, G.; Nicastro, N.; Ortenzi, L.; Pallottino, F.; Cardi, T.; Costa, C. Machine learning applied to canopy hyperspectral image data to support biological control of soil-borne fungal diseases in baby leaf vegetables. Biol. Control 2021, 164, 104784. [Google Scholar] [CrossRef]
- Boschert, S.; Rosen, R. Digital twin—The simulation aspect. Mechatronic futures: Challenges and solutions for mechatronic systems and their designers. In Mechatronic Futures; Hehenberger, P., Bradley, D., Eds.; Springer: Cham, Switzerland, 2016; pp. 59–74. [Google Scholar]
- Grieves, M.; Vickers, J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary Perspectives on Complex Systems; Kahlen, J., Flumerfelt, S., Alves, A., Eds.; Springer: Cham, Switzerland, 2017; pp. 85–113. [Google Scholar]
- Verdouw, C.; Tekinerdogan, B.; Beulens, A.; Wolfert, S. Digital twins in smart farming. Agric. Syst. 2021, 189, 103046. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput. Struct. Biotechnol. J. 2020, 18, 2401–2415. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.C.; Holmes, M.C.; Wang, J.; Guschin, D.Y.; Lee, Y.L. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol. 2007, 25, 778–785. [Google Scholar] [CrossRef]
- Christian, M.; Cermak, T.; Doyle, E.L.; Schmidt, C.; Zhang, F. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 2010, 186, 757–761. [Google Scholar] [CrossRef] [PubMed]
- Westra, E.R.; Dowling, A.J.; Broniewski, J.M.; Houte, S. Evolution and ecology of CRISPR. Annu. Rev. Ecol. Evol. Syst. 2016, 47, 307–331. [Google Scholar] [CrossRef]
- Chen, P.J.; Liu, D.R. Prime editing for precise and highly versatile genome manipulation. Nat. Rev. Genet. 2023, 24, 161–177. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Lu, J.; Yang, X.; Huang, L.-C.; Zhang, C.-Q.; Liu, Q.-Q.; Li, Q.-F. Gene editing of non-coding regulatory DNA and its application in crop improvement. J. Exp. Bot. 2023, 74, 6158–6175. [Google Scholar] [CrossRef]
- Gokul, A.; Mabaso, J.; Henema, N.; Otomo, L.; Bakare, O.O.; Klein, A.; Daniel, A.I.; Omolola, A.; Niekerk, L.-A.; Nkomo, M.; et al. Sustainable agriculture through the enhancement of microbial biocontrol agents: Current challenges and new perspectives. Appl. Sci. 2023, 13, 6507. [Google Scholar] [CrossRef]
- Wang, Q. Development of a CRISPR/Cas9 Gene Editing System for Fusarium oxysporum and Characterization of an Extracellular Superoxide Dismutase and Its Contribution to Pathogenicity on Cotton. Ph.D. Thesis, Auburn University, Auburn, AL, USA, 2019. [Google Scholar]
- Yoshida, T.; Kawabe, M.; Miyata, Y.; Teraoka, T.; Arie, T. Biocontrol activity in a nonpathogenic REMI mutant of Fusarium oxysporum f. sp. conglutinans and characterization of its disrupted gene. J. Pestic. Sci. 2008, 33, 234–242. [Google Scholar]
- Ghorbanpour, M.; Omidvari, M.; Abbaszadeh-Dahaji, P.; Omidvar, R.; Kariman, K. Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biol. Control 2018, 117, 147–157. [Google Scholar] [CrossRef]
- Xu, X.; Huang, R.; Yin, W.B. An optimized and efficient crispr/cas9 system for the endophytic fungus Pestalotiopsis fici. J. Fungi 2021, 7, 809. [Google Scholar] [CrossRef]
- Muñoz, I.V.; Sarrocco, S.; Malfatti, L.; Baroncelli, R.; Vannacci, G. CRISPR-Cas for fungal genome editing: A new tool for the management of plant diseases. Front. Plant Sci. 2019, 10, 135. [Google Scholar] [CrossRef]
- Chowdhary, K.; Arora, H.; Sharma, S. CRISPR/Cas9-based genome editing as a way ahead for inducing production of bioactive metabolites in endophytes. Natl. Acad. Sci. Lett. 2022, 45, 275–280. [Google Scholar] [CrossRef]
- Huang, P.W.; Yang, Q.; Zhu, Y.L.; Zhou, J.; Sun, K.; Mei, Y.Z.; Dai, C.C. The construction of CRISPR-Cas9 system for endophytic Phomopsis liquidambaris and its PmkkA-deficient mutant revealing the effect on rice. Fungal Genet. Biol. 2020, 136, 103301. [Google Scholar] [CrossRef]
- Zhu, Y.L.; Zhang, M.Q.; Wang, L.S.; Mei, Y.Z.; Dai, C.C. Overexpression of chitinase in the endophyte Phomopsis liquidambaris enhances wheat resistance to Fusarium graminearum. Fungal Genet. Biol. 2022, 158, 103650. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Li, Z.; Song, C.; Kuipers, O.P. Exploring plant-microbe interactions of the rhizobacteria Bacillus subtilis and Bacillus mycoides by use of the CRISPR-Cas9 system. Environ. Microbiol. 2018, 20, 4245–4260. [Google Scholar] [CrossRef] [PubMed]
- Urumbil, S.K.; Anilkumar, M. Metagenomic insights into plant growth promoting genes inherent in bacterial endophytes of Emilia sonchifolia (Linn.) DC. Plant Sci. Today 2021, 8, 6–16. [Google Scholar] [CrossRef]
- Clouse, K.M.; Wagner, M.R. Plant genetics as a tool for manipulating crop microbiomes: Opportunities and challenges. Front. Bioeng. Biotechnol. 2021, 9, 567548. [Google Scholar] [CrossRef] [PubMed]
- Anzalone, A.V.; Randolph, P.B.; Davis, J.R.; Sousa, A.A.; Koblan, L.W.; Levy, J.M.; Chen, P.J.; Wilson, C.; Newby, G.A.; Raguram, A.; et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019, 576, 149–157. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, G. Current advancement in the application of prime editing. Front. Bioeng. Biotechnol. 2023, 11, 1039315. [Google Scholar] [CrossRef] [PubMed]
- Ni, P.; Zhao, Y.; Zhou, X.; Liu, Z.; Huang, Z.; Ni, Z.; Sun, O.; Zong, Y. Efficient and versatile multiplex prime editing in hexaploid wheat. Genome Biol. 2023, 24, 156. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Shang, P.; Mohanraju, P.; Geijsen, N. Prime editing: Advances and therapeutic applications. Trends Biotechnol. 2023, 41, 1000–1012. [Google Scholar] [CrossRef] [PubMed]
- Shelake, R.M.; Pramanik, D.; Kim, J.-Y. Exploration of plant-microbe interactions for sustainable agriculture in CRISPR era. Microorganisms 2019, 7, 269. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.M.; Yuan, G.; Chen, J.G.; Tuskan, G.A.; Yang, X. Prime editing technology and its prospects for future applications in plant biology research. Biodes. Res. 2020, 2020, 9350905. [Google Scholar] [CrossRef]
- Rajput, M.; Choudhary, K.; Kumar, M.; Vivekanand, V.; Chawade, A.; Ortiz, R.; Pareek, N. RNA interference and CRISPR/Cas gene editing for crop improvement: Paradigm shift towards sustainable sgriculture. Plants 2021, 10, 1914. [Google Scholar] [CrossRef] [PubMed]
- Parperides, E.; El Mounadi, K.; Garcia-Ruiz, H. Induction and suppression of gene silencing in plants by nonviral microbes. Mol. Plant Pathol. 2023, 24, 1347–1356. [Google Scholar] [CrossRef] [PubMed]
- Hudzik, C.; Hou, Y.; Ma, W.; Axtell, M.J. Exchange of small regulatory RNAs between plants and their pests. Plant Physiol. 2020, 182, 51–62. [Google Scholar] [CrossRef]
- Garcia-Ruiz, H.; Garcia Ruiz, M.T.; Gabriel Peralta, S.M.; Miravel Gabriel, C.B.; El-Mounadi, K. Mecanismos, aplicaciones y perspectivas del silenciamiento génico de virus en plantas. Rev. Mex. Fitopatol. 2016, 34, 286–307. [Google Scholar] [CrossRef]
- Rosa, C.; Kuo, Y.W.; Wuriyanghan, H.; Falk, B.W. RNA interference mechanisms and applications in plant pathology. Annu. Rev. Phytopathol. 2018, 56, 581–610. [Google Scholar] [CrossRef]
- Cai, Q.; Qiao, L.; Wang, M.; He, B.; Lin, F.M.; Palmquist, J.; Huang, S.D.; Jin, H. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 2018, 360, 1126–1129. [Google Scholar] [CrossRef]
- Koch, A.; Biedenkopf, D.; Furch, A.; Weber, L.; Rossbach, O.; Abdellatef, E.; Linicus, L.; Johannsmeier, J.; Jelonek, L.; Goesmann, A.; et al. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PLoS Pathog. 2016, 12, e1005901. [Google Scholar] [CrossRef]
- Wang, M.; Weiberg, A.; Lin, F.M.; Thomma, B.P.H.J.; Huang, H.D.; Jin, H.L. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat. Plants 2016, 2, 16151. [Google Scholar] [CrossRef]
- Nowara, D.; Gay, A.; Lacomme, C.; Shaw, J.; Ridout, C.; Douchkov, D.; Hensel, G.; Kumlehn, J.; Schweizer, P. HIGS: Host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 2010, 22, 3130–3141. [Google Scholar] [CrossRef] [PubMed]
- Ghag, S.B.; Shekhawat, U.K.; Ganapathi, T.R. Host-induced post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana. Plant Biotechnol. J. 2014, 12, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Koch, A.; Kumar, N.; Weber, L.; Keller, H.; Imani, J.; Kogel, K.H. Host-induced gene silencing of cytochrome P450 lanosterol C14a-demethylase-encoding genes confers strong resistance to Fusarium species. Proc. Natl. Acad. Sci. USA 2013, 110, 19324–19329. [Google Scholar] [CrossRef] [PubMed]
- Zulfiqar, S.; Farooq, M.A.; Zhao, T.; Wang, P.; Tabusam, J.; Wang, Y.; Xuan, S.; Zhao, J.; Chen, X.; Shen, S.; et al. Virus-Induced Gene Silencing (VIGS): A powerful tool for crop improvement and its advancement towards epigenetics. Int. J. Mol. Sci. 2023, 24, 5608. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Niu, N.; Li, S.; Liu, Y.; Xue, C.; Wang, H.; Liu, M.; Zhao, J. Virus-Induced Gene Silencing (VIGS) in Chinese Jujube. Plants 2023, 12, 2115. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, S.; Xu, X.; He, Y.; Shou, W.; Munaiz, E.D.; Yu, C.; Shen, J. Application and expansion of virus-induced gene silencing for functional studies in vegetables. Horticulturae 2023, 9, 934. [Google Scholar] [CrossRef]
- Liu, C.; Kogel, K.H.; Ladera-Carmona, M. Harnessing RNA interference for the control of Fusarium species: A critical review. Mol. Plant Pathol. 2024, 25, e70011. [Google Scholar] [CrossRef] [PubMed]
- Gebremichael, D.E.; Haile, Z.M.; Negrini, F.; Sabbadini, S.; Capriotti, L.; Mezzetti, B.; Baraldi, E. RNA interference strategies for future management of plant pathogenic fungi: Prospects and challenges. Plants 2021, 10, 650. [Google Scholar] [CrossRef]
- Hough, J.; Howard, J.D.; Brown, S.; Portwood, D.E.; Kilby, P.M.; Dickman, M.J. Strategies for the production of dsRNA biocontrols as alternatives to chemical pesticides. Front. Bioeng. Biotechnol. 2022, 10, 980592. [Google Scholar] [CrossRef] [PubMed]
- Niño-Sánchez, J.; Chen, L.H.; De Souza, J.T.; Mosquera, S.; Stergiopoulos, I. Targeted delivery of gene silencing in fungi using genetically engineered bacteria. J. Fungi 2021, 7, 125. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, X.; Tian, X.; Zhou, J.; Wang, Q.; Wang, B.; Yu, W.; Jiang, Y.; Hsiang, T.; Qi, X. RNA interference of Aspergillus flavus in response to Aspergillus flavus partitivirus 1 infection. Front. Microbiol. 2023, 14, 1252294. [Google Scholar] [CrossRef] [PubMed]
- Mahanty, B.; Mishra, R.; Joshi, R.K. Cross-kingdom small RNA communication between plants and fungal phytopathogens-recent updates and prospects for future agriculture. RNA Biol. 2023, 20, 109–119. [Google Scholar] [CrossRef]
- Ray, P.; Sahu, D.; Aminedi, R.; Chandran, D. Concepts and considerations for enhancing RNAi efficiency in phytopathogenic fungi for RNAi-based crop protection using nanocarrier-mediated dsRNA delivery systems. Front. Fungal Biol. 2022, 3, 977502. [Google Scholar] [CrossRef]
- Ghosh, S.; Patra, S.; Ray, S. A Combinatorial nanobased spray-induced gene silencing technique for crop protection and improvement. ACS Omega 2023, 8, 22345–22351. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Melo, J.; Mammarella, F.; Ariel, F. Exogenous RNAs: Promising tools for the second green revolution. J. Exp. Bot. 2023, 74, 2323–2337. [Google Scholar] [CrossRef] [PubMed]
- Nagata, T.; Okada, K.; Takebe, R.; Matsui, C. Delivery of tobacco mosaic virus RNA into plant protoplasts mediated by reverse-phase evaporation vesicles (liposomes). Mol. Genet. Genom. 1981, 184, 161–165. [Google Scholar] [CrossRef]
- Silva, A.T.; Nguyen, A.; Ye, C.; Verchot, J.; Moon, J.H. Conjugated polymer nanoparticles for effective siRNA delivery to tobacco BY-2 protoplasts. BMC Plant Biol. 2010, 10, 291. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, R.; Yang, B. Carbon dots: A new type of carbon-based nanomaterial with wide applications. ACS Cent. Sci. 2020, 6, 2179–2195. [Google Scholar] [CrossRef] [PubMed]
- Mitter, N.; Worrall, E.A.; Robinson, K.E.; Li, P.; Jain, R.G.; Taochy, C.; Fletcher, S.J.; Carroll, B.J.; Lu, G.Q.; Xu, Z.P. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 2017, 3, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Yang, C.; Huang, B.; Huang, Z.; Zeqian, L.; Zhang, X.; Zhao, C. Systemic toxicity induced by aggregated layered double hydroxide nanoparticles. Int. J. Nanomed. 2017, 12, 7183–7195. [Google Scholar] [CrossRef]
- Ding, T.; Lin, K.; Chen, J.; Hu, Q.; Yang, B.; Li, J.; Gan, J. Causes and mechanisms on the toxicity of layered double hydroxide (LDH) to green algae Scenedesmus quadricauda. Sci. Total Environ. 2018, 635, 1004–1011. [Google Scholar] [CrossRef] [PubMed]
- Bennett, M.; Deikman, J.; Hendrix, B.; Iandolino, A. Barriers to efficient foliar uptake of dsRNA and molecular barriers to dsRNA activity in plant cells. Front. Plant Sci. 2020, 11, 816. [Google Scholar] [CrossRef] [PubMed]
- Das, P.R.; Sherif, S.M. Application of exogenous dsRNAs-induced RNAi in agriculture: Challenges and triumphs. Front. Plant Sci. 2020, 11, 946. [Google Scholar] [CrossRef]
- Šečić, E.; Kogel, K.H. Requirements for fungal uptake of dsRNA and gene silencing in RNAi-based crop protection strategies. Curr. Opin. Biotechnol. 2021, 70, 136–142. [Google Scholar] [CrossRef]
- Niu, D.; Hamby, R.; Sanchez, J.N.; Cai, Q.; Yan, Q.; Jin, H. RNAs—A new frontier in crop protection. Curr. Opin. Biotechnol. 2021, 70, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Hoang, B.; Fletcher, S.J.; Brosnan, C.A.; Ghodke, A.B.; Manzie, N.; Mitter, N. RNAi as a foliar spray: Efficiency and challenges to field applications. Int. J. Mol. Sci. 2022, 23, 6639. [Google Scholar] [CrossRef] [PubMed]
- Dou, T.; Shao, X.; Hu, C.; Liu, S.; Sheng, O.; Bi, F.; Deng, G.; Ding, L.; Li, C.; Dong, T.; et al. Host-induced gene silencing of Foc TR4 ERG6/11 genes exhibits superior resistance to Fusarium wilt of banana. Plant Biotechnol. J. 2020, 18, 11. [Google Scholar] [CrossRef] [PubMed]
- Tetorya, M.; Rajam, M.V. RNA silencing of PEX 6 gene causes decrease in pigmentation, sporulation and pathogenicity of Fusarium oxysporum. Plant Pathol. 2018, 67, 67–75. [Google Scholar] [CrossRef]
- Chauhan, S.; Rajam, M.V. Host RNAi-mediated silencing of Fusarium oxysporum f. sp. lycopersici specific-fasciclin-like protein genes provides improved resistance to Fusarium wilt in Solanum lycopersicum. Planta 2024, 259, 79. [Google Scholar]
- Song, Y.; Thomma, B.P. Host-induced gene silencing compromises Verticillium wilt in tomato and Arabidopsis. Mol. Plant Pathol. 2018, 19, 77–89. [Google Scholar] [CrossRef]
- Wei, C.; Qin, T.; Li, Y.; Wang, W.; Dong, T.; Wang, Q. Host-induced gene silencing of the acetolactate synthases VdILV2 and VdILV6 confers resistance to Verticillium wilt in cotton (Gossypium hirsutum L.). Biochem. Biophys. Res. Commun. 2020, 524, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Lu, G.; Li, X.; Rehman, L.; Liu, W.; Sun, G.; Guo, H.; Wang, G.; Cheng, H. Host-induced gene silencing of an adenylate kinase gene involved in fungal energy metabolism improves plant resistance to Verticillium dahliae. Biomolecules 2020, 10, 127. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Lan, C.; Capriotti, L.; Ah-Fong, A.; Nino Sanchez, J.; Hamby, R.; Heller, J.; Zhao, H.; Glass, N.L.; Judelson, H.S.; et al. Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake. Plant Biotechnol. J. 2021, 19, 1756–1768. [Google Scholar] [CrossRef]
- Zhang, T.; Jin, Y.; Zhao, J.H.; Gao, F.; Zhou, B.J.; Fang, Y.Y.; Gou, H.S. Host-induced gene silencing of the target gene in fungal cells confers effective resistance to the cotton wilt disease pathogen Verticillium dahliae. Mol. Plant 2016, 9, 939–942. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hu, S.; Jian, W.; Xie, C.; Yang, X. Plant antimicrobial peptides: Structures, functions, and applications. Bot. Stud. 2021, 62, 5. [Google Scholar] [CrossRef]
- Montesinos, E. Functional peptides for plant disease control. Annu. Rev. Phytopathol. 2023, 61, 301–324. [Google Scholar] [CrossRef]
- Cavallarin, L.; Andreu, D.; San Segundo, B. Cecropin A-derived peptides are potent inhibitors of fungal plant pathogens. Mol. Plant-Microbe Interact. 1998, 11, 218–227. [Google Scholar] [CrossRef]
- Das, K.; Datta, K.; Karmakar, S.; Datta, S.K. Antimicrobial peptides—Small but mighty weapons for plants to fight phytopathogens. Protein Pept Lett. 2019, 26, 720–742. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Ye, D.X.; Liu, Y.; Zhang, X.Y.; Zhou, Y.L.; Zhang, L.; Yang, X.L. Peptides, new tools for plant protection in eco-agriculture. Adv. Agrochem. 2023, 2, 58–78. [Google Scholar] [CrossRef]
- Pereira-Dias, L.; Oliveira-Pinto, P.R.; Fernandes, J.O.; Regalado, L.; Mendes, R.; Teixeira, C.; Mariz-Ponte, N.; Gomes, P.; Santos, C. Peptaibiotics: Harnessing the potential of microbial secondary metabolites for mitigation of plant pathogens. Biotechnol. Adv. 2023, 68, 108223. [Google Scholar] [CrossRef] [PubMed]
- Pelegrini, P.B.; Noronha, E.F.; Muniz, M.A.R.; Vasconcelos, I.M.; Chiarello, M.D.; Oliveira, J.T.A.; Franco, O.L. An antifungal peptide from passion fruit (Passiflora edulis) seeds with similarities to 2S albumin proteins. Biochim. Biophys. Acta Proteins Proteom. 2006, 1764, 1141–1146. [Google Scholar] [CrossRef]
- Cândido Ede, S.; Pinto, M.F.; Pelegrini, P.B.; Lima, T.B.; Silva, O.N.; Pogue, R.; Grossi-de-Sá, M.F.; Franco, O.L. Plant storage proteins with antimicrobial activity: Novel insights into plant defense mechanisms. FASEB J. 2011, 25, 3290–3305. [Google Scholar] [CrossRef] [PubMed]
- de Azevedo dos Santos, L.; Taveira, G.B.; da Silva, M.S.; da Silva Gebara, R.; da Silva Pereira, L.; Perales, J.; Teixeira-Ferreira, A.; de Oliveira Mello, É.; de Oliveira Carvalho, A.; Rodrigues, R.; et al. Antimicrobial peptides from Capsicum chinense fruits: Agronomic alternatives against phytopathogenic fungi. Biosci. Rep. 2020, 40, BSR20200950. [Google Scholar] [CrossRef] [PubMed]
- Turrini, A.; Sbrana, C.; Pitto, L.; Ruffini Castiglione, M.; Giorgetti, L.; Briganti, R.; Bracci, T.; Evangelista, M.; Nuti, M.P.; Giovannetti, M. The antifungal Dm-AMP1 protein from Dahlia merckii expressed in Solanum melongena is released in root exudates and differentially affects pathogenic fungi and mycorrhizal symbiosis. New Phytol. 2004, 163, 393–403. [Google Scholar] [PubMed]
- Van Der Weerden, N.L.; Lay, F.T.; Anderson, M.A. The plant defensin, NaD1, enters the cytoplasm of Fusarium oxysporum hyphae. J. Biol. Chem. 2008, 283, 14445–14452. [Google Scholar] [CrossRef] [PubMed]
- Van Der Weerden, N.L.; Hancock, R.E.; Anderson, M.A. Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall-dependent process. J. Biol. Chem. 2010, 285, 37513–37520. [Google Scholar] [CrossRef]
- Rogozhin, E.A.; Oshchepkova, Y.I.; Odintsova, T.I.; Khadeeva, N.V.; Veshkurova, O.N.; Egorov, T.A.; Grishin, E.V.; Salikhov, S.I. Novel antifungal defensins from Nigella sativa L. seeds. Plant Physiol. Biochem. 2011, 49, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Singh, S. Investigation on the Role of Plant Defensin Proteins in Regulating Plant-Verticillium longisporum Interactions in Arabidopsis thaliana. Ph.D. Thesis, Christian-Albrechts-Universität zu Kiel, Kiel, Germany, 2020. [Google Scholar]
- Gao, X.; Ding, J.; Liao, C.; Xu, J.; Liu, X.; Lu, W. Defensins: The natural peptide antibiotic. Adv. Drug Deliv. Rev. 2021, 179, 114008. [Google Scholar] [CrossRef] [PubMed]
- Naguib, D.M.; Alzandi, A.A.; Shamkh, I.M.; Reyad, N.E.H.A. Fabatin induce defense-related enzymes in cucumber against soil born pathogen, Fusarium oxysporum. Rhizosphere 2021, 19, 100381. [Google Scholar] [CrossRef]
- Leannec-Rialland, V.; Atanasova, V.; Chereau, S.; Tonk-Rügen, M.; Cabezas-Cruz, A.; Richard-Forget, F. Use of defensins to develop eco-friendly alternatives to synthetic fungicides to control phytopathogenic fungi and their mycotoxins. J. Fungi 2022, 8, 229. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.L.; Prasad, V.; Sanjaya; Chen, K.H.; Liu, P.C.; Chan, M.T.; Cheng, C.P. Transgenic tomato plants expressing an Arabidopsis thionin (Thi2. 1) driven by fruit-inactive promoter battle against phytopathogenic attack. Planta 2005, 221, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Berrocal-Lobo, M.; Segura, A.; Moreno, M.; López, G.; García-Olmedo, F.; Molina, A. Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol. 2002, 128, 951–961. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Tan, H.; Dai, Y.; Li, L.; Huang, Y.; Yao, H.; Cai, Y.; Yu, G. Application of antimicrobial peptides in plant protection: Making use of the overlooked merits. Front Plant Sci. 2023, 14, 1139539. [Google Scholar] [CrossRef] [PubMed]
- Sweany, R.R.; Cary, J.W.; Jaynes, J.M.; Rajasekaran, K. Broad-spectrum antimicrobial activity of synthetic peptides GV185 and GV187. Plant Dis. 2023, 107, 3211–3221. [Google Scholar] [CrossRef] [PubMed]
- Baró, A.; Mora, I.; Montesinos, L.; Montesinos, E. Differential susceptibility of Xylella fastidiosa strains to synthetic bactericidal peptides. Phytopathology 2020, 110, 1018–1026. [Google Scholar] [CrossRef] [PubMed]
- Güell, I.; Cabrefiga, J.; Badosa, E.; Ferre, R.; Talleda, M.; Bardají, E.; Planas, M.; Feliu, L.; Montesinos, E. Improvement of the efficacy of linear undecapeptides against plant-pathogenic bacteria by incorporation of D-amino acids. Appl. Environ. Microbiol. 2011, 77, 2667–2675. [Google Scholar] [CrossRef] [PubMed]
Pathogens/Host | Genome Editing | Microbiome Engineering | RNAi | Funtional Peptides | Nanobiotechnology | Artificial Intelligence |
---|---|---|---|---|---|---|
Fusarium oxysporum | [98,99,100,101,102] | [103,104,105] | [106,107,108,109] | [110,111] | ||
F. oxysporum f. sp. cubense/banana | [112,113,114,115] | [116] | [117] | [118] | ||
F. oxysporum f. sp. ciceris/chickpea | [119,120,121] | |||||
F. oxysporum f. sp. cucumerinum/cucumber | [117,122] | [123] | ||||
F. oxysporum f. sp. lycopersici/tomato | [124,125,126,127,128,129,130,131] | [117,132,133,134] | [135] | |||
F. oxysporum f. sp. phaseoli/bean | [97] | [136] | [137] | |||
F. oxysporum f. sp. fragrariae/strawberry | [138] | |||||
F. oxysporum f. sp. radicis lycopersici/tomato | [139] | [140] | [141] | |||
F. oxysporum f. sp. conglutinans/cabbage | [142] | |||||
F. oxysporum f. sp. vasinfectum/cotton | [143,144] | [145] | [146] | |||
F. oxysporum f. sp. melonis/melon | [123] | |||||
F. oxysporum f. sp. lactucae/lettuce | [147] | |||||
Verticillium dahliae/cotton/potato/olive | [98,148] | [149] | [111,150,151,152,153,154] | |||
Verticillum albo-atrum/potato | [151] | |||||
Ceratocystis fimbriata/eucaliptus/potato | [155] | [156] | ||||
Ophiostoma ulmi/elm | [157] | |||||
Ophiostoma novo-ulmi/elm | [157] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Lama Cabanás, C.; Mercado-Blanco, J. Groundbreaking Technologies and the Biocontrol of Fungal Vascular Plant Pathogens. J. Fungi 2025, 11, 77. https://doi.org/10.3390/jof11010077
Gómez-Lama Cabanás C, Mercado-Blanco J. Groundbreaking Technologies and the Biocontrol of Fungal Vascular Plant Pathogens. Journal of Fungi. 2025; 11(1):77. https://doi.org/10.3390/jof11010077
Chicago/Turabian StyleGómez-Lama Cabanás, Carmen, and Jesús Mercado-Blanco. 2025. "Groundbreaking Technologies and the Biocontrol of Fungal Vascular Plant Pathogens" Journal of Fungi 11, no. 1: 77. https://doi.org/10.3390/jof11010077
APA StyleGómez-Lama Cabanás, C., & Mercado-Blanco, J. (2025). Groundbreaking Technologies and the Biocontrol of Fungal Vascular Plant Pathogens. Journal of Fungi, 11(1), 77. https://doi.org/10.3390/jof11010077