Trichoderma brevicompactum 6311: Prevention and Control of Phytophthora capsici and Its Growth-Promoting Effect
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source, Isolation, and Identification of Biocontrol Fungi
2.2. Inhibition of the Disease and Enhancement of Growth Performance by the Biocontrol Organisms
2.3. Analysis of Disease-Suppressing and Growth-Promoting Mechanisms of Biocontrol Microorganisms
2.4. Data Analysis and Visualization
3. Results
3.1. Antagonism and Identification of Biocontrol Microorganisms Against P. capsici
3.2. Analysis of Disease-Suppressing and Growth-Promoting Properties of Biocontrol Microorganisms
3.2.1. Analysis of Disease-Suppressing Properties of Biocontrol Microorganisms
3.2.2. Analysis of the Growth-Promoting Properties of Biocontrol Microorganisms
3.3. Mechanisms of Disease Suppression and Promotion by Biocontrol Microorganisms
3.3.1. Physiological Evidence
3.3.2. Transcriptomic Evidence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, J.; Zhang, X.; Qu, Z.; Zhang, C.; Wang, F.; Gao, T.; Yao, Y.; Liang, J. Progress in Research on Prevention and Control of Crop Fungal Diseases in the Context of Climate Change. Agriculture 2024, 14, 1108. [Google Scholar] [CrossRef]
- Mao, T.; Jiang, X. Changes in Microbial Community and Enzyme Activity in Soil Under Continuous Pepper Cropping in Response to Trichoderma hamatum MHT1134 Application. Sci. Rep. 2021, 11, 21585. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Yan, D.; Cheng, H.; Fang, W.; Huang, B.; Wang, X.; Wang, X.; Yan, Y.; Ouyang, C.; Li, Y.; et al. Effects of Multi-Year Biofumigation on Soil Bacterial and Fungal Communities and Strawberry Yield. Environ. Pollut. 2020, 256, 113415. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Zhu, W.; Dai, Y.; Zhou, G.; Chen, G.; Jiang, Y.; Zhu, M.e.; He, M. Identification of Pepper Leaf Diseases Based on TPSAO-AMWNet. Plants 2024, 13, 1581. [Google Scholar] [CrossRef] [PubMed]
- Admassie, M.; González-Pérez, E.; Woldehawariat, Y.; Alemu, T. Screening of Potential Bacterial Isolates Against Phytophthora capsici and Its Plant Growth-Promoting Effect on Pepper Plants. Physiol. Mol. Plant Pathol. 2023, 127, 102028. [Google Scholar] [CrossRef]
- Kang, H.; Chai, A.; Lin, Z.; Shi, Y.; Xie, X.; Li, L.; Fan, T.; Xiang, S.; Xie, J.; Li, B. Deciphering Differences in Microbial Community Diversity Between Clubroot-Diseased and Healthy Soils. Microorganisms 2024, 12, 251. [Google Scholar] [CrossRef]
- Bonaterra, A.; Badosa, E.; Daranas, N.; Francés, J.; Roselló, G.; Montesinos, E. Bacteria as Biological Control Agents of Plant Diseases. Microorganisms 2022, 10, 1759. [Google Scholar] [CrossRef]
- Weiland, J.E. Pythium Species and Isolate Diversity Influence Inhibition by the Biological Control Agent Streptomyces lydicus. Plant Dis. 2014, 98, 653–659. [Google Scholar] [CrossRef]
- Pandit, M.A.; Kumar, J.; Gulati, S.; Bhandari, N.; Mehta, P.; Katyal, R.; Rawat, C.D.; Mishra, V.; Kaur, J. Major Biological Control Strategies for Plant Pathogens. Pathogens 2022, 11, 273. [Google Scholar] [CrossRef]
- Liu, D.; Yan, R.; Fu, Y.; Wang, X.; Zhang, J.; Xiang, W. Antifungal, Plant Growth-Promoting, and Genomic Properties of an Endophytic Actinobacterium Streptomyces sp. NEAU-S7GS2. Front. Microbiol. 2019, 10, 2077. [Google Scholar] [CrossRef]
- Asad, S.A. Mechanisms of Action and Biocontrol Potential of Trichoderma Against Fungal Plant Diseases—A Review. Ecol. Complex. 2022, 49, 100978. [Google Scholar] [CrossRef]
- Oszust, K.; Cybulska, J.; Frąc, M. How Do Trichoderma Genus Fungi Win a Nutritional Competition Battle against Soft Fruit Pathogens? A Report on Niche Overlap Nutritional Potentiates. Int. J. Mol. Sci. 2020, 21, 4235. [Google Scholar] [CrossRef] [PubMed]
- Tchameni, S.N.; Cotârleț, M.; Ghinea, I.O.; Bedine, M.A.B.; Sameza, M.L.; Borda, D.; Bahrim, G.; Dinică, R.M. Involvement of Lytic Enzymes and Secondary Metabolites Produced by Trichoderma spp. in the Biological Control of Pythium myriotylum. Int. Microbiol. 2020, 23, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.N.; Monteiro, V.N.; Steindorff, A.S.; Gomes, E.V.; Noronha, E.F.; Ulhoa, C.J. Trichoderma/Pathogen/Plant Interaction in Pre-Harvest Food Security. Fungal Biol. 2019, 123, 565–583. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, L.; Zhang, J.-Z.; Ojaghian, M.R.; Hyde, K.D. Antagonistic Interaction Between Trichoderma asperellum and Phytophthora capsici In Vitro. J. Zhejiang Univ. Sci. B 2016, 17, 271–281. [Google Scholar] [CrossRef]
- Tomah, A.A.; Abd Alamer, I.S.; Li, B.; Zhang, J.-Z. A New Species of Trichoderma and Gliotoxin Role: A New Observation in Enhancing Biocontrol Potential of T. virens Against Phytophthora capsici on Chili Pepper. Biol. Control 2020, 145, 104261. [Google Scholar] [CrossRef]
- Liu, B.; Ji, S.; Zhang, H.; Wang, Y.; Liu, Z. Isolation of Trichoderma in the Rhizosphere Soil of Syringa oblata from Harbin and Their Biocontrol and Growth Promotion Function. Microbiol. Res. 2020, 235, 126445. [Google Scholar] [CrossRef]
- Al-Shuaibi, B.K.; Kazerooni, E.A.; Al-Maqbali, D.a.; Al-Kharousi, M.; Al-Yahya’ei, M.N.; Hussain, S.; Velazhahan, R.; Al-Sadi, A.M. Biocontrol Potential of Trichoderma Ghanense and Trichoderma Citrinoviride Toward Pythium aphanidermatum. J. Fungi 2024, 10, 284. [Google Scholar] [CrossRef]
- Gao, P.; Qi, K.; Han, Y.; Ma, L.; Zhang, B.; Zhang, Y.; Guan, X.; Qi, J. Effect of Trichoderma viride on Rhizosphere Microbial Communities and Biocontrol of Soybean Root Rot. Front. Microbiol. 2023, 14, 1204688. [Google Scholar] [CrossRef]
- Huang, X.G.; Li, M.Y.; Yan, X.N.; Yang, J.S.; Rao, M.C.; Yuan, X.F. The Potential of Trichoderma brevicompactum for Controlling Root Rot on Atractylodes macrocephala. Can. J. Plant Pathol. 2021, 43, 794–802. [Google Scholar] [CrossRef]
- Tiwari, R.; Chandra, K.; Shukla, S.K.; Jaiswal, V.P.; Amaresan, N.; Srivastava, A.K.; Gaur, A.; Sahni, D.; Tiwari, R.K. Interference of Bio-Control Trichoderma to Enhance Physical and Physiological Strength of Sugarcane During Pokkah Boeng Infection. World J. Microbiol. Biotechnol. 2022, 38, 139. [Google Scholar] [CrossRef] [PubMed]
- Korkom, Y.; Yildiz, A. Evaluation of Biocontrol Potential of Native Trichoderma Isolates Against Charcoal Rot of Strawberry. J. Plant Pathol. 2022, 104, 671–682. [Google Scholar] [CrossRef]
- Samuels, G.J.; Dodd, S.L.; Lu, B.-S.; Petrini, O.; Schroers, H.-J.; Druzhinina, I.S. The Trichoderma koningii Aggregate Species. Stud. Mycol. 2006, 56, 67–133. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Cong, Y.; Wang, J.; Liu, C.; Feng, L.; Chen, K. Pre-Harvest Treatment of Kiwifruit Trees with Mixed Culture Fermentation Broth of Trichoderma Pseudokoningii and Rhizopus Nigricans Prolonged the Shelf Life and Improved the Quality of Fruit. Postharvest Biol. Technol. 2020, 162, 111099. [Google Scholar] [CrossRef]
- Zhang, S.; Gan, Y.; Xu, B. Mechanisms of the IAA and ACC-Deaminase Producing Strain of Trichoderma longibrachiatum T6 in Enhancing Wheat Seedling Tolerance to NaCl Stress. BMC Plant Biol. 2019, 19, 22. [Google Scholar] [CrossRef]
- Chowdappa, S.; Jagannath, S.; Konappa, N.; Udayashankar, A.C.; Jogaiah, S. Detection and Characterization of Antibacterial Siderophores Secreted by Endophytic Fungi from Cymbidium aloifolium. Biomolecules 2020, 10, 1412. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, J.; Zou, X.; Shi, Z.; Liao, Y.; He, Y.; Wang, H.; Chen, Q.; Yang, P.; Li, M. Differential Responses of Bacterial and Fungal Communities to Siderophore Supplementation in Soil Affected by Tobacco Bacterial Wilt (Ralstonia solanacearum). Microorganisms 2023, 11, 1535. [Google Scholar] [CrossRef]
- Lü, Z.-W.; Liu, H.-Y.; Wang, C.-L.; Chen, X.; Huang, Y.-X.; Zhang, M.-M.; Huang, Q.-L.; Zhang, G.-F. Isolation of Endophytic Fungi from Cotoneaster multiflorus and Screening of Drought-Tolerant Fungi and Evaluation of Their Growth-Promoting Effects. Front. Microbiol. 2023, 14, 1267404. [Google Scholar] [CrossRef]
- Gupta, S.; Pandey, S. Unravelling the Biochemistry and Genetics of ACC Deaminase-An Enzyme Alleviating the Biotic and Abiotic Stress in Plants. Plant Gene 2019, 18, 100175. [Google Scholar] [CrossRef]
- Olanrewaju, O.S.; Glick, B.R.; Babalola, O.O. Mechanisms of Action of Plant Growth Promoting Bacteria. World J. Microbiol. Biotechnol. 2017, 33, 197. [Google Scholar] [CrossRef]
- Chen, H.; Song, Z.; Wang, L.; Lai, X.; Chen, W.; Li, X.; Zhu, X. Auxin-Responsive Protein MaIAA17-like Modulates Fruit Ripening and Ripening Disorders Induced by Cold Stress in ‘Fenjiao’ Banana. Int. J. Biol. Macromol. 2023, 247, 125750. [Google Scholar] [CrossRef] [PubMed]
- De Caroli, M.; Rampino, P.; Pecatelli, G.; Girelli, C.R.; Fanizzi, F.P.; Piro, G.; Lenucci, M.S. Expression of Exogenous GFP-CesA6 in Tobacco Enhances Cell Wall Biosynthesis and Biomass Production. Biology 2022, 11, 1139. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-L.; Lin, F.-W.; Cheng, K.-T.; Chang, C.-H.; Hung, S.-C.; Efferth, T.; Chen, Y.-R. XCP1 Cleaves Pathogenesis-Related Protein 1 into CAPE9 for Systemic Immunity in Arabidopsis. Nat. Commun. 2023, 14, 4697. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lui, A.C.W.; Lam, P.Y.; Liu, G.; Godwin, I.D.; Lo, C. Transgenic Expression of Flavanone 3-Hydroxylase Redirects Flavonoid Biosynthesis and Alleviates Anthracnose Susceptibility in Sorghum. Plant Biotechnol. J. 2020, 18, 2170–2172. [Google Scholar] [CrossRef]
- Siegenthaler, T.B.; Hansen, Z.R. Sensitivity of Phytophthora capsici from Tennessee to Mefenoxam, Fluopicolide, Oxathiapiprolin, Dimethomorph, Mandipropamid, and Cyazofamid. Plant Dis. 2021, 105, 3000–3007. [Google Scholar] [CrossRef]
- Yassin, M.T.; Mostafa, A.A.-F.; Al-Askar, A.A.; Sayed, S.R.M.; Rady, A.M. Antagonistic Activity of Trichoderma harzianum and Trichoderma viride Strains Against Some Fusarial Pathogens Causing Stalk Rot Disease of Maize, In Vitro. J. King Saud. Univ. Sci. 2021, 33, 101363. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Mendoza-Mendoza, A.; Zeilinger, S.; Horwitz, B.A. Mycoparasitism as a Mechanism of Trichoderma-Mediated Suppression of Plant Diseases. Fungal Biol. Rev. 2022, 39, 15–33. [Google Scholar] [CrossRef]
- Rodríguez, M.; Evans, H.C.; de Abreu, L.M.; de Macedo, D.M.; Ndacnou, M.K.; Bekele, K.B.; Barreto, R.W. New Species and Records of Trichoderma Isolated as Mycoparasites and Endophytes from Cultivated and Wild Coffee in Africa. Sci. Rep. 2021, 11, 5671. [Google Scholar] [CrossRef]
- Mejía, C.; Ardila, H.D.; Espinel, C.; Brandão, P.F.B.; Villamizar, L. Use of Trichoderma koningiopsis Chitinase to Enhance the Insecticidal Activity of Beauveria bassiana Against Diatraea saccharalis. J. Basic Microbiol. 2021, 61, 814–824. [Google Scholar] [CrossRef]
- Abdenaceur, R.; Farida, B.-t.; Mourad, D.; Rima, H.; Zahia, O.; Fatma, S.-H. Effective Biofertilizer Trichoderma spp. Isolates with Enzymatic Activity and Metabolites Enhancing Plant Growth. Int. Microbiol. 2022, 25, 817–829. [Google Scholar] [CrossRef]
- Schalamun, M.; Molin, E.M.; Schmoll, M. RGS4 Impacts Carbohydrate and Siderophore Metabolism in Trichoderma reesei. BMC Genom. 2023, 24, 372. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Chanotiya, C.S.; Singh, A.; Vajpayee, P.; Kalra, A. Role of ACC-Deaminase Synthesizing Trichoderma Harzianum and Plant Growth-Promoting Bacteria in Reducing Salt-Stress in Ocimum sanctum. Physiol. Mol. Biol. Plants 2023, 29, 815–828. [Google Scholar] [CrossRef] [PubMed]
- Abel, S.; Oeller, P.W.; Theologis, A. Early Auxin-Induced Genes Encode Short-Lived Nuclear Proteins. Proc. Natl. Acad. Sci. USA 1994, 91, 326–330. [Google Scholar] [CrossRef] [PubMed]
- Dreher, K.A.; Brown, J.; Saw, R.E.; Callis, J. The Arabidopsis Aux/IAA Protein Family Has Diversified in Degradation and Auxin Responsiveness. Plant Cell 2006, 18, 699–714. [Google Scholar] [CrossRef]
- Li, Y.; Yu, T.; Wu, T.; Wang, R.; Wang, H.; Du, H.; Xu, X.; Xie, D.; Xu, X. The Dynamic Transcriptome of Pepper (Capsicum annuum) Whole Roots Reveals an Important Role for the Phenylpropanoid Biosynthesis Pathway in Root Resistance to Phytophthora capsici. Gene 2020, 728, 144288. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Liang, J.; Zhang, X.; Wang, F.; Qu, Z.; Gao, T.; Yao, Y.; Luo, Y. Trichoderma brevicompactum 6311: Prevention and Control of Phytophthora capsici and Its Growth-Promoting Effect. J. Fungi 2025, 11, 105. https://doi.org/10.3390/jof11020105
Zhou J, Liang J, Zhang X, Wang F, Qu Z, Gao T, Yao Y, Luo Y. Trichoderma brevicompactum 6311: Prevention and Control of Phytophthora capsici and Its Growth-Promoting Effect. Journal of Fungi. 2025; 11(2):105. https://doi.org/10.3390/jof11020105
Chicago/Turabian StyleZhou, Jien, Junfeng Liang, Xueyan Zhang, Feng Wang, Zheng Qu, Tongguo Gao, Yanpo Yao, and Yanli Luo. 2025. "Trichoderma brevicompactum 6311: Prevention and Control of Phytophthora capsici and Its Growth-Promoting Effect" Journal of Fungi 11, no. 2: 105. https://doi.org/10.3390/jof11020105
APA StyleZhou, J., Liang, J., Zhang, X., Wang, F., Qu, Z., Gao, T., Yao, Y., & Luo, Y. (2025). Trichoderma brevicompactum 6311: Prevention and Control of Phytophthora capsici and Its Growth-Promoting Effect. Journal of Fungi, 11(2), 105. https://doi.org/10.3390/jof11020105