Identification and Characterization of Three Epichloë Endophytes Isolated from Wild Barley in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Collection and Endophyte Isolation
2.2. Morphological Identification
2.3. Molecular Identification
2.4. Alkaloid Gene Identification
2.5. Statistical Analysis
3. Results
3.1. Morphological Characteristics of Endophytes
3.2. Physiological Characteristics of Fungal Endophytes
3.3. Phylogenetic Analyses
3.4. Alkaloid Gene Profiling and Mating Types
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Waller, F.; Achatz, B.; Baltruschat, H.; Fodor, J.; Becker, K.; Fischer, M.; Heier, T.; Hückelhoven, R.; Neumann, C.; von Wettstein, D.; et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc. Natl. Acad. Sci. USA 2005, 102, 13386–13391. [Google Scholar] [CrossRef]
- Sampangi-Ramaiah, M.H.; Jagadheesh; Dey, P.; Jambagi, S.; Vasantha Kumari, M.M.; Oelmüller, R.; Nataraja, K.N.; Venkataramana Ravishankar, K.; Ravikanth, G.; Uma Shaanker, R. An endophyte from salt-adapted Pokkali rice confers salt-tolerance to a salt-sensitive rice variety and targets a unique pattern of genes in its new host. Sci. Rep. 2020, 10, 3237. [Google Scholar] [CrossRef]
- Johnson, L.J.; Bonth, A.C.M.; Briggs, L.R.; Caradus, J.R.; Finch, S.C.; Fleetwood, D.J.; Fletcher, L.R.; Hume, D.E.; Johnson, R.D.; Popay, A.J. The exploitation of epichloae endophytes for agricultural benefit. Fungal Divers. 2013, 60, 171–188. [Google Scholar] [CrossRef]
- Bischoff, J.F.; White, J.F., Jr. Evolutionary development of the Clavicipitaceae. In The Fungal Community: Its Organization and Role in the Ecosystem; Dighton, J., White, J.F., Oudemans, P., Eds.; Taylor & Francis: Boca Raton, FL, USA, 2005; pp. 505–518. [Google Scholar]
- Faeth, S.H.; Fagan, W.F. Fungal endophytes: Common host plant symbionts but uncommon mutualists. Integr. Comp. Biol. 2002, 42, 360–368. [Google Scholar] [CrossRef]
- Leuchtmann, A.; Bacon, C.W.; Schardl, C.L.; White, J.F., Jr.; Tadych, M. Nomenclatural realignment of Neotyphodium species with genus Epichloë. Mycologia 2014, 106, 202–215. [Google Scholar] [CrossRef]
- Rodriguez, R.J.; White, J.F.; Arnold, A.E.; Redman, R.S. Fungal endophytes: Diversity and functional roles. New Phytol. 2009, 182, 314–330. [Google Scholar] [CrossRef]
- Schardl, C.L.; Young, C.A.; Pan, J.; Florea, S.; Takach, J.E.; Panaccione, D.G.; Farman, M.L.; Webb, J.S.; Jaromczyk, J.; Charlton, N.D.; et al. Currencies of mutualisms: Sources of alkaloid genes in vertically transmitted epichloae. Toxins 2013, 5, 1064–1088. [Google Scholar] [CrossRef]
- Chitnis, V.R.; Suryanarayanan, T.S.; Nataraja, K.N.; Prasad, S.R.; Oelmüller, R.; Shaanker, R.U. Fungal Endophyte-Mediated Crop Improvement: The Way Ahead. Front. Plant Sci. 2020, 1, 561007. [Google Scholar] [CrossRef]
- Ren, A.; Wei, M.; Yin, L.; Wu, L.; Zhou, Y.; Li, X.; Gao, Y.B. Benefits of a fungal endophyte in Leymus chinensis depend more on water than on nutrient availability. Environ. Exp. Bot. 2014, 108, 71–78. [Google Scholar] [CrossRef]
- Lugtenberg, B.J.J.; Caradus, J.R.; Johnson, L.J. Fungal endophytes for sustainable crop production. FEMS Microbiol. Ecol. 2016, 92, fiw194. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.F.; Chen, Z.J.; White, J.F.; Malik, K.; Chen, T.X.; Li, C.J. Inoculation of barley (H. vulgare) with the endophyte Epichloë bromicola affects plant growth, and the microbial community in roots and rhizosphere soil. J. Fungi 2022, 8, 172. [Google Scholar] [CrossRef]
- Song, H.; Nan, Z.; Song, Q.; Xia, C.; Li, X.; Yao, X.; Xu, W.; Kuang, Y.; Tian, P.; Zhang, Q. Advances in Research on Epichloë endophytes in Chinese Native Grasses. Front. Microbiol. 2016, 7, 1399. [Google Scholar] [CrossRef]
- Yi, M.; Hendricks, W.Q.; Kaste, J.; Charlton, N.D.; Nagabhyru, P.; Panaccione, D.G.; Young, C.A. Molecular identification and characterization of endophytes from uncultivated barley. Mycologia 2018, 110, 453–472. [Google Scholar] [CrossRef]
- Chen, T.X.; Simpson, W.R.; Song, Q.Y.; Chen, S.H.; Li, C.J.; Ahmad, R.Z. Identification of Epichloë endophytes associated with wild barley (Hordeum brevisubulatum) and characterisation of their alkaloid biosynthesis. N. Z. J. Agric. Res. 2019, 62, 131–149. [Google Scholar] [CrossRef]
- Pope, D.D.; Hill, N.S. Effects of various culture media, antibiotics, and carbon sources on growth arameters of Acremonium coenophialum, the fungal endophyte of tall fescue. Mycologia 1991, 183, 110–115. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; White, J.F.; Li, C.J. Epichloë bromicola from wild barley improves salt-tolerance of cultivated barley by altering physiological responses to salt stress. Front. Microbiol. 2022, 13, 1044735. [Google Scholar] [CrossRef]
- Li, C.J.; Nan, Z.B.; Li, F. Biological and physiological characteristics of Neotyphodium gansuense symbiotic with Achnatherum inebrians. Microbiol. Res. 2008, 163, 431–440. [Google Scholar] [CrossRef]
- Luo, Y.; Tian, P. Growth and characteristics of two different Epichloë sinensis strains under different cultures. Front. Microbiol. 2021, 12, 726935. [Google Scholar] [CrossRef]
- Morgan, J.G.; White, J.F.; Piontelli, E.L. Endophyte-host associations in forage grasses: XIII. Acremonium chilense, an undescribed endophyte occurring in Dactylis glomerata in Chile. Mycotaxon 1990, 39, 441–454. [Google Scholar]
- Zhang, Y.; Nan, Z. Distribution of Epichloë endophytes in Chinese populations of Elymus dahuricus and variation in peramine levels. Symbiosis 2007, 43, 13–19. [Google Scholar]
- Wilson, A.D.; Clement, S.L.; Kaiser, W.J. Endophytic fungi in a Hordeum germplasm collection. Agric. Food Sci. 1991, 87, 1–4. [Google Scholar]
- Wang, Z.F. Effect of Neotyphodium Endophyte Infection on Salt Tolerance of Hordeum brevisubulatum. Master’s Thesis, Lanzhou University, Lanzhou, China, 2009. [Google Scholar]
- Wang, T.; Chen, T.; White, J.F.; Li, C. Identification of Three Epichloë Endophytes from Hordeum bogdanii Wilensky in China. J. Fungi 2022, 8, 928. [Google Scholar] [CrossRef]
- Li, C.J.; Wang, Z.F.; Chen, T.X.; Nan, Z.B. Creation of novel barley germplasm using an Epichloë endophyte. Chin. Sci. Bull. 2021, 66, 2608–2617. [Google Scholar] [CrossRef]
- Chen, T.; Wang, T.; Du, M.; Malik, K.; Li, C.; Bao, G. Discovery of Epichloë as novel endophytes of Psathyrostachys lanuginosa in China and their alkaloid profiling. Front. Microbiol. 2024, 15, 1383923. [Google Scholar] [CrossRef]
- Charlton, N.D.; Craven, K.D.; Mittal, S.; Hopkins, A.A.; Young, C.A. Epichloë canadensis, a new interspecific Epichloë hybrid symbiotic with Canada wild rye (Elymus canadensis). Mycologia 2012, 104, 1187–1199. [Google Scholar] [CrossRef]
- Berry, D.; Takach, J.E.; Schardl, C.L.; Charlton, N.D.; Scott, B.; Young, C.A. Disparate independent genetic events disrupt the secondary metabolism gene perA in certain symbiotic Epichloë species. Appl. Environ. Microbiol. 2015, 81, 2797–2807. [Google Scholar] [CrossRef]
- Chen, L.; Li, X.; Li, C.; Swoboda, G.A.; Young, C.A.; Sugawara, K.; Schardl, C.L. Two distinct Epichloë species symbiotic with Achnatherum inebrians, drunken horse grass. Mycologia 2015, 107, 863–873. [Google Scholar] [CrossRef]
- Young, C.A.; Tapper, B.A.; May, K.; Moon, C.D.; Schardl, C.L.; Scott, B. Indole-diterpene biosynthetic capability of Epichloë endophytes as predicted by ltm gene analysis. Appl. Environ. Microbiol. 2009, 75, 2200–2211. [Google Scholar] [CrossRef]
- Kuang, Y. Characteristics of Epichloë endophyte–Festuca sinensis symbiote. Master’s Thesis, Lanzhou University, Lanzhou, China, 2016. [Google Scholar]
- Leuchtmann, A.; Schardl, C.L.; Siegel, M.R. Sexual compatibility and taxonomy of a new species of Epichloë symbiotic with fine fescue grasses. Mycologia 1994, 86, 802–812. [Google Scholar] [CrossRef]
- Schardl, C.L.; Leuchtmann, A. Three new species of Epichloë symbiotic with North American grasses. Mycologia 1999, 91, 95–107. [Google Scholar] [CrossRef]
- Kulkarni, R.K.; Nielsen, B.D. Nutritional Requirements for Growth of a Fungus Endophyte of Tall Fescue Grass. Mycologia 1986, 78, 781–786. [Google Scholar] [CrossRef]
- Thünen, T.; Becker, Y.; Cox, M.P.; Ashrafi, S. Epichloë scottii sp. nov., a new endophyte isolated from Melica uniflora is the missing ancestor of Epichloë disjuncta. IMA Fungus 2022, 13, 2. [Google Scholar] [CrossRef]
- Leuchtmann, A.; Oberhofer, M. The Epichloë endophytes associated with the woodland grass Hordelymus europaeus including four new taxa. Mycologia 2013, 105, 1315–1324. [Google Scholar] [CrossRef]
- Leuchtmann, A.; Schardl, C.L. Genetic Diversity of Epichloë Endophytes Associated with Brachypodium and Calamagrostis Host Grass Genera including Two New Species. J. Fungi 2022, 15, 1086. [Google Scholar] [CrossRef]
- Bharadwaj, R.; Jagadeesan, H.; Kumar, S.R.; Ramalingam, S. Molecular mechanisms in grass-Epichloë interactions: Towards endophyte driven farming to improve plant fitness and immunity. World J. Microbiol. Biotechnol. 2020, 36, 92. [Google Scholar] [CrossRef]
- Shymanovich, T.; Charlton, N.D.; Musso, A.M.; Scheerer, J.; Cech, N.B.; Faeth, S.H.; Young, C.A. Interspecific and intraspecific hybrid Epichloë species symbiotic with the North American native grass Poa alsodes. Mycologia 2017, 109, 459–474. [Google Scholar] [CrossRef]
- Li, C.J. Biological and Ecological Characteristics of Achnatherum inebrians/Neotyphodium Endophyte Symbiont. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2005. [Google Scholar]
- Li, C.J.; Nan, Z.B.; Paul, V.H.; Dapprich, P.D.; Liu, Y. A new Neotyphodium species symbiotic with drunken horse grass (Achnatherum inebrians) in China. Mycotaxon 2004, 90, 141–147. [Google Scholar]
- Schardl, C.L.; Young, C.A.; Faulkner, J.R.; Florea, S.; Pan, J. Chemotypic diversity of Epichloë, fungal symbionts of grasses. Fungal Ecol. 2012, 5, 331–344. [Google Scholar] [CrossRef]
- Tanaka, A.; Takemoto, D.; Chujo, T.; Scott, B. Fungal endophytes of grasses. Curr. Opin. Plant Biol. 2012, 15, 462–468. [Google Scholar] [CrossRef]
- Fuchs, B.; Krischke, M.; Mueller, M.J.; Krauss, J. Peramine and lolitrem B from endophyte-grass associations cascade up the food chain. J. Chem. Ecol. 2013, 39, 1385–1389. [Google Scholar] [CrossRef]
- Charlton, N.D.; Craven, K.D.; Afkhami, M.E.; Hall, B.A.; Ghimire, S.R.; Young, C.A. Interspecific hybridization and bioactive alkaloid variation increases diversity in endophytic Epichloë species of Bromus laevipes. FEMS Microbiol. Ecol. 2014, 90, 276–289. [Google Scholar] [CrossRef]
- Chen, T.X.; Johnson, R.; Chen, S.H.; Lv, H.; Zhou, J.L.; Li, C.J. Infection by the fungal endophyte E. bromicola enhances the tolerance of wild barley (H. brevisubulatum) to salt and alkali stresses. Plant Soil. 2018, 428, 353–370. [Google Scholar] [CrossRef]
- Spiering, M.J.; Moon, C.D.; Wilkinson, H.H.; Schardl, C.L. Gene clusters for insecticidal loline alkaloids in the grass-endophytic fungus Neotyphodium uncinatum. Genetics 2005, 169, 1403–1414. [Google Scholar] [CrossRef]
- Lee, S.T.; Gardner, D.R.; Cook, D. Identification of indole diterpenes in Ipomoea asarifolia and Ipomoea muelleri, plants tremorgenic to livestock. J. Agric. Food Chem. 2017, 65, 5266–5277. [Google Scholar] [CrossRef]
Endophyte | Host | Growth on PDA (mm/day) | Conidia Size (μm) | Length of Conidiogenous Cell (µm) | Origin | |
---|---|---|---|---|---|---|
Length | Width | |||||
XJE1 | Hordeum brevisubulatum | 1.0–1.5 | 4.1 ± 0.7 | 3.4 ± 0.6 | 8.0 ± 1.5 | This study |
XJE2 | Hordeum brevisubulatum | 1.1–1.3 | 3.3 ± 0.5 | 2.8 ± 0.2 | 8.9 ± 2.0 | This study |
XJE3 | Hordeum brevisubulatum | 1.2–1.4 | 4.8 ± 0.5 | 4.5 ± 0.7 | 7.6 ± 0.9 | This study |
XJE4 | Hordeum brevisubulatum | 1.1–1.4 | 5.5 ± 0.4 | 3.8 ± 0.3 | 9.9 ± 1.2 | This study |
Epichloë sp. HboTG-3 | Hordeum bogdanii | 0.9 ± 0.1 | 7.4 ± 1 | 4.47 ± 0.4 | 21.8 ± 5.7 | [14] |
Epichloë festucae | Festuca rubra | 1.0–2.67 | 4.7 ± 0.6 | 2.2 ± 0.3 | 12.0–25.0 | [32] |
Epichloë elym | Elymus sp. | 1.9–2.9 | 2.2 ± 0.2 | 4.0 ± 0.4 | 17.0 ± 3.0 | [33] |
Epichloë sp. HboTG-2 | Hordeum bogdanii | 0.8 ± 0.1 | 5.9 ± 1.0 | 3.1 ± 0.5 | 17.4 ± 6.2 | [14] |
Epichloë typhina | Dactylis glomerata | 1.9–3.0 | 4.1 ± 0.5 | 2.2 ± 0.5 | 13.0–33.0 | [23] |
Epichloë amarillans | Agrostis hiemalis | nt | 4.5–1.9 | 1.7 ± 0.2 | 23.4 ± 6.5 | [34] |
Epichloë scottii | Melica uniflora | 1.0–1.1 | 4.1 ± 2.8 | 2.5 ± 0.4 | 14.1 ± 2.8 | [35] |
Epichloë disjuncta | Hordelymus europaeus | 0.7–1.3 | 6.9–2.7 | 2.0–2.5 | 22.0–48.0 | [36] |
Epichloë hordelymi | Hordelymus europaeus | 1.8–2.2 | 7.6 ± 0.9 | 2.7 ± 0.3 | 38.1 ± 9.1 | [36] |
Epichloë danica | Hordelymus europaeus | 0.5 | 5.8 ± 0.4 | 2.4 ± 0.1 | 23.3 ± 4.1 | [29] |
Epichloë sylvatica | Hordelymus europaeus | 1.0–1.3 | 4.6 ± 0.4 | 2.3 ± 0.2 | 50.8 ± 6.6 | [36] |
Epichloë bromicola | Hordelymus europaeus | 1.4–1.6 | 4.2 ± 0.4 | 2.1 ± 0.2 | 20.2 ± 4.7 | [36] |
Epichloë bromicola | Hordeum brevisubulatum | 0.7 | 5.17 ± 0.06 | 2.87 ± 0.17 | 19.5 ± 1.1 | [29] |
Epichloë calamagrostidis | Brachypodium | 1.1–1.3 | 3.3–4.9 | 1.6–2.5 | 18–35 | [37] |
Epichloë bromicola | Hordeum brevisubulatum | 0.8 ± 0.02 | 5.2 ± 0.1 | 2.9 ± 0.2 | 19.5 ± 1.1 | [15] |
pH Value | XJE1 | XJE2 | XJE3 | |||
---|---|---|---|---|---|---|
Range | Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | |
4 | 1.9–2.2 | 2.08 ± 0.13 d | 2.0–2.6 | 2.36 ± 0.23 cd | 1.5–2.0 | 1.82 ± 0.192 d |
5 | 2.7–3.1 | 2.90 ± 0.15 bc | 2.7–3.8 | 3.18 ± 0.53 b | 2.4–2.9 | 2.66 ± 0.21 c |
6 | 2.6–3.4 | 2.98 ± 0.32 bc | 2.9–3.5 | 3.32 ± 0.25 b | 2.3–3.0 | 2.74 ± 0.27 c |
7 | 2.1–4.1 | 3.30 ± 0.78 b | 3.6–3.8 | 3.72 ± 0.08 a | 3.6–4.2 | 4.06 ± 0.26 b |
8 | 4.4–4.8 | 4.56 ± 0.15 a | 2.4–3.1 | 2.72 ± 0.26 c | 4.2–5.0 | 4.68 ± 0.33 a |
9 | 2.9–3.2 | 3.18 ± 0.31 b | 2.2–2.7 | 2.50 ± 0.20 cd | 3.5–4.6 | 4.28 ± 0.44 b |
10 | 2.4–2.7 | 2.54 ± 0.13 cd | 2.0–2.5 | 2.20 ± 0.19 d | 2.5–3.0 | 2.8 ± 0.19 c |
NaCl Concentration (mol/L) | XJE1 | XJE2 | XJE3 | |||
---|---|---|---|---|---|---|
Range | Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | |
0.1 | 1.9–2.7 | 2.34 ± 0.32 b | 3.5–4.4 | 3.90 ± 0.32 a | 3.3–4.2 | 3.84 ± 0.34 b |
0.3 | 2.6–4.2 | 3.48 ± 0.69 a | 3.2–5.0 | 3.84 ± 0.71 a | 5.0–5.5 | 5.20 ± 0.19 a |
0.5 | 1.8–2.4 | 1.96 ± 0.25 b | 2.1–2.8 | 2.30 ± 0.29 b | 1.2–1.5 | 1.34 ± 0.11 c |
Gene | Present or Absent in the Endophytic Genome | Gene | Present or Absent in the Endophytic Genome | ||||
---|---|---|---|---|---|---|---|
XJE1 | XJE2 | XJE3 | XJE1 | XJE2 | XJE3 | ||
Segments of the perA gene | Indole-diterpene (IDT/LTM) genes | ||||||
perA-A1 | + | + | + | idtG | + | + | + |
perA-T1 | + | − | − | idtM | + | + | + |
perA-C | + | + | + | idtC | + | + | + |
perA-A2 | + | + | + | idtP | − | − | − |
perA-M | + | − | − | idtO | + | + | + |
perA-T2 | + | + | + | idtF | + | + | + |
perA-R* | + | − | − | idtE | − | − | − |
perA-△R* | − | − | − | idtK | + | + | + |
Mating type genes | idtB | + | + | + | |||
mtBA | + | − | − | idtS | + | + | + |
mtAC | + | + | + | idtJ | − | − | − |
Ergot alkaloid (EAS) genes | Loline (LOL) genes | ||||||
dmaW | − | − | − | lolA | + | − | − |
easF | + | + | + | lolC | + | − | − |
easE | + | + | + | lolD | − | − | − |
easC | − | − | − | lolE | + | − | − |
easD | + | + | + | lolF | + | − | − |
easA | + | + | + | lolO | + | + | − |
easG | + | + | + | lolP | − | − | − |
cloA | + | + | + | lolT | − | − | − |
lpsA | + | + | + | lolU | + | − | − |
lpsB | + | + | + | lolM | + | − | − |
easH | + | + | + | lolN | + | − | − |
lpsC | + | + | + | ||||
easO | − | − | − | ||||
easP | − | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhao, F.; Bao, Q.; Liu, X.; Guo, C. Identification and Characterization of Three Epichloë Endophytes Isolated from Wild Barley in China. J. Fungi 2025, 11, 142. https://doi.org/10.3390/jof11020142
Wang Z, Zhao F, Bao Q, Liu X, Guo C. Identification and Characterization of Three Epichloë Endophytes Isolated from Wild Barley in China. Journal of Fungi. 2025; 11(2):142. https://doi.org/10.3390/jof11020142
Chicago/Turabian StyleWang, Zhengfeng, Feng Zhao, Qijun Bao, Xiaoning Liu, and Cheng Guo. 2025. "Identification and Characterization of Three Epichloë Endophytes Isolated from Wild Barley in China" Journal of Fungi 11, no. 2: 142. https://doi.org/10.3390/jof11020142
APA StyleWang, Z., Zhao, F., Bao, Q., Liu, X., & Guo, C. (2025). Identification and Characterization of Three Epichloë Endophytes Isolated from Wild Barley in China. Journal of Fungi, 11(2), 142. https://doi.org/10.3390/jof11020142