Comprehensive Review of Environmental Surveillance for Azole-Resistant Aspergillus fumigatus: A Practical Roadmap for Hospital Clinicians and Infection Control Teams
Abstract
:1. Introduction
1.1. Background and Rationale
1.2. Clinical Implications and Healthcare Challenges
1.3. Gaps in Current Surveillance Strategies
1.4. Aim and Scope of This Review
2. Clinical and Public Health Significance
2.1. Clinical Impact on Patient Outcomes
2.2. Public Health Concerns and Environmental Origins
2.3. Global Prevalence and Regional Variations
- Africa: Much of the existing data focus on environmental rather than clinical isolates, and standardized clinical surveillance remains insufficient. Consequently, the true impact of resistant A. fumigatus in patient care is not fully understood.
- South America: Certain countries, especially Brazil, report high azole resistance among clinical isolates (exceeding 10% in some studies), underscoring the urgency of hospital-based monitoring in these high-incidence areas [39,40]. Other parts of South America have sparse data, making regional comparisons difficult.
- Asia: Japan and China stand out with notable rates of clinical resistance—sometimes above 10% or even 20% [41,42,43]. However, it is important to note that much of Japan’s azole resistance data comes from chronic pulmonary aspergillosis patients, who often receive long-term antifungal therapy; thus, these rates might be higher than those observed in invasive aspergillosis [41]. In fact, environmental isolates in Japan consistently show resistance rates below 10%, suggesting that the true rate of azole resistance in invasive aspergillosis could be lower than previously reported [44]. By contrast, environmental surveillance in other parts of Asia—particularly China, Taiwan, Thailand, and Vietnam—has documented resistance rates exceeding 30% [45,46,47], and in Vietnam, extremely high rates approaching 80% have been reported [48]. Such findings raise significant concern about the potential impact of resistant strains on clinical outcomes in these regions. Environmental surveillance has also revealed substantial pockets of resistant strains elsewhere in Asia, further underscoring the importance of a combined approach that integrates both clinical and environmental data.
- Europe: The Netherlands historically drew attention by documenting over 10% resistance among clinical isolates [17], and recent findings from Spain suggest a rising trend in certain hospitals [49]. Other European nations often report lower rates (<10%) but are not immune to localized increases [38], calling for continuous or prospective surveillance.
- Oceania: Available studies point to relatively low resistance, though data remain limited. Without expanded surveillance, shifts could go unrecognized.
Region | Pub. Year | Study Period | Cat. | No. Tested | Resistance Rate | PMID | Ref. | |
---|---|---|---|---|---|---|---|---|
VRC ≥ 2 | VRC ≥ 4 | |||||||
Africa | ||||||||
Benin | 2021 | – | E | 25 | 0.0% | 0.0% | 33921497 | [52] |
Burkina Faso | 2024 | 2021–2022 | E | 124 | 3.2% | 0.8% | 38712846 | [53] |
Burkina Faso | 2021 | 2019 | E | 646 | 0.2% | 0.0% | 33668719 | [54] |
Kenya | 2018 | – | E | 48 | 14.6% | 12.5% | 30046310 | [55] |
Nigeria | 2021 | 2017 | E | 5 | 0.0% | 0.0% | 34532039 | [56] |
Nigeria | 2021 | – | E | 46 | 2.2% | 0.0% | 33921497 | [52] |
North America | ||||||||
Canada | 2020 | 2000–2013 | C | 985 | 0.1% | 0.0% | 31891387 | [35] |
Canada | 2017 | – | C + E | 195 | 0.0% | 0.0% | 29156151 | [57] |
Mexico | 2021 | – | E | 102 | 6.9% | 5.9% | 33921497 | [52] |
Mexico | 2019 | 2014–2017 | C | 24 | 0.0% | 0.0% | 31220262 | [36] |
USA | 2024 | 2019–2021 | E | 525 | 5.0% | 4.2% | 38651929 | [58] |
USA | 2024 | 2018–2019 | E | 202 | 12.4% | – | 38557086 | [59] |
USA | 2024 | 2019 | E | 178 | 0.0% | 0.0% | 38534143 | [60] |
USA | 2022 | 2015–2020 | C | 1891 | 3.3% | – | 35400175 | [37] |
USA | 2018 | 2015–2017 | C | 1356 | 0.1% | 0.0% | 29463545 | [61] |
USA | 2015 | 2001–2014 | C | 220 | 8.2% | 7.3% | 26491179 | [62] |
2 countries | 2024 | 2017–2021 | C | 282 | 1.4% | 0.4% | 38193696 | [38] |
South America | ||||||||
Argentina | 2020 | 2016–2019 | C | 93 | 8.6% | 2.2% | 32648614 | [63] |
Brazil | 2024 | 2017–2019 | C | 27 | 0.0% | 0.0% | 39490213 | [64] |
Brazil | 2023 | 2013–2019 | C | 40 | 37.5% | 7.5% | 37998875 | [39] |
Brazil | 2023 | – | C | 84 | 1.2% | 0.0% | 36297597 | [65] |
Brazil | 2020 | 2014–2017 | C | 199 | 1.0% | 0.5% | 31871090 | [66] |
Brazil | 2018 | 1998–2014 | C | 168 | 23.8% | 5.4% | 29468746 | [40] |
Brazil | 2017 | – | C | 25 | 4.0% | 4.0% | 29172033 | [67] |
Brazil | 2017 | – | E | 20 | 0.0% | 0.0% | 29172033 | [67] |
Brazil | 2017 | 1998–2017 | C | 221 | 1.8% | 0.0% | 28893772 | [68] |
Chile | 2024 | 2017–2021 | C | 23 | 4.3% | 4.3% | 39304433 | [69] |
Paraguay | 2021 | – | E | 36 | 8.3% | 2.8% | 33921497 | [52] |
Peru | 2021 | – | E | 61 | 9.8% | 8.2% | 33921497 | [52] |
Peru | 2019 | – | C | 143 | 0.7% | 0.0% | 31329931 | [70] |
Asia | ||||||||
China | 2024 | 2021–2023 | C | 276 | 0.7% | 0.7% | 38328338 | [71] |
China | 2024 | 2021–2022 | C | 54 | 0.0% | 0.0% | 39637619 | [72] |
China | 2024 | 2020–2023 | C/E | 94/251 | 18.8% | – | 39470286 | [73] |
China | 2024 | 2018–2022 | C | 146 | 13.7% | – | 39669311 | [43] |
China | 2023 | 2019–2021 | C | 81 | 6.2% | 6.2% | 37484905 | [74] |
China | 2023 | – | C | 252 | 1.6% | 1.6% | 37580143 | [75] |
China | 2023 | 2020 | E | 331 | – | 3.6% | 37341484 | [76] |
China | 2022 | 2019–2021 | C | 73 | 0.0% | 0.0% | 35493371 | [77] |
China | 2021 | 1999–2019 | C | 445 | 2.0% | 1.1% | 34367087 | [78] |
China | 2021 | 2019 | E | 233 | 38.6% | 33.9% | 33568450 | [47] |
China | 2021 | 2018 | E | 1520 | 5.1% | 4.4% | 33544588 | [79] |
China | 2020 | 2018 | E | 134 | 23.1% | 9.0% | 32718960 | [80] |
China | 2020 | 2018 | E | 206 | 8.3% | 7.3% | 31855142 | [81] |
China | 2020 | 2016 | E | 105 | 12.4% | 9.5% | 32718960 | [80] |
China | 2020 | 2014 | E | 43 | 0.0% | 0.0% | 32718960 | [80] |
China | 2017 | 2012–2015 | C | 126 | 2.4% | 0.8% | 28303848 | [82] |
China | 2017 | 2011–2015 | C | 159 | 0.6% | 0.0% | 29209054 | [83] |
China | 2016 | 2014–2015 | E | 144 | 0.7% | 0.0% | 27431231 | [84] |
India | 2024 | 2018–2019 | C | 9 | 0.0% | 0.0% | 38524068 | [85] |
India | 2024 | 2018–2019 | E | 3 | 0.0% | 0.0% | 38524068 | [85] |
India | 2018 | 2012–2016 | C | 32 | 3.1% | 3.1% | 29891597 | [86] |
India | 2015 | 2011–2014 | C | 685 | 1.6% | 1.5% | 26005442 | [87] |
India | 2011 | 2005–2010 | C | 103 | 1.9% | 0.0% | 22028200 | [88] |
Indonesia | 2021 | 2012–2015 | C | 8 | 0.0% | 0.0% | 34343127 | [89] |
Japan | 2021 | 1996–2017 | C | 240 | 9.2% | 2.5% | 33309631 | [90] |
Japan | 2020 | 2012–2019 | C | 120 | 21.7% | 4.2% | 32642756 | [41] |
Japan | 2020 | 2017 | E | 203 | 6.9% | 6.9% | 32576436 | [32] |
Japan | 2020 | 2013–2018 | C | 66 | 4.5% | 3.0% | 31564504 | [91] |
Japan | 2019 | 2017–2018 | C | 55 | 23.6% | 12.7% | 30690480 | [42] |
Japan | 2016 | 2013–2015 | C | 22 | 9.1% | 4.5% | 27050399 | [44] |
Japan | 2016 | 2015 | E | 91 | 0.0% | 0.0% | 27050399 | [44] |
Japan | 2014 | 1987–2008 | C | 171 | 0.6% | 0.0% | 24751235 | [92] |
Japan | 2011 | 1994–2010 | C | 196 | 4.1% | 0.0% | 22024829 | [93] |
Korea | 2020 | 2012–2013 | C | 84 | 0.0% | 0.0% | 32363043 | [94] |
Malaysia | 2024 | 2019–2023 | C | 60 | 0.0% | 0.0% | 38828376 | [95] |
Taiwan | 2023 | 2016–2020 | C | 118 | 4.2% | 2.5% | 37186489 | [96] |
Taiwan | 2022 | 2015–2021 | C | 114 | 1.8% | 0.9% | 36135633 | [97] |
Taiwan | 2019 | 2016–2018 | C | 14 | 0.0% | 0.0% | 31549427 | [45] |
Taiwan | 2019 | 2016–2018 | E | 90 | 7.8% | 5.6% | 31549427 | [45] |
Taiwan | 2015 | 2011–2014 | C | 38 | 7.9% | 2.6% | 26214171 | [98] |
Thailand | 2023 | 2021 | E | 62 | 27.4% | 3.2% | 36254865 | [46] |
Thailand | 2016 | 2014–2015 | E | 99 | 1.0% | 0.0% | 27664994 | [99] |
Vietnam | 2021 | 2019 | E | 62 | 77.4% | 59.7% | 34232541 | [48] |
Europe | ||||||||
Austria | 2022 | 2020–2021 | C | 22 | 0.0% | 0.0% | 35205848 | [100] |
Belgium | 2024 | 2020–2024 | A | 152 | 3.3% | 2.0% | 39430230 | [101] |
Belgium | 2024 | 2020–2022 | E | 2937 | 0.2% | 0.2% | 38769604 | [102] |
Belgium | 2023 | 2021–2022 | A/E | 35/68 | 10.8% | 4.9% | 36978451 | [103] |
Belgium | 2021 | 2016–2020 | C | 1192 | 7.1% | – | 34518094 | [104] |
Belgium | 2017 | 2015–2016 | C | 109 | 10.1% | 4.6% | 28515220 | [105] |
Belgium | 2015 | 2011–2012 | C | 192 | 6.8% | 3.1% | 25987612 | [106] |
Denmark | 2024 | 2020–2022 | E | 4538 | 4.1% | – | 38935978 | [107] |
Denmark | 2022 | 2018–2020 | C | 1820 | 5.6% | 3.9% | 35104010 | [108] |
Danmark | 2020 | 2018 | C | 137 | 8.8% | 7.3% | 32903400 | [109] |
Denmark | 2020 | 2018 | C | 742 | 5.3% | 3.0% | 32556315 | [110] |
Denmark | 2016 | 2007–2014 | C | 1098 | 3.6% | 2.0% | 27091095 | [111] |
Denmark | 2016 | 2014 | E | 133 | 3.0% | 3.0% | 27091095 | [111] |
Denmark | 2014 | 2010–2013 | E | 113 | 0.0% | 0.0% | 24936595 | [112] |
France | 2023 | 2020–2021 | E | 166 | 0.0% | 0.0% | 37367554 | [113] |
France | 2021 | 2015–2019 | C | 927 | 4.1% | 3.0% | 33680981 | [114] |
France | 2021 | 2014–2018 | C | 35 | 8.6% | 2.9% | 33946598 | [115] |
France | 2021 | 2014–2018 | E | 98 | 2.0% | 1.0% | 33946598 | [115] |
France | 2021 | 2017 | C | 195 | 2.1% | 2.1% | 34619334 | [116] |
France | 2019 | 2015 | C | 355 | 6.5% | 5.4% | 31038164 | [117] |
France | 2018 | 2017 | E | 566 | 7.6% | 4.9% | 30215210 | [118] |
France | 2018 | 2015 | E | 388 | 0.0% | 0.0% | 29853288 | [119] |
France | 2018 | 2015 | C | 12 | 0.0% | 0.0% | 29853288 | [119] |
France | 2017 | 2014–2016 | E | 157 | 14.0% | 13.4% | 28497646 | [120] |
France | 2017 | 2011–2015 | C + E | 116 | 3.4% | 3.4% | 29082624 | [121] |
France | 2015 | 2012 | C | 165 | 1.8% | 1.8% | 26026171 | [122] |
France | 2011 | 2010–2011 | C | 131 | 3.1% | 2.3% | 22123701 | [123] |
France | 2011 | – | C | 118 | 0.0% | 0.0% | 21131690 | [124] |
Germany | 2020 | – | A | 159 | 0.6% | 0.6% | 32497229 | [125] |
Germany | 2018 | 2012–2016 | C | 2888 | 3.2% | 2.9% | 29684150 | [126] |
Germany | 2016 | 2011–2013 | C | 77 | 2.6% | 1.3% | 27989379 | [127] |
Germany | 2015 | 2012–2013 | C | 27 | 29.6% | 14.8% | 25630644 | [128] |
Germany | 2013 | 2011–2012 | C | 527 | 1.9% | 0.9% | 23669382 | [129] |
Greece | 2020 | 2016–2017 | E | 101 | 1.0% | 1.0% | 32814940 | [130] |
Italy | 2021 | 2016–2018 | C | 286 | 4.9% | 1.4% | 33438319 | [131] |
Italy | 2020 | 2014–2016 | C | 134 | 0.0% | 0.0% | 32061880 | [132] |
Italy | 2016 | 2013–2015 | C | 423 | 2.1% | 0.5% | 27356848 | [133] |
Italy | 2016 | 1995–2006 | C | 533 | 3.4% | 1.1% | 26552980 | [134] |
Netherlands | 2024 | 2019–2022 | C | 1850 | 15.7% | – | 39644643 | [135] |
Netherlands | 2024 | 2015–2020 | A | 142 | 11.3% | 9.9% | 38864903 | [136] |
Netherlands | 2020 | 2018 | C | 764 | 17.8% | 11.4% | 32568033 | [17] |
Netherlands | 2020 | 2017 | C | 774 | 19.1% | 13.4% | 32568033 | [17] |
Netherlands | 2020 | 2016 | C | 784 | 16.1% | 14.0% | 32568033 | [17] |
Netherlands | 2020 | 2015 | C | 600 | 11.8% | 10.3% | 32568033 | [17] |
Netherlands | 2020 | 2014 | C | 814 | 8.6% | 8.2% | 32568033 | [17] |
Netherlands | 2020 | 2013 | C | 760 | 9.3% | 8.9% | 32568033 | [17] |
Netherlands | 2019 | 2011–2015 | C | 196 | – | 18.9% | 30307492 | [8] |
Netherlands | 2018 | 2006–2012 | C | 47 | 8.5% | 4.3% | 29394399 | [137] |
Netherlands | 2018 | 2001–2017 | C | 363 | 39.1% | 28.1% | 30158470 | [138] |
Netherlands | 2016 | 2010–2013 | C | 38 | 26.3% | 26.3% | 27541498 | [139] |
Netherlands | 2015 | 2011–2013 | C | 105 | 22.9% | 16.2% | 26163402 | [140] |
Poland | 2023 | 2015, 2019 | E | 31 | 0.0% | 0.0% | 37110454 | [141] |
Poland | 2019 | 2015–2016 | A | 60 | 1.7% | 1.7% | 30616967 | [142] |
Poland | 2017 | 2009–2011 | C | 121 | 2.5% | 0.8% | 28340159 | [143] |
Portugal | 2021 | 2018–2019 | E | 99 | 3.0% | 2.0% | 33379247 | [18] |
Portugal | 2021 | 2012–2019 | C | 70 | 2.9% | 1.4% | 33418997 | [144] |
Portugal | 2021 | 2012–2019 | E | 39 | 10.3% | 5.1% | 33418997 | [144] |
Portugal | 2019 | – | E | 31 | 0.0% | 0.0% | 31405297 | [145] |
Portugal | 2019 | – | E | 55 | 0.0% | 0.0% | 30735287 | [146] |
Portugal | 2018 | 2010–2016 | C | 190 | 3.2% | 2.6% | 30083151 | [147] |
Spain | 2024 | 2023 | C | 3 | 66.7% | 66.7% | 38801514 | [49] |
Spain | 2024 | 2019–2021 | C/E | 139/35 | 1.1% | 1.1% | 38551063 | [148] |
Spain | 2021 | 2019 | C | 828 | 4.6% | 0.7% | 33010446 | [149] |
Spain | 2019 | 2014–2018 | C | 158 | 7.0% | 4.4% | 31285229 | [150] |
Spain | 2018 | 2017 | C | 260 | – | 0.8% | 29941643 | [151] |
Spain | 2013 | 1999–2011 | C | 362 | 5.0% | 3.0% | 23629706 | [152] |
Switzerland | 2023 | 2019–2021 | E | 113 | 16.8% | 12.4% | 37930839 | [153] |
Switzerland | 2022 | 2018–2019 | C | 355 | 1.1% | 0.6% | 35111868 | [154] |
Switzerland | 2018 | 2016–2017 | C | 160 | 1.3% | 1.3% | 29437612 | [155] |
Turkey | 2022 | 2018–2019 | C | 392 | 3.3% | 3.1% | 35445259 | [156] |
Turkey | 2022 | 2018–2019 | E | 458 | 1.3% | 1.3% | 35445259 | [156] |
Turkey | 2015 | 1999–2012 | C | 746 | 10.2% | – | 26048062 | [157] |
UK | 2023 | 2018–2019 | E | 2366 | 2.7% | 0.5% | 37478175 | [158] |
UK | 2021 | 2018 | E | 146 | 0.0% | 0.0% | 33036151 | [159] |
UK | 2018 | 2015–2017 | C | 356 | 1.1% | 0.3% | 30294314 | [160] |
UK | 2018 | 2014–2016 | C | 167 | 6.0% | 0.0% | 30103005 | [161] |
UK | 2018 | 2015 | E | 496 | 4.6% | 1.4% | 29997605 | [162] |
UK | 2018 | 1998–2011 | C | 1151 | 0.3% | 0.3% | 30294314 | [160] |
3 countries | 2024 | 2022–2023 | E | 2000 | <10.0% | <10.0% | 38842339 | [163] |
11 countries | 2024 | 2017–2021 | C | 449 | 4.5% | 1.1% | 38193696 | [38] |
4 countries | 2023 | 2020–2021 | C | 21 | 14.3% | 9.5% | 37998909 | [164] |
2 countries | 2021 | 2015–2018 | E | 180 | 2.2% | 2.2% | 34835504 | [165] |
2 countries | 2019 | 2012–2017 | C | 129 | – | 20.2% | 31236587 | [166] |
Middle East | ||||||||
Iran | 2024 | – | C | 40 | 10.0% | 2.5% | 39239666 | [167] |
Iran | 2024 | 2021–2022 | E | 37 | 51.4% | 45.9% | 38199436 | [50] |
Iran | 2023 | 2021–2022 | E | 7 | 14.3% | 14.3% | 37713303 | [168] |
Iran | 2023 | 2016–2021 | C | 23 | 0.0% | 0.0% | 36196507 | [169] |
Iran | 2023 | 2016–2021 | E | 460 | 17.0% | – | 36196507 | [169] |
Iran | 2022 | 2018–2021 | C | 21 | 14.3% | 0.0% | 35579442 | [170] |
Iran | 2021 | – | E | 60 | 80.0% | 6.7% | 33019714 | [51] |
Iran | 2018 | 2009–2014 | C | 172 | 3.5% | 2.9% | 30181998 | [171] |
Iran | 2016 | 2014 | E | 58 | 1.7% | 0.0% | 27656605 | [172] |
Iran | 2016 | 2013–2015 | C | 71 | 2.8% | 2.8% | 27008655 | [173] |
Iran | 2016 | 2013–2015 | E | 79 | 5.1% | 5.1% | 27008655 | [173] |
Oceania | ||||||||
Australia | 2024 | 2020–2023 | C | 169 | 5.3% | 3.0% | 39105545 | [174] |
Australia | 2018 | 2015–2017 | C | 148 | 0.7% | 0.7% | 29846581 | [175] |
Australia | 2018 | 2015–2017 | A/E | 11/41 | 0.0% | 0.0% | 29846581 | [175] |
New Zealand | 2021 | 2001–2020 | C | 238 | 0.4% | 0.4% | 34140712 | [176] |
New Zealand | 2021 | 2001–2019 | C | 210 | 1.4% | 1.0% | 33518383 | [177] |
2 countries | 2023 | 2017–2020 | C | 46 | 8.7% | 4.3% | 37701716 | [178] |
World | ||||||||
40 countries | 2023 | 2017–2020 | C | 660 | 3.3% | 0.9% | 37367544 | [179] |
6 countries | 2021 | 2011–2019 | C | 189 | 1.1% | – | 34188199 | [180] |
29 countries | 2017 | 2014–2015 | C | 391 | 0.3% | – | 28784671 | [181] |
31 countries | 2016 | 2013 | C | 142 | 1.4% | 0.0% | 27061369 | [182] |
9 countries | 2015 | 2010–2012 | C | 6 | 16.7% | 16.7% | 25899126 | [183] |
France, China | 2014 | 2010 | E | 175 | 0.0% | 0.0% | 24570417 | [184] |
39 countries | 2011 | 2008–2009 | C | 497 | 1.8% | 0.4% | 21690285 | [185] |
>60 facilities | 2010 | 2007–2009 | C | 607 | 1.6% | – | 21123534 | [186] |
>60 facilities | 2010 | 2004–2006 | C | 532 | 1.6% | – | 21123534 | [186] |
>60 facilities | 2010 | 2001–2003 | C | 173 | 0.0% | 0.0% | 21123534 | [186] |
3 countries | 2010 | – | C | 2815 | 3.1% | 1.4% | 20592159 | [187] |
>60 facilities | 2009 | 2005–2007 | C | 637 | 0.8% | – | 19692559 | [188] |
2.4. Implications for Stakeholders
3. Mechanisms of Resistance and Molecular Epidemiology
3.1. Molecular Basis and Key Mutations
3.2. Molecular Typing Methods and Their Utility
3.3. Linking Environmental and Clinical Isolates
4. Optimizing Environmental Surveillance Strategies
4.1. Targeted Areas and Sampling Design
4.2. Addressing Air, Surfaces, Construction Activities, and Seasonal Variations
4.3. Utilizing Checklists and Flowcharts for Surveillance Planning
5. Diagnostic and Susceptibility Testing Methods
5.1. Comparison of Culture-Based and Non-Culture Methods
5.2. Microdilution Methods (EUCAST/CLSI Reference Procedures)
5.3. Clinical Breakpoints (BPs) and Epidemiological Cut-Off Values (ECVs)
5.4. Agar-Based Methods (Screening Plates and Related Approaches)
5.5. Introduction of Rapid and Sensitive Diagnostic Tools
5.6. Culture-Based Improvements: Flamingo Medium
5.7. Molecular Assays: PCR, NGS, and Emerging Technologies
6. Data Interpretation and Integration into Clinical Practice
6.1. Setting Alert Thresholds and Risk Assessment Models
6.2. Multidisciplinary Decision-Making Processes
6.3. Practical Reporting Formats for Enhanced Clinical Responsiveness
7. A Practical Framework and Recommended Strategies
7.1. PDCA Cycle for Continuous Quality Improvement of Environmental Surveillance
7.2. Action Flow for Clinical and Environmental Interventions
- Routine Environmental Sampling: Conducted on a scheduled basis (e.g., weekly or monthly).
- Seasonal or Construction Risk?: If present, intensify surveillance frequency or implement physical barriers and dust control [212].
- Is the Resistance Rate Above the Threshold?: If yes, consider not only prophylactic measures (e.g., adjusting antifungal prophylaxis for high-risk wards) but also revisiting the first-line therapy recommendations for invasive aspergillosis, especially in wards with high-risk patients [30].
- Any Clinical Spike or Cluster?: If a cluster is detected, “Enhanced Measures” may include thorough environmental cleaning, access restrictions, or further diagnostic evaluations [210].
- Any Hotspot from Environmental Data?: If local contamination is suspected, perform targeted remediation and repeat tests to ensure successful mitigation [251].
- Document and Communicate: Results are shared with relevant stakeholders (infection control teams, hospital administration), and the outcomes feed back into the PDCA cycle for subsequent refinement.
7.3. Example of a Two-Person Surveillance Plan
7.4. Selecting Surveillance Locations Under Limited Staffing
- Hematology Ward (with HEPA Filtration)Patients here often undergo hematopoietic stem cell transplantation and are therefore at high risk for invasive aspergillosis. However, this ward is equipped with HEPA filters, potentially resulting in very low yields of airborne Aspergillus.
- Respiratory Ward (without HEPA Filtration)This ward admits lung transplant recipients, who are also at high risk due to continuous exposure to inhaled pathogens and intensive immunosuppression. Unlike the hematology ward, the respiratory ward in our facility is not equipped with HEPA filters, making it easier to detect airborne fungi if present.
7.5. Workflow Overview
- Regular air sampling (weekly)
- Triggered surface swabs (when an increase in A. fumigatus is detected)
- Soil sampling (if azole resistance exceeds 10%)
7.6. Additional Soil-Sampling Protocol
7.7. Linking Existing Resources and Adding Value
8. Cost-Effectiveness and Sustainability
8.1. Cost Evaluation Models
8.2. Resource Optimization Strategies
- Targeted Sampling ApproachesFocusing surveillance on high-risk wards (e.g., hematology or transplant units) or periods of known risk elevation (e.g., construction phases, seasonal variations) can reduce the need for extensive sampling across the entire hospital.
- Leverage Multipurpose EquipmentInvesting in a versatile air sampler or a molecular testing platform that can serve multiple surveillance or diagnostic purposes may be more cost-effective than acquiring single-use devices.
- Task-SharingTraining existing staff (e.g., infection control nurses, lab technicians) to handle basic sampling or preliminary lab work can distribute workload and minimize reliance on additional hires. Cross-training personnel also enhances institutional resilience by ensuring coverage during staff turnover or absences.
- Collaborative NetworksForming partnerships with regional laboratories or research institutions may allow for shared costs in molecular testing or advanced data analytics, thus reducing the financial burden on a single facility. Such networks can also facilitate benchmarking and data-sharing, potentially leading to multi-institutional studies that further justify surveillance investments.
8.3. Implications for Long-Term Sustainability
- Budgeting for ExpansionAs data accumulate and PDCA cycles reveal improvement opportunities, the program may need to scale up sampling or incorporate more advanced molecular techniques. Securing long-term funding or establishing contingency budgets is essential.
- Continuous Training and Staff RetentionKnowledgeable personnel are pivotal to a successful surveillance program. Regular training, cross-disciplinary workshops, and career development pathways can improve staff motivation and reduce turnover. A stable, well-trained team also enhances data consistency over time.
- Policy and Regulatory SupportNational or regional guidelines that encourage routine fungal surveillance—and possibly allocate funding—can significantly bolster the feasibility of maintaining such programs. In some regions, compliance with mandatory reporting or accreditation standards may drive institutions to adopt systematic surveillance, securing financial backing along the way [252].
- Public Health ImpactReductions in azole-resistant A. fumigatus infections and related complications may produce intangible benefits, such as safeguarding institutional reputation and reinforcing public confidence in healthcare services. Moreover, the broader One Health implications—including agricultural and environmental considerations—can garner support from external stakeholders and policymakers.
9. Future Directions
9.1. Advancing Molecular Diagnostics While Preserving Culture-Based Methods
9.2. Strengthening Routine Surveillance in High-Risk Wards
9.3. Real-World Validation and Technological Limitations
9.4. International Collaboration and Rapid Adaptation
9.5. Ensuring Future-Ready Antifungal Stewardship
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verweij, P.E.; Chowdhary, A.; Melchers, W.J.; Meis, J.F. Azole Resistance in Aspergillus fumigatus: Can We Retain the Clinical Use of Mold-Active Antifungal Azoles? Clin. Infect. Dis. 2016, 62, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Latge, J.P.; Chamilos, G. Aspergillus fumigatus and Aspergillosis in 2019. Clin. Microbiol. Rev. 2019, 33, e00140-18. [Google Scholar] [CrossRef]
- Kaur, S.; Singh, S. Biofilm formation by Aspergillus fumigatus. Med. Mycol. 2014, 52, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Maertens, J.A.; Raad, I.I.; Marr, K.A.; Patterson, T.F.; Kontoyiannis, D.P.; Cornely, O.A.; Bow, E.J.; Rahav, G.; Neofytos, D.; Aoun, M.; et al. Isavuconazole versus voriconazole for primary treatment of invasive mould disease caused by Aspergillus and other filamentous fungi (SECURE): A phase 3, randomised-controlled, non-inferiority trial. Lancet 2016, 387, 760–769. [Google Scholar] [CrossRef] [PubMed]
- Patterson, T.F.; Thompson, G.R., 3rd; Denning, D.W.; Fishman, J.A.; Hadley, S.; Herbrecht, R.; Kontoyiannis, D.P.; Marr, K.A.; Morrison, V.A.; Nguyen, M.H.; et al. Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 63, e1–e60. [Google Scholar] [CrossRef] [PubMed]
- Cornely, O.A.; Maertens, J.; Winston, D.J.; Perfect, J.; Ullmann, A.J.; Walsh, T.J.; Helfgott, D.; Holowiecki, J.; Stockelberg, D.; Goh, Y.T.; et al. Posaconazole vs. fluconazole or itraconazole prophylaxis in patients with neutropenia. N. Engl. J. Med. 2007, 356, 348–359. [Google Scholar] [CrossRef]
- Chowdhary, A.; Sharma, C.; Meis, J.F. Azole-Resistant Aspergillosis: Epidemiology, Molecular Mechanisms, and Treatment. J. Infect. Dis. 2017, 216, S436–S444. [Google Scholar] [CrossRef] [PubMed]
- Lestrade, P.P.; Bentvelsen, R.G.; Schauwvlieghe, A.; Schalekamp, S.; van der Velden, W.; Kuiper, E.J.; van Paassen, J.; van der Hoven, B.; van der Lee, H.A.; Melchers, W.J.G.; et al. Voriconazole Resistance and Mortality in Invasive Aspergillosis: A Multicenter Retrospective Cohort Study. Clin. Infect. Dis. 2019, 68, 1463–1471. [Google Scholar] [CrossRef]
- World Health Organization. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Centers for Disease Control Prevention (CDC). Antibiotic Resistance Threats in the United States, 2019; U.S. Department of Health and Human Services: Atlanta, GA, USA, 2019. [Google Scholar]
- Morrissey, C.O.; Kim, H.Y.; Duong, T.N.; Moran, E.; Alastruey-Izquierdo, A.; Denning, D.W.; Perfect, J.R.; Nucci, M.; Chakrabarti, A.; Rickerts, V.; et al. Aspergillus fumigatus-a systematic review to inform the World Health Organization priority list of fungal pathogens. Med. Mycol. 2024, 62, myad129. [Google Scholar] [CrossRef]
- Tashiro, M.; Izumikawa, K.; Hirano, K.; Ide, S.; Mihara, T.; Hosogaya, N.; Takazono, T.; Morinaga, Y.; Nakamura, S.; Kurihara, S.; et al. Correlation between triazole treatment history and susceptibility in clinically isolated Aspergillus fumigatus. Antimicrob. Agents Chemother. 2012, 56, 4870–4875. [Google Scholar] [CrossRef] [PubMed]
- Burks, C.; Darby, A.; Gomez Londono, L.; Momany, M.; Brewer, M.T. Azole-resistant Aspergillus fumigatus in the environment: Identifying key reservoirs and hotspots of antifungal resistance. PLoS Pathog. 2021, 17, e1009711. [Google Scholar] [CrossRef] [PubMed]
- Snelders, E.; Huis In’t Veld, R.A.; Rijs, A.J.; Kema, G.H.; Melchers, W.J.; Verweij, P.E. Possible environmental origin of resistance of Aspergillus fumigatus to medical triazoles. Appl. Environ. Microbiol. 2009, 75, 4053–4057. [Google Scholar] [CrossRef]
- Rhodes, J.; Abdolrasouli, A.; Dunne, K.; Sewell, T.R.; Zhang, Y.; Ballard, E.; Brackin, A.P.; van Rhijn, N.; Chown, H.; Tsitsopoulou, A.; et al. Population genomics confirms acquisition of drug-resistant Aspergillus fumigatus infection by humans from the environment. Nat. Microbiol. 2022, 7, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Verweij, P.E.; Lestrade, P.P.; Melchers, W.J.; Meis, J.F. Azole resistance surveillance in Aspergillus fumigatus: Beneficial or biased? J. Antimicrob. Chemother. 2016, 71, 2079–2082. [Google Scholar] [CrossRef]
- Lestrade, P.P.A.; Buil, J.B.; van der Beek, M.T.; Kuijper, E.J.; van Dijk, K.; Kampinga, G.A.; Rijnders, B.J.A.; Vonk, A.G.; de Greeff, S.C.; Schoffelen, A.F.; et al. Paradoxal Trends in Azole-Resistant Aspergillus fumigatus in a National Multicenter Surveillance Program, the Netherlands, 2013–2018. Emerg. Infect. Dis. 2020, 26, 1447–1455. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, P.; Melo, A.; Dias, M.; Almeida, B.; Caetano, L.A.; Verissimo, C.; Viegas, C.; Sabino, R. Azole-Resistant Aspergillus fumigatus Harboring the TR(34)/L98H Mutation: First Report in Portugal in Environmental Samples. Microorganisms 2020, 9, 57. [Google Scholar] [CrossRef]
- Douglas, A.P.; Stewart, A.G.; Halliday, C.L.; Chen, S.C. Outbreaks of Fungal Infections in Hospitals: Epidemiology, Detection, and Management. J. Fungi 2023, 9, 1059. [Google Scholar] [CrossRef]
- Loeffert, S.T.; Melloul, E.; Dananche, C.; Henaff, L.; Benet, T.; Cassier, P.; Dupont, D.; Guillot, J.; Botterel, F.; Wallon, M.; et al. Monitoring of clinical strains and environmental fungal aerocontamination to prevent invasive aspergillosis infections in hospital during large deconstruction work: A protocol study. BMJ Open 2017, 7, e018109. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention Control. Risk Assessment on the Impact of Environmental Usage of Triazoles on the Development and Spread of Resistance to Medical Triazoles in Aspergillus Species; Report no. 978-92-9193-444-7; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2013. [Google Scholar]
- Donnelly, J.P.; Chen, S.C.; Kauffman, C.A.; Steinbach, W.J.; Baddley, J.W.; Verweij, P.E.; Clancy, C.J.; Wingard, J.R.; Lockhart, S.R.; Groll, A.H.; et al. Revision and Update of the Consensus Definitions of Invasive Fungal Disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin. Infect. Dis. 2020, 71, 1367–1376. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Husain, S.; Practice, A.S.T.I.D.C.o. Invasive aspergillosis in solid organ transplant recipients. Am. J. Transplant. 2009, 9 (Suppl. S4), S180–S191. [Google Scholar] [CrossRef] [PubMed]
- Righi, I.; Barone, I.; Rosso, L.; Morlacchi, L.C.; Rossetti, V.; Caffarena, G.; Limanaqi, F.; Palleschi, A.; Clerici, M.; Trabattoni, D. Immunopathology of lung transplantation: From infection to rejection and vice versa. Front. Immunol. 2024, 15, 1433469. [Google Scholar] [CrossRef] [PubMed]
- Henry, B.; Guenette, A.; Cheema, F.; Perez-Cortes, A.; McTaggart, L.; Mazzulli, T.; Singer, L.; Keshavjee, S.; Kus, J.V.; Husain, S. CYP51A polymorphisms of Aspergillus fumigatus in lung transplant recipients: Prevalence, correlation with phenotype, and impact on outcomes. Med. Mycol. 2021, 59, 728–733. [Google Scholar] [CrossRef]
- Husain, S.; Sole, A.; Alexander, B.D.; Aslam, S.; Avery, R.; Benden, C.; Billaud, E.M.; Chambers, D.; Danziger-Isakov, L.; Fedson, S.; et al. The 2015 International Society for Heart and Lung Transplantation Guidelines for the management of fungal infections in mechanical circulatory support and cardiothoracic organ transplant recipients: Executive summary. J. Heart Lung Transplant. 2016, 35, 261–282. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Azoulay, E.; Kullberg, B.J.; Ruhnke, M.; Shoham, S.; Vazquez, J.; Giacobbe, D.R.; Calandra, T. EORTC/MSGERC Definitions of Invasive Fungal Diseases: Summary of Activities of the Intensive Care Unit Working Group. Clin. Infect. Dis. 2021, 72, S121–S127. [Google Scholar] [CrossRef]
- van der Linden, J.W.; Camps, S.M.; Kampinga, G.A.; Arends, J.P.; Debets-Ossenkopp, Y.J.; Haas, P.J.; Rijnders, B.J.; Kuijper, E.J.; van Tiel, F.H.; Varga, J.; et al. Aspergillosis due to voriconazole highly resistant Aspergillus fumigatus and recovery of genetically related resistant isolates from domiciles. Clin. Infect. Dis. 2013, 57, 513–520. [Google Scholar] [CrossRef]
- van der Linden, J.W.; Snelders, E.; Kampinga, G.A.; Rijnders, B.J.; Mattsson, E.; Debets-Ossenkopp, Y.J.; Kuijper, E.J.; Van Tiel, F.H.; Melchers, W.J.; Verweij, P.E. Clinical implications of azole resistance in Aspergillus fumigatus, The Netherlands, 2007–2009. Emerg. Infect. Dis. 2011, 17, 1846–1854. [Google Scholar] [CrossRef]
- Verweij, P.E.; Ananda-Rajah, M.; Andes, D.; Arendrup, M.C.; Bruggemann, R.J.; Chowdhary, A.; Cornely, O.A.; Denning, D.W.; Groll, A.H.; Izumikawa, K.; et al. International expert opinion on the management of infection caused by azole-resistant Aspergillus fumigatus. Drug Resist. Updates 2015, 21–22, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.E.; Sumabat, L.G.; Melie, T.; Mangum, B.; Momany, M.; Brewer, M.T. Evidence for the agricultural origin of resistance to multiple antimicrobials in Aspergillus fumigatus, a fungal pathogen of humans. G3 2022, 12, jkab427. [Google Scholar] [CrossRef] [PubMed]
- Nakano, Y.; Tashiro, M.; Urano, R.; Kikuchi, M.; Ito, N.; Moriya, E.; Shirahige, T.; Mishima, M.; Takazono, T.; Miyazaki, T.; et al. Characteristics of azole-resistant Aspergillus fumigatus attached to agricultural products imported to Japan. J. Infect. Chemother. 2020, 26, 1021–1025. [Google Scholar] [CrossRef]
- Health Protection Surveillance Centre. National Guidelines for the Prevention of Nosocomial Aspergillosis; Health Protection Surveillance Centre: Dublin, Ireland, 2018. [Google Scholar]
- Chen, S.; Zhu, G.; Lin, H.; Guo, J.; Deng, S.; Wu, W.; Goldman, G.H.; Lu, L.; Zhang, Y. Variability in competitive fitness among environmental and clinical azole-resistant Aspergillus fumigatus isolates. mBio 2024, 15, e0026324. [Google Scholar] [CrossRef]
- Parent-Michaud, M.; Dufresne, P.J.; Fournier, E.; Folch, B.; Martineau, C.; Moreira, S.; Doucet, N.; De Repentigny, L.; Dufresne, S.F. Prevalence and mechanisms of azole resistance in clinical isolates of Aspergillus section Fumigati species in a Canadian tertiary care centre, 2000 to 2013. J. Antimicrob. Chemother. 2020, 75, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Lara, M.F.; Roman-Montes, C.M.; Diaz-Lomeli, P.; Rangel-Cordero, A.; Valenzuela, M.O.; Ponce-de-Leon, A.; Sifuentes-Osornio, J.; Ostrosky-Zeichner, L.; Martinez-Gamboa, A. Azole resistance and cyp51A mutation screening in Aspergillus fumigatus in Mexico. J. Antimicrob. Chemother. 2019, 74, 2047–2050. [Google Scholar] [CrossRef]
- Badali, H.; Canete-Gibas, C.; McCarthy, D.; Patterson, H.; Sanders, C.; David, M.P.; Mele, J.; Fan, H.; Wiederhold, N.P. Species Distribution and Antifungal Susceptibilities of Aspergillus Section Fumigati Isolates in Clinical Samples from the United States. J. Clin. Microbiol. 2022, 60, e0028022. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Carvalhaes, C.G.; Rhomberg, P.R.; Desphande, L.M.; Castanheira, M. Trends in the activity of mold-active azole agents against Aspergillus fumigatus clinical isolates with and without cyp51 alterations from Europe and North America (2017–2021). J. Clin. Microbiol. 2024, 62, e0114123. [Google Scholar] [CrossRef] [PubMed]
- da Fonseca, L.M.M.; Braga, V.F.; Tonani, L.; Grizante Bariao, P.H.; Nascimento, E.; Martinez, R.; von Zeska Kress, M.R. Surveillance of Amphotericin B and Azole Resistance in Aspergillus Isolated from Patients in a Tertiary Teaching Hospital. J. Fungi 2023, 9, 1070. [Google Scholar] [CrossRef]
- Reichert-Lima, F.; Lyra, L.; Pontes, L.; Moretti, M.L.; Pham, C.D.; Lockhart, S.R.; Schreiber, A.Z. Surveillance for azoles resistance in Aspergillus spp. highlights a high number of amphotericin B-resistant isolates. Mycoses 2018, 61, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Suzuki, J.; Watanabe, A.; Arai, T.; Koiwa, T.; Shinfuku, K.; Narumoto, O.; Kawashima, M.; Fukami, T.; Tamura, A.; et al. High detection rate of azole-resistant Aspergillus fumigatus after treatment with azole antifungal drugs among patients with chronic pulmonary aspergillosis in a single hospital setting with low azole resistance. Med. Mycol. 2021, 59, 327–334. [Google Scholar] [CrossRef]
- Tsuchido, Y.; Tanaka, M.; Nakano, S.; Yamamoto, M.; Matsumura, Y.; Nagao, M. Prospective multicenter surveillance of clinically isolated Aspergillus species revealed azole-resistant Aspergillus fumigatus isolates with TR34/L98H mutation in the Kyoto and Shiga regions of Japan. Med. Mycol. 2019, 57, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Wang, Y.; Mo, E.; Khan, M.N.; Zhang, Q.; Li, L.; Zhu, J.; Zhu, M. Epidemiology and Antifungal Susceptibilities of Clinically Isolated Aspergillus Species in Tertiary Hospital of Southeast China. Infect. Drug Resist. 2024, 17, 5451–5462. [Google Scholar] [CrossRef]
- Toyotome, T.; Fujiwara, T.; Kida, H.; Matsumoto, M.; Wada, T.; Komatsu, R. Azole susceptibility in clinical and environmental isolates of Aspergillus fumigatus from eastern Hokkaido, Japan. J. Infect. Chemother. 2016, 22, 648–650. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Kuo, S.F.; Wang, H.C.; Wu, C.J.; Lin, Y.S.; Li, W.S.; Lee, C.H. Azole resistance in Aspergillus species in Southern Taiwan: An epidemiological surveillance study. Mycoses 2019, 62, 1174–1181. [Google Scholar] [CrossRef]
- Daloh, M.; Wisessombat, S.; Pinchai, N.; Santajit, S.; Bhoopong, P.; Soaart, A.; Chueajeen, K.; Jitlang, A.; Sama-Ae, I. High prevalence and genetic diversity of a single ancestral origin azole-resistant Aspergillus fumigatus in indoor environments at Walailak University, Southern Thailand. Environ. Microbiol. 2022, 24, 4641–4651. [Google Scholar] [CrossRef]
- Zhou, D.; Korfanty, G.A.; Mo, M.; Wang, R.; Li, X.; Li, H.; Li, S.; Wu, J.Y.; Zhang, K.Q.; Zhang, Y.; et al. Extensive Genetic Diversity and Widespread Azole Resistance in Greenhouse Populations of Aspergillus fumigatus in Yunnan, China. mSphere 2021, 6, e00066-21. [Google Scholar] [CrossRef]
- Duong, T.N.; Le, T.V.; Tran, K.H.; Nguyen, P.T.; Nguyen, B.T.; Nguyen, T.A.; Nguyen, H.P.; Nguyen, B.T.; Fisher, M.C.; Rhodes, J.; et al. Azole-resistant Aspergillus fumigatus is highly prevalent in the environment of Vietnam, with marked variability by land use type. Environ. Microbiol. 2021, 23, 7632–7642. [Google Scholar] [CrossRef]
- Monzo-Gallo, P.; Alastruey-Izquierdo, A.; Chumbita, M.; Aiello, T.F.; Gallardo-Pizarro, A.; Peyrony, O.; Teijon-Lumbreras, C.; Alcazar-Fuoli, L.; Espasa, M.; Soriano, A.; et al. Report of three azole-resistant Aspergillus fumigatus cases with TR34/L98H mutation in hematological patients in Barcelona, Spain. Infection 2024, 52, 1651–1656. [Google Scholar] [CrossRef] [PubMed]
- Ghazanfari, M.; Abastabar, M.; Haghani, I.; Kermani, F.; Keikha, N.; Kholoujini, M.; Minooeianhaghighi, M.H.; Jeddi, S.A.; Shokri, A.; Ghojoghi, A.; et al. Electronic equipment and appliances in special wards of hospitals as a source of azole-resistant Aspergillus fumigatus: A multi-centre study from Iran. J. Hosp. Infect. 2024, 145, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Ahangarkani, F.; Badali, H.; Abbasi, K.; Nabili, M.; Khodavaisy, S.; de Groot, T.; Meis, J.F. Clonal Expansion of Environmental Triazole Resistant Aspergillus fumigatus in Iran. J. Fungi 2020, 6, 199. [Google Scholar] [CrossRef] [PubMed]
- Resendiz-Sharpe, A.; Dewaele, K.; Merckx, R.; Bustamante, B.; Vega-Gomez, M.C.; Rolon, M.; Jacobs, J.; Verweij, P.E.; Maertens, J.; Lagrou, K. Triazole-Resistance in Environmental Aspergillus fumigatus in Latin American and African Countries. J. Fungi 2021, 7, 292. [Google Scholar] [CrossRef] [PubMed]
- Yerbanga, I.W.; Lagrou, K.; Merckx, R.; Nakanabo Diallo, S.; Gangneux, J.P.; Delabarre, A.; Denis, O.; Rodriguez-Villalobos, H.; Montesinos, I.; Bamba, S. First detection of triazole-resistant Aspergillus fumigatus harbouring the TR34/L98H Cyp51A mutation in Burkina Faso. Mycoses 2024, 67, e13732. [Google Scholar] [CrossRef]
- Yerbanga, I.W.; Resendiz-Sharpe, A.; Bamba, S.; Lagrou, K.; Nakanabo Diallo, S.; Rodriguez-Villalobos, H.; Denis, O.; Montesinos, I. First Investigative Study of Azole-Resistant Aspergillus fumigatus in the Environment in Burkina Faso. Int. J. Environ. Res. Public Health 2021, 18, 2250. [Google Scholar] [CrossRef]
- Kemoi, E.K.; Nyerere, A.; Bii, C.C. Triazole-Resistant Aspergillus fumigatus from Fungicide-Experienced Soils in Naivasha Subcounty and Nairobi County, Kenya. Int. J. Microbiol. 2018, 2018, 7147938. [Google Scholar] [CrossRef]
- Campbell, C.A.; Osaigbovo, I.I.; Oladele, R.O. Triazole susceptibility of Aspergillus species: Environmental survey in Lagos, Nigeria and review of the rest of Africa. Ther. Adv. Infect. Dis. 2021, 8, 20499361211044330. [Google Scholar] [CrossRef] [PubMed]
- Ashu, E.E.; Kim, G.Y.; Roy-Gayos, P.; Dong, K.; Forsythe, A.; Giglio, V.; Korfanty, G.; Yamamura, D.; Xu, J. Limited evidence of fungicide-driven triazole-resistant Aspergillus fumigatus in Hamilton, Canada. Can. J. Microbiol. 2018, 64, 119–130. [Google Scholar] [CrossRef]
- Wang, C.; Miller, N.; Vines, D.; Severns, P.M.; Momany, M.; Brewer, M.T. Azole resistance mechanisms and population structure of the human pathogen Aspergillus fumigatus on retail plant products. Appl. Environ. Microbiol. 2024, 90, e0205623. [Google Scholar] [CrossRef]
- Celia-Sanchez, B.N.; Mangum, B.; Gomez Londono, L.F.; Wang, C.; Shuman, B.; Brewer, M.T.; Momany, M. Pan-azole- and multi-fungicide-resistant Aspergillus fumigatus is widespread in the United States. Appl. Environ. Microbiol. 2024, 90, e0178223. [Google Scholar] [CrossRef] [PubMed]
- Jimenez Madrid, M.A.; Paul, R.A.; Rotondo, F.; Deblais, L.; Rajashekara, G.; Miller, S.A.; Ivey, M.L.L. Triazole resistance in Aspergillus fumigatus isolated from a tomato production environment exposed to propiconazole. Appl. Environ. Microbiol. 2024, 90, e0001724. [Google Scholar] [CrossRef]
- Berkow, E.L.; Nunnally, N.S.; Bandea, A.; Kuykendall, R.; Beer, K.; Lockhart, S.R. Detection of TR(34)/L98H CYP51A Mutation through Passive Surveillance for Azole-Resistant Aspergillus fumigatus in the United States from 2015 to 2017. Antimicrob. Agents Chemother. 2018, 62, e02240-17. [Google Scholar] [CrossRef]
- Wiederhold, N.P.; Gil, V.G.; Gutierrez, F.; Lindner, J.R.; Albataineh, M.T.; McCarthy, D.I.; Sanders, C.; Fan, H.; Fothergill, A.W.; Sutton, D.A. First Detection of TR34 L98H and TR46 Y121F T289A Cyp51 Mutations in Aspergillus fumigatus Isolates in the United States. J. Clin. Microbiol. 2016, 54, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Brito Devoto, T.; Hermida-Alva, K.; Posse, G.; Finquelievich, J.L.; Garcia-Effron, G.; Cuestas, M.L. High prevalence of triazole-resistant Aspergillus fumigatus sensu stricto in an Argentinean cohort of patients with cystic fibrosis. Mycoses 2020, 63, 937–941. [Google Scholar] [CrossRef] [PubMed]
- Melo, A.M.; Poester, V.R.; Trapaga, M.R.; Faria, F.A.; Aquino, V.; Severo, C.B.; Stevens, D.A.; Verissimo, C.; Sabino, R.; Xavier, M.O. Aspergillus fumigatus sensu stricto genetic diversity from cystic fibrosis patients. Int. J. Med. Microbiol. 2024, 317, 151639. [Google Scholar] [CrossRef]
- Melhem, M.S.C.; Coelho, V.C.; Fonseca, C.A.; Oliveira, L.; Bonfietti, L.X.; Szeszs, M.W.; Magri, M.M.C.; Dorneles, F.S.; Taguchi, H.; Moreira, D.V.S.; et al. Evaluation of the Sensititre YeastOne and Etest in Comparison with CLSI M38-A2 for Antifungal Susceptibility Testing of Three Azoles, Amphotericin B, Caspofungin, and Anidulafungin, against Aspergillus fumigatus and Other Species, Using New Clinical Breakpoints and Epidemiological Cutoff Values. Pharmaceutics 2022, 14, 2161. [Google Scholar] [CrossRef]
- Pontes, L.; Beraquet, C.A.G.; Arai, T.; Pigolli, G.L.; Lyra, L.; Watanabe, A.; Moretti, M.L.; Schreiber, A.Z. Aspergillus fumigatus Clinical Isolates Carrying CYP51A with TR34/L98H/S297T/F495I Substitutions Detected after Four-Year Retrospective Azole Resistance Screening in Brazil. Antimicrob. Agents Chemother. 2020, 64, e02059-19. [Google Scholar] [CrossRef] [PubMed]
- Bedin Denardi, L.; Hoch Dalla-Lana, B.; Pantella Kunz de Jesus, F.; Bittencourt Severo, C.; Morais Santurio, J.; Zanette, R.A.; Hartz Alves, S. In vitro antifungal susceptibility of clinical and environmental isolates of Aspergillus fumigatus and Aspergillus flavus in Brazil. Braz. J. Infect. Dis. 2018, 22, 30–36. [Google Scholar] [CrossRef]
- Negri, C.E.; Goncalves, S.S.; Sousa, A.C.P.; Bergamasco, M.D.; Martino, M.D.V.; Queiroz-Telles, F.; Aquino, V.R.; Castro, P.T.O.; Hagen, F.; Meis, J.F.; et al. Triazole Resistance Is Still Not Emerging in Aspergillus fumigatus Isolates Causing Invasive Aspergillosis in Brazilian Patients. Antimicrob. Agents Chemother. 2017, 61, e00608-17. [Google Scholar] [CrossRef] [PubMed]
- Alvarez Duarte, E.; Cepeda, N.; Miranda, J. Azole resistance in a clinical isolate of Aspergillus fumigatus from Chile. Rev. Iberoam. Micol. 2024, 41, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, B.; Illescas, L.R.; Posadas, A.; Campos, P.E. Azole resistance among clinical isolates of Aspergillus fumigatus in Lima-Peru. Med. Mycol. 2020, 58, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Li, Q.; Yao, Y.; Xu, C.; Qiu, Z.; Jia, W.; Li, G.; Wang, P. Epidemiology and Azole Resistance of Clinical Isolates of Aspergillus fumigatus from a Large Tertiary Hospital in Ningxia, China. Infect. Drug Resist. 2024, 17, 427–439. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, H.; Zhan, M.; Jing, R.; Wang, X.; Zhang, Z. Epidemiological characteristics of invasive Aspergillus isolates: Morphology, drug susceptibility, and mutations in azole drug targets. J. Infect. Public Health 2025, 18, 102612. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Huang, J.; Liu, Y.; Zhang, Y.; Gao, Y. Unveiling environmental transmission risks: Comparative analysis of azole resistance in Aspergillus fumigatus clinical and environmental isolates from Yunnan, China. Microbiol. Spectr. 2024, 12, e0159424. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Zhou, C.; Zhang, Y.; Pan, J.; Pan, B.; Wang, B.; Hu, B.; Guo, W. Epidemiology of Clinically Significant Aspergillus Species from a Large Tertiary Hospital in Shanghai, China, for the Period of Two Years. Infect. Drug Resist. 2023, 16, 4645–4657. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Guo, J.; Li, Y.; Xiao, C.; Hu, L.; Chen, H.; Lu, X.; Wu, W. In vitro antifungal susceptibility profile and genotypic characterization of clinical Aspergillus isolates in Eastern China on behalf of Eastern China Invasive Fungi Infection Group. Med. Mycol. 2023, 61, myad082. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Gong, J.; Duan, C.; He, J.; Zhang, Y.; Xu, J. Genetic structure and triazole resistance among Aspergillus fumigatus populations from remote and undeveloped regions in Eastern Himalaya. mSphere 2023, 8, e0007123. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, L.; Zhou, L.; Zhang, M.; Xu, Y. Epidemiology, Drug Susceptibility, and Clinical Risk Factors in Patients With Invasive Aspergillosis. Front. Public Health 2022, 10, 835092. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Chen, W.; Liang, T.; Tan, J.; Liu, W.; Sun, Y.; Wang, Q.; Xu, H.; Li, L.; Zhou, Y.; et al. A 20-Year Antifungal Susceptibility Surveillance (From 1999 to 2019) for Aspergillus spp. and Proposed Epidemiological Cutoff Values for Aspergillus fumigatus and Aspergillus flavus: A Study in a Tertiary Hospital in China. Front. Microbiol. 2021, 12, 680884. [Google Scholar] [CrossRef]
- Cao, D.; Wang, F.; Yu, S.; Dong, S.; Wu, R.; Cui, N.; Ren, J.; Xu, T.; Wang, S.; Wang, M.; et al. Prevalence of Azole-Resistant Aspergillus fumigatus is Highly Associated with Azole Fungicide Residues in the Fields. Environ. Sci. Technol. 2021, 55, 3041–3049. [Google Scholar] [CrossRef]
- Cao, D.; Wu, R.; Dong, S.; Wang, F.; Ju, C.; Yu, S.; Xu, S.; Fang, H.; Yu, Y. Five-Year Survey (2014 to 2018) of Azole Resistance in Environmental Aspergillus fumigatus Isolates from China. Antimicrob. Agents Chemother. 2020, 64, e00904-20. [Google Scholar] [CrossRef]
- Chen, Y.; Dong, F.; Zhao, J.; Fan, H.; Qin, C.; Li, R.; Verweij, P.E.; Zheng, Y.; Han, L. High Azole Resistance in Aspergillus fumigatus Isolates from Strawberry Fields, China, 2018. Emerg. Infect. Dis. 2020, 26, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Feng, C.L.; Chen, F.; He, Q.; Su, X.; Shi, Y. Triazole Resistance in Aspergillus fumigatus Clinical Isolates Obtained in Nanjing, China. Chin. Med. J. 2017, 130, 665–668. [Google Scholar] [CrossRef]
- Deng, S.; Zhang, L.; Ji, Y.; Verweij, P.E.; Tsui, K.M.; Hagen, F.; Houbraken, J.; Meis, J.F.; Abliz, P.; Wang, X.; et al. Triazole phenotypes and genotypic characterization of clinical Aspergillus fumigatus isolates in China. Emerg. Microbes Infect. 2017, 6, e109. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, Z.; Zhao, J.; Zou, Z.; Gong, Y.; Qu, F.; Bao, Z.; Qiu, G.; Song, M.; Zhang, Q.; et al. Epidemiology and Molecular Characterizations of Azole Resistance in Clinical and Environmental Aspergillus fumigatus Isolates from China. Antimicrob. Agents Chemother. 2016, 60, 5878–5884. [Google Scholar] [CrossRef]
- Kaur, M.; Singla, N.; Aggarwal, D.; Kundu, R.; Gulati, N.; Kumar, M.B.; Gombar, S.; Chander, J. Antifungal Susceptibility Profile of Clinical and Environmental Isolates of Aspergillus Species From a Tertiary Care Center in North India. Cureus 2024, 16, e54586. [Google Scholar] [CrossRef]
- Dabas, Y.; Xess, I.; Bakshi, S.; Mahapatra, M.; Seth, R. Emergence of Azole-Resistant Aspergillus fumigatus from Immunocompromised Hosts in India. Antimicrob. Agents Chemother. 2018, 62, e02264-17. [Google Scholar] [CrossRef] [PubMed]
- Chowdhary, A.; Sharma, C.; Kathuria, S.; Hagen, F.; Meis, J.F. Prevalence and mechanism of triazole resistance in Aspergillus fumigatus in a referral chest hospital in Delhi, India and an update of the situation in Asia. Front. Microbiol. 2015, 6, 428. [Google Scholar] [CrossRef]
- Chowdhary, A.; Kathuria, S.; Randhawa, H.S.; Gaur, S.N.; Klaassen, C.H.; Meis, J.F. Isolation of multiple-triazole-resistant Aspergillus fumigatus strains carrying the TR/L98H mutations in the cyp51A gene in India. J. Antimicrob. Chemother. 2012, 67, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Rozaliyani, A.; Sedono, R.; Sjam, R.; Tugiran, M.; Adawiyah, R.; Setianingrum, F.; Jusuf, A.; Sungkar, S.; Hagen, F.; Meis, J.F.; et al. Molecular typing and antifungal susceptibility study of Aspergillus spp. in intensive care unit (ICU) patients in Indonesia. J. Infect. Dev. Ctries. 2021, 15, 1014–1020. [Google Scholar] [CrossRef] [PubMed]
- Takazono, T.; Ito, Y.; Tashiro, M.; Nakano, Y.; Hirayama, T.; Hosogaya, N.; Saijo, T.; Yamamoto, K.; Imamura, Y.; Miyazaki, T.; et al. Transition of triazole-resistant Aspergillus fumigatus isolates in a Japanese tertiary hospital and subsequent genetic analysis. J. Infect. Chemother. 2021, 27, 537–539. [Google Scholar] [CrossRef] [PubMed]
- Toyotome, T.; Saito, S.; Koshizaki, Y.; Komatsu, R.; Matsuzawa, T.; Yaguchi, T. Prospective survey of Aspergillus species isolated from clinical specimens and their antifungal susceptibility: A five-year single-center study in Japan. J. Infect. Chemother. 2020, 26, 321–323. [Google Scholar] [CrossRef]
- Kikuchi, K.; Watanabe, A.; Ito, J.; Oku, Y.; Wuren, T.; Taguchi, H.; Yarita, K.; Muraosa, Y.; Yahiro, M.; Yaguchi, T.; et al. Antifungal susceptibility of Aspergillus fumigatus clinical isolates collected from various areas in Japan. J. Infect. Chemother. 2014, 20, 336–338. [Google Scholar] [CrossRef] [PubMed]
- Tashiro, M.; Izumikawa, K.; Minematsu, A.; Hirano, K.; Iwanaga, N.; Ide, S.; Mihara, T.; Hosogaya, N.; Takazono, T.; Morinaga, Y.; et al. Antifungal susceptibilities of Aspergillus fumigatus clinical isolates obtained in Nagasaki, Japan. Antimicrob. Agents Chemother. 2012, 56, 584–587. [Google Scholar] [CrossRef] [PubMed]
- Won, E.J.; Joo, M.Y.; Lee, D.; Kim, M.N.; Park, Y.J.; Kim, S.H.; Shin, M.G.; Shin, J.H. Antifungal Susceptibility Tests and the cyp51 Mutant Strains among Clinical Aspergillus fumigatus Isolates from Korean Multicenters. Mycobiology 2020, 48, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.T.; Mokhtar, N.N.B.; Hii, S.Y.F.; Amran, F. Antifungal Susceptibility and Genotypic Analysis of cyp51A Mutations in Aspergillus fumigatus Isolates in Malaysia. Infect. Drug Resist. 2024, 17, 2159–2168. [Google Scholar] [CrossRef]
- Wang, H.C.; Hsieh, M.I.; Choi, P.C.; Wu, W.L.; Wu, C.J.; Hospitals, T. Species distribution and antifungal susceptibility of clinical Aspergillus isolates: A multicentre study in Taiwan, 2016–2020. Mycoses 2023, 66, 711–722. [Google Scholar] [CrossRef] [PubMed]
- Hsu, T.H.; Huang, P.Y.; Fan, Y.C.; Sun, P.L. Azole Resistance and cyp51A Mutation of Aspergillus fumigatus in a Tertiary Referral Hospital in Taiwan. J. Fungi 2022, 8, 908. [Google Scholar] [CrossRef]
- Wu, C.J.; Wang, H.C.; Lee, J.C.; Lo, H.J.; Dai, C.T.; Chou, P.H.; Ko, W.C.; Chen, Y.C. Azole-resistant Aspergillus fumigatus isolates carrying TR(3)(4)/L98H mutations in Taiwan. Mycoses 2015, 58, 544–549. [Google Scholar] [CrossRef] [PubMed]
- Tangwattanachuleeporn, M.; Minarin, N.; Saichan, S.; Sermsri, P.; Mitkornburee, R.; Gross, U.; Chindamporn, A.; Bader, O. Prevalence of azole-resistant Aspergillus fumigatus in the environment of Thailand. Med. Mycol. 2017, 55, 429–435. [Google Scholar] [CrossRef]
- Lackner, N.; Thome, C.; Ofner, D.; Joannidis, M.; Mayerhofer, T.; Arora, R.; Samardzic, E.; Posch, W.; Breitkopf, R.; Lass-Florl, C. COVID-19 Associated Pulmonary Aspergillosis: Diagnostic Performance, Fungal Epidemiology and Antifungal Susceptibility. J. Fungi 2022, 8, 93. [Google Scholar] [CrossRef]
- Debergh, H.; Haesendonck, R.; Botteldoorn, N.; Martel, A.; Pasmans, F.; Saegerman, C.; Packeu, A. Pan-azole resistance in clinical Aspergillus fumigatus isolates carrying TR34/L98H from birds and mammals in Belgium. One Health 2024, 19, 100907. [Google Scholar] [CrossRef] [PubMed]
- Debergh, H.; Castelain, P.; Goens, K.; Lefevere, P.; Claessens, J.; De Vits, E.; Vissers, M.; Blindeman, L.; Bataille, C.; Saegerman, C.; et al. Detection of pan-azole resistant Aspergillus fumigatus in horticulture and a composting facility in Belgium. Med. Mycol. 2024, 62, myae055. [Google Scholar] [CrossRef] [PubMed]
- Debergh, H.; Becker, P.; Vercammen, F.; Lagrou, K.; Haesendonck, R.; Saegerman, C.; Packeu, A. Pulmonary Aspergillosis in Humboldt Penguins-Susceptibility Patterns and Molecular Epidemiology of Clinical and Environmental Aspergillus fumigatus Isolates from a Belgian Zoo, 2017–2022. Antibiotics 2023, 12, 584. [Google Scholar] [CrossRef]
- Resendiz-Sharpe, A.; Merckx, R.; Verweij, P.E.; Maertens, J.; Lagrou, K. Stable prevalence of triazole-resistance in Aspergillus fumigatus complex clinical isolates in a Belgian tertiary care center from 2016 to 2020. J. Infect. Chemother. 2021, 27, 1774–1778. [Google Scholar] [CrossRef] [PubMed]
- Montesinos, I.; Argudin, M.A.; Hites, M.; Ahajjam, F.; Dodemont, M.; Dagyaran, C.; Bakkali, M.; Etienne, I.; Jacobs, F.; Knoop, C.; et al. Culture-Based Methods and Molecular Tools for Azole-Resistant Aspergillus fumigatus Detection in a Belgian University Hospital. J. Clin. Microbiol. 2017, 55, 2391–2399. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, E.; Maertens, J.; De Bel, A.; Nulens, E.; Boelens, J.; Surmont, I.; Mertens, A.; Boel, A.; Lagrou, K. Nationwide Surveillance of Azole Resistance in Aspergillus Diseases. Antimicrob. Agents Chemother. 2015, 59, 4569–4576. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Hare, R.K.; Jorgensen, K.M.; Bollmann, U.E.; Bech, T.B.; Hansen, C.C.; Heick, T.M.; Jorgensen, L.N. Environmental Hot Spots and Resistance-Associated Application Practices for Azole-Resistant Aspergillus fumigatus, Denmark, 2020–2023. Emerg. Infect. Dis. 2024, 30, 1531–1541. [Google Scholar] [CrossRef]
- Risum, M.; Hare, R.K.; Gertsen, J.B.; Kristensen, L.; Rosenvinge, F.S.; Sulim, S.; Abou-Chakra, N.; Bangsborg, J.; Roder, B.L.; Marmolin, E.S.; et al. Azole resistance in Aspergillus fumigatus. The first 2-year’s Data from the Danish National Surveillance Study, 2018–2020. Mycoses 2022, 65, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Risum, M.; Hare, R.K.; Gertsen, J.B.; Kristensen, L.; Johansen, H.K.; Helweg-Larsen, J.; Abou-Chakra, N.; Pressler, T.; Skov, M.; Jensen-Fangel, S.; et al. Azole-Resistant Aspergillus fumigatus Among Danish Cystic Fibrosis Patients: Increasing Prevalence and Dominance of TR(34)/L98H. Front. Microbiol. 2020, 11, 1850. [Google Scholar] [CrossRef]
- Jorgensen, K.M.; Guinea, J.; Meletiadis, J.; Hare, R.K.; Arendrup, M.C. Revision of EUCAST breakpoints: Consequences for susceptibility of contemporary Danish mould isolates to isavuconazole and comparators. J. Antimicrob. Chemother. 2020, 75, 2573–2581. [Google Scholar] [CrossRef]
- Jensen, R.H.; Hagen, F.; Astvad, K.M.; Tyron, A.; Meis, J.F.; Arendrup, M.C. Azole-resistant Aspergillus fumigatus in Denmark: A laboratory-based study on resistance mechanisms and genotypes. Clin. Microbiol. Infect. 2016, 22, 570.e1–570.e9. [Google Scholar] [CrossRef]
- Astvad, K.M.; Jensen, R.H.; Hassan, T.M.; Mathiasen, E.G.; Thomsen, G.M.; Pedersen, U.G.; Christensen, M.; Hilberg, O.; Arendrup, M.C. First detection of TR46/Y121F/T289A and TR34/L98H alterations in Aspergillus fumigatus isolates from azole-naive patients in Denmark despite negative findings in the environment. Antimicrob. Agents Chemother. 2014, 58, 5096–5101. [Google Scholar] [CrossRef]
- Godeau, C.; Morin-Crini, N.; Crini, G.; Guillemin, J.P.; Voisin, A.S.; Dousset, S.; Rocchi, S. Field-Crop Soils in Eastern France: Coldspots of Azole-Resistant Aspergillus fumigatus. J. Fungi 2023, 9, 618. [Google Scholar] [CrossRef]
- Guegan, H.; Prat, E.; Robert-Gangneux, F.; Gangneux, J.P. Azole Resistance in Aspergillus fumigatus: A Five-Year Follow Up Experience in a Tertiary Hospital With a Special Focus on Cystic Fibrosis. Front. Cell Infect. Microbiol. 2020, 10, 613774. [Google Scholar] [CrossRef]
- Monpierre, L.; Desbois-Nogard, N.; Valsecchi, I.; Bajal, M.; Angebault, C.; Miossec, C.; Botterel, F.; Dannaoui, E. Azole Resistance in Clinical and Environmental Aspergillus Isolates from the French West Indies (Martinique). J. Fungi 2021, 7, 355. [Google Scholar] [CrossRef] [PubMed]
- Simon, L.; Demeautis, T.; Dupont, D.; Kramer, R.; Garnier, H.; Durieu, I.; Senechal, A.; Reix, P.; Couraud, S.; Devouassoux, G.; et al. Azole resistance in Aspergillus fumigatus isolates from respiratory specimens in Lyon University Hospitals, France: Prevalence and mechanisms involved. Int. J. Antimicrob. Agents 2021, 58, 106447. [Google Scholar] [CrossRef] [PubMed]
- Lavergne, R.A.; Morio, F.; Danner-Boucher, I.; Horeau-Langlard, D.; David, V.; Hagen, F.; Meis, J.F.; Le Pape, P. One year prospective survey of azole resistance in Aspergillus fumigatus at a French cystic fibrosis reference centre: Prevalence and mechanisms of resistance. J. Antimicrob. Chemother. 2019, 74, 1884–1889. [Google Scholar] [CrossRef]
- Rocchi, S.; Poncot, M.; Morin-Crini, N.; Laboissiere, A.; Valot, B.; Godeau, C.; Lechenault-Bergerot, C.; Reboux, G.; Crini, G.; Millon, L. Determination of azole fungal residues in soils and detection of Aspergillus fumigatus-resistant strains in market gardens of Eastern France. Environ. Sci. Pollut. Res. Int. 2018, 25, 32015–32023. [Google Scholar] [CrossRef] [PubMed]
- Loeffert, S.T.; Henaff, L.; Dupont, D.; Bienvenu, A.L.; Dananche, C.; Cassier, P.; Benet, T.; Wallon, M.; Gustin, M.P.; Vanhems, P. Prospective survey of azole drug resistance among environmental and clinical isolates of Aspergillus fumigatus in a French University hospital during major demolition works. J. Mycol. Med. 2018, 28, 469–472. [Google Scholar] [CrossRef] [PubMed]
- Jeanvoine, A.; Rocchi, S.; Reboux, G.; Crini, N.; Crini, G.; Millon, L. Azole-resistant Aspergillus fumigatus in sawmills of Eastern France. J. Appl. Microbiol. 2017, 123, 172–184. [Google Scholar] [CrossRef]
- Dauchy, C.; Bautin, N.; Nseir, S.; Reboux, G.; Wintjens, R.; Le Rouzic, O.; Sendid, B.; Viscogliosi, E.; Le Pape, P.; Arendrup, M.C.; et al. Emergence of Aspergillus fumigatus azole resistance in azole-naive patients with chronic obstructive pulmonary disease and their homes. Indoor Air 2018, 28, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Choukri, F.; Botterel, F.; Sitterle, E.; Bassinet, L.; Foulet, F.; Guillot, J.; Costa, J.M.; Fauchet, N.; Dannaoui, E. Prospective evaluation of azole resistance in Aspergillus fumigatus clinical isolates in France. Med. Mycol. 2015, 53, 593–596. [Google Scholar] [CrossRef] [PubMed]
- Burgel, P.R.; Baixench, M.T.; Amsellem, M.; Audureau, E.; Chapron, J.; Kanaan, R.; Honore, I.; Dupouy-Camet, J.; Dusser, D.; Klaassen, C.H.; et al. High prevalence of azole-resistant Aspergillus fumigatus in adults with cystic fibrosis exposed to itraconazole. Antimicrob. Agents Chemother. 2012, 56, 869–874. [Google Scholar] [CrossRef]
- Alanio, A.; Sitterle, E.; Liance, M.; Farrugia, C.; Foulet, F.; Botterel, F.; Hicheri, Y.; Cordonnier, C.; Costa, J.M.; Bretagne, S. Low prevalence of resistance to azoles in Aspergillus fumigatus in a French cohort of patients treated for haematological malignancies. J. Antimicrob. Chemother. 2011, 66, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Barber, A.E.; Scheufen, S.; Walther, G.; Kurzai, O.; Schmidt, V. Low rate of azole resistance in cases of avian aspergillosis in Germany. Med. Mycol. 2020, 58, 1187–1190. [Google Scholar] [CrossRef]
- Seufert, R.; Sedlacek, L.; Kahl, B.; Hogardt, M.; Hamprecht, A.; Haase, G.; Gunzer, F.; Haas, A.; Grauling-Halama, S.; MacKenzie, C.R.; et al. Prevalence and characterization of azole-resistant Aspergillus fumigatus in patients with cystic fibrosis: A prospective multicentre study in Germany. J. Antimicrob. Chemother. 2018, 73, 2047–2053. [Google Scholar] [CrossRef]
- Koehler, P.; Hamprecht, A.; Bader, O.; Bekeredjian-Ding, I.; Buchheidt, D.; Doelken, G.; Elias, J.; Haase, G.; Hahn-Ast, C.; Karthaus, M.; et al. Epidemiology of invasive aspergillosis and azole resistance in patients with acute leukaemia: The SEPIA Study. Int. J. Antimicrob. Agents 2017, 49, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Steinmann, J.; Hamprecht, A.; Vehreschild, M.J.; Cornely, O.A.; Buchheidt, D.; Spiess, B.; Koldehoff, M.; Buer, J.; Meis, J.F.; Rath, P.M. Emergence of azole-resistant invasive aspergillosis in HSCT recipients in Germany. J. Antimicrob. Chemother. 2015, 70, 1522–1526. [Google Scholar] [CrossRef]
- Bader, O.; Weig, M.; Reichard, U.; Lugert, R.; Kuhns, M.; Christner, M.; Held, J.; Peter, S.; Schumacher, U.; Buchheidt, D.; et al. cyp51A-Based mechanisms of Aspergillus fumigatus azole drug resistance present in clinical samples from Germany. Antimicrob. Agents Chemother. 2013, 57, 3513–3517. [Google Scholar] [CrossRef]
- Siopi, M.; Rivero-Menendez, O.; Gkotsis, G.; Panara, A.; Thomaidis, N.S.; Alastruey-Izquierdo, A.; Pournaras, S.; Meletiadis, J. Nationwide surveillance of azole-resistant Aspergillus fumigatus environmental isolates in Greece: Detection of pan-azole resistance associated with the TR46/Y121F/T289A cyp51A mutation. J. Antimicrob. Chemother. 2020, 75, 3181–3188. [Google Scholar] [CrossRef] [PubMed]
- Prigitano, A.; Esposto, M.C.; Grancini, A.; Biffi, A.; Innocenti, P.; Cavanna, C.; Lallitto, F.; Mollaschi, E.M.G.; Bandettini, R.; Oltolini, C.; et al. Azole resistance in Aspergillus isolates by different types of patients and correlation with environment—An Italian prospective multicentre study (ARiA study). Mycoses 2021, 64, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Prigitano, A.; Esposto, M.C.; Grancini, A.; Passera, M.; Paolucci, M.; Stanzani, M.; Sartor, A.; Candoni, A.; Pitzurra, L.; Innocenti, P.; et al. Prospective multicentre study on azole resistance in Aspergillus isolates from surveillance cultures in haematological patients in Italy. J. Glob. Antimicrob. Resist. 2020, 22, 231–237. [Google Scholar] [CrossRef]
- Prigitano, A.; Esposto, M.C.; Biffi, A.; De Lorenzis, G.; Favuzzi, V.; Koncan, R.; Lo Cascio, G.; Barao Ocampo, M.; Colombo, C.; Pizzamiglio, G.; et al. Triazole resistance in Aspergillus fumigatus isolates from patients with cystic fibrosis in Italy. J. Cyst. Fibros. 2017, 16, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Lazzarini, C.; Esposto, M.C.; Prigitano, A.; Cogliati, M.; De Lorenzis, G.; Tortorano, A.M. Azole Resistance in Aspergillus fumigatus Clinical Isolates from an Italian Culture Collection. Antimicrob. Agents Chemother. 2016, 60, 682–685. [Google Scholar] [CrossRef] [PubMed]
- Cogliati, M.; Buil, J.B.; Esposto, M.C.; Prigitano, A.; Romano, L.; Melchers, W.J.G. Evaluation of environmental factors related to Aspergillus fumigatus azole resistance in the Netherlands. Sci. Total Environ. 2024, 958, 177923. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, M.A.M.; Buil, J.B.; Tehupeiory-Kooreman, M.; Broekhuizen, M.J.; Broens, E.M.; Wagenaar, J.A.; Verweij, P.E. Azole Resistance in Veterinary Clinical Aspergillus fumigatus Isolates in the Netherlands. Mycopathologia 2024, 189, 50. [Google Scholar] [CrossRef]
- Lestrade, P.P.; van der Velden, W.; Bouwman, F.; Stoop, F.J.; Blijlevens, N.M.A.; Melchers, W.J.G.; Verweij, P.E.; Donnelly, J.P. Epidemiology of invasive aspergillosis and triazole-resistant Aspergillus fumigatus in patients with haematological malignancies: A single-centre retrospective cohort study. J. Antimicrob. Chemother. 2018, 73, 1389–1394. [Google Scholar] [CrossRef] [PubMed]
- Buil, J.B.; Hagen, F.; Chowdhary, A.; Verweij, P.E.; Meis, J.F. Itraconazole, Voriconazole, and Posaconazole CLSI MIC Distributions for Wild-Type and Azole-Resistant Aspergillus fumigatus Isolates. J. Fungi 2018, 4, 103. [Google Scholar] [CrossRef] [PubMed]
- van Paassen, J.; Russcher, A.; In’t Veld-van Wingerden, A.W.; Verweij, P.E.; Kuijper, E.J. Emerging aspergillosis by azole-resistant Aspergillus fumigatus at an intensive care unit in the Netherlands, 2010 to 2013. Eurosurveillance 2016, 21, 30300. [Google Scholar] [CrossRef] [PubMed]
- Fuhren, J.; Voskuil, W.S.; Boel, C.H.; Haas, P.J.; Hagen, F.; Meis, J.F.; Kusters, J.G. High prevalence of azole resistance in Aspergillus fumigatus isolates from high-risk patients. J. Antimicrob. Chemother. 2015, 70, 2894–2898. [Google Scholar] [CrossRef] [PubMed]
- Gorzynska, A.; Grzech, A.; Mierzwiak, P.; Ussowicz, M.; Biernat, M.; Nawrot, U. Quantitative and Qualitative Airborne Mycobiota Surveillance in High-Risk Hospital Environment. Microorganisms 2023, 11, 1031. [Google Scholar] [CrossRef]
- Nawrot, U.; Wieliczko, A.; Wlodarczyk, K.; Kurzyk, E.; Brillowska-Dabrowska, A. Low frequency of itraconazole resistance found among Aspergillus fumigatus originating from poultry farms in Southwest Poland. J. Mycol. Med. 2019, 29, 24–27. [Google Scholar] [CrossRef]
- Nawrot, U.; Kurzyk, E.; Arendrup, M.C.; Mroczynska, M.; Wlodarczyk, K.; Sulik-Tyszka, B.; Wroblewska, M.; Ussowicz, M.; Zdziarski, P.; Niewinska, K.; et al. Detection of Polish clinical Aspergillus fumigatus isolates resistant to triazoles. Med. Mycol. 2018, 56, 121–124. [Google Scholar] [CrossRef]
- Sabino, R.; Goncalves, P.; Martins Melo, A.; Simoes, D.; Oliveira, M.; Francisco, M.; Viegas, C.; Carvalho, D.; Martins, C.; Ferreira, T.; et al. Trends on Aspergillus Epidemiology-Perspectives from a National Reference Laboratory Surveillance Program. J. Fungi 2021, 7, 28. [Google Scholar] [CrossRef]
- Simoes, D.; Aranha Caetano, L.; Verissimo, C.; Viegas, C.; Sabino, R. Aspergillus collected in specific indoor settings: Their molecular identification and susceptibility pattern. Int. J. Environ. Health Res. 2021, 31, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.; Pinheiro, D.; Maia, M.; Faria, M.A.; Lameiras, C.; Pinto, E. Aspergillus species collected from environmental air samples in Portugal-molecular identification, antifungal susceptibility and sequencing of cyp51A gene on A. fumigatus sensu stricto itraconazole resistant. J. Appl. Microbiol. 2019, 126, 1140–1148. [Google Scholar] [CrossRef] [PubMed]
- Pinto, E.; Monteiro, C.; Maia, M.; Faria, M.A.; Lopes, V.; Lameiras, C.; Pinheiro, D. Aspergillus Species and Antifungals Susceptibility in Clinical Setting in the North of Portugal: Cryptic Species and Emerging Azoles Resistance in A. fumigatus. Front. Microbiol. 2018, 9, 1656. [Google Scholar] [CrossRef]
- Lucio, J.; Alcazar-Fuoli, L.; Gil, H.; Cano-Pascual, S.; Hernandez-Egido, S.; Cuetara, M.S.; Mellado, E. Distribution of Aspergillus species and prevalence of azole resistance in clinical and environmental samples from a Spanish hospital during a three-year study period. Mycoses 2024, 67, e13719. [Google Scholar] [CrossRef] [PubMed]
- Escribano, P.; Rodriguez-Sanchez, B.; Diaz-Garcia, J.; Martin-Gomez, M.T.; Ibanez-Martinez, E.; Rodriguez-Mayo, M.; Pelaez, T.; Garcia-Gomez de la Pedrosa, E.; Tejero-Garcia, R.; Marimon, J.M.; et al. Azole resistance survey on clinical Aspergillus fumigatus isolates in Spain. Clin. Microbiol. Infect. 2021, 27, 1170.e1–1170.e7. [Google Scholar] [CrossRef] [PubMed]
- Rivero-Menendez, O.; Soto-Debran, J.C.; Medina, N.; Lucio, J.; Mellado, E.; Alastruey-Izquierdo, A. Molecular Identification, Antifungal Susceptibility Testing, and Mechanisms of Azole Resistance in Aspergillus Species Received within a Surveillance Program on Antifungal Resistance in Spain. Antimicrob. Agents Chemother. 2019, 63, e00865-19. [Google Scholar] [CrossRef] [PubMed]
- Alastruey-Izquierdo, A.; Alcazar-Fuoli, L.; Rivero-Menendez, O.; Ayats, J.; Castro, C.; Garcia-Rodriguez, J.; Goterris-Bonet, L.; Ibanez-Martinez, E.; Linares-Sicilia, M.J.; Martin-Gomez, M.T.; et al. Molecular Identification and Susceptibility Testing of Molds Isolated in a Prospective Surveillance of Triazole Resistance in Spain (FILPOP2 Study). Antimicrob. Agents Chemother. 2018, 62, e00358-18. [Google Scholar] [CrossRef]
- Escribano, P.; Pelaez, T.; Munoz, P.; Bouza, E.; Guinea, J. Is azole resistance in Aspergillus fumigatus a problem in Spain? Antimicrob. Agents Chemother. 2013, 57, 2815–2820. [Google Scholar] [CrossRef]
- Schurch, S.; Gindro, K.; Schnee, S.; Dubuis, P.H.; Codina, J.M.; Wilhelm, M.; Riat, A.; Lamoth, F.; Sanglard, D. Occurrence of Aspergillus fumigatus azole resistance in soils from Switzerland. Med. Mycol. 2023, 61, myad110. [Google Scholar] [CrossRef] [PubMed]
- Ragozzino, S.; Goldenberger, D.; Wright, P.R.; Zimmerli, S.; Muhlethaler, K.; Neofytos, D.; Riat, A.; Boggian, K.; Nolte, O.; Conen, A.; et al. Distribution of Aspergillus Species and Prevalence of Azole Resistance in Respiratory Samples From Swiss Tertiary Care Hospitals. Open Forum Infect. Dis. 2022, 9, ofab638. [Google Scholar] [CrossRef] [PubMed]
- Riat, A.; Plojoux, J.; Gindro, K.; Schrenzel, J.; Sanglard, D. Azole Resistance of Environmental and Clinical Aspergillus fumigatus Isolates from Switzerland. Antimicrob. Agents Chemother. 2018, 62, e02088-17. [Google Scholar] [CrossRef]
- Ener, B.; Ergin, C.; Gulmez, D.; Agca, H.; Tikvesli, M.; Aksoy, S.A.; Otkun, M.; Sig, A.K.; Ogunc, D.; Ozhak, B.; et al. Frequency of azole resistance in clinical and environmental strains of Aspergillus fumigatus in Turkey: A multicentre study. J. Antimicrob. Chemother. 2022, 77, 1894–1898. [Google Scholar] [CrossRef]
- Ozmerdiven, G.E.; Ak, S.; Ener, B.; Agca, H.; Cilo, B.D.; Tunca, B.; Akalin, H. First determination of azole resistance in Aspergillus fumigatus strains carrying the TR34/L98H mutations in Turkey. J. Infect. Chemother. 2015, 21, 581–586. [Google Scholar] [CrossRef]
- Shelton, J.M.G.; Rhodes, J.; Uzzell, C.B.; Hemmings, S.; Brackin, A.P.; Sewell, T.R.; Alghamdi, A.; Dyer, P.S.; Fraser, M.; Borman, A.M.; et al. Citizen science reveals landscape-scale exposures to multiazole-resistant Aspergillus fumigatus bioaerosols. Sci. Adv. 2023, 9, eadh8839. [Google Scholar] [CrossRef] [PubMed]
- van der Torre, M.H.; Whitby, C.; Eades, C.P.; Moore, C.B.; Novak-Frazer, L.; Richardson, M.D.; Rautemaa-Richardson, R. Absence of Azole Antifungal Resistance in Aspergillus fumigatus Isolated from Root Vegetables Harvested from UK Arable and Horticultural Soils. J. Fungi 2020, 6, 208. [Google Scholar] [CrossRef] [PubMed]
- Abdolrasouli, A.; Petrou, M.A.; Park, H.; Rhodes, J.L.; Rawson, T.M.; Moore, L.S.P.; Donaldson, H.; Holmes, A.H.; Fisher, M.C.; Armstrong-James, D. Surveillance for Azole-Resistant Aspergillus fumigatus in a Centralized Diagnostic Mycology Service, London, United Kingdom, 1998–2017. Front. Microbiol. 2018, 9, 2234. [Google Scholar] [CrossRef] [PubMed]
- Abdolrasouli, A.; Scourfield, A.; Rhodes, J.; Shah, A.; Elborn, J.S.; Fisher, M.C.; Schelenz, S.; Armstrong-James, D. High prevalence of triazole resistance in clinical Aspergillus fumigatus isolates in a specialist cardiothoracic centre. Int. J. Antimicrob. Agents 2018, 52, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Tsitsopoulou, A.; Posso, R.; Vale, L.; Bebb, S.; Johnson, E.; White, P.L. Determination of the Prevalence of Triazole Resistance in Environmental Aspergillus fumigatus Strains Isolated in South Wales, UK. Front. Microbiol. 2018, 9, 1395. [Google Scholar] [CrossRef] [PubMed]
- Kortenbosch, H.H.; van Leuven, F.; van den Heuvel, C.; Schoustra, S.E.; Zwaan, B.J.; Snelders, E. Catching some air: A method to spatially quantify aerial triazole resistance in Aspergillus fumigatus. Appl. Environ. Microbiol. 2024, 90, e0027124. [Google Scholar] [CrossRef] [PubMed]
- Simmons, B.C.; Rhodes, J.; Rogers, T.R.; Verweij, P.E.; Abdolrasouli, A.; Schelenz, S.; Hemmings, S.J.; Talento, A.F.; Griffin, A.; Mansfield, M.; et al. Genomic Epidemiology Identifies Azole Resistance Due to TR(34)/L98H in European Aspergillus fumigatus Causing COVID-19-Associated Pulmonary Aspergillosis. J. Fungi 2023, 9, 1104. [Google Scholar] [CrossRef] [PubMed]
- Fraaije, B.A.; Atkins, S.L.; Santos, R.F.; Hanley, S.J.; West, J.S.; Lucas, J.A. Epidemiological Studies of Pan-Azole Resistant Aspergillus fumigatus Populations Sampled during Tulip Cultivation Show Clonal Expansion with Acquisition of Multi-Fungicide Resistance as Potential Driver. Microorganisms 2021, 9, 2379. [Google Scholar] [CrossRef] [PubMed]
- Resendiz-Sharpe, A.; Mercier, T.; Lestrade, P.P.A.; van der Beek, M.T.; von dem Borne, P.A.; Cornelissen, J.J.; De Kort, E.; Rijnders, B.J.A.; Schauwvlieghe, A.; Verweij, P.E.; et al. Prevalence of voriconazole-resistant invasive aspergillosis and its impact on mortality in haematology patients. J. Antimicrob. Chemother. 2019, 74, 2759–2766. [Google Scholar] [CrossRef]
- Bandegani, A.; Abastabar, M.; Sharifisooraki, J.; Abtahian, Z.; Vaseghi, N.; Khodavaisy, S.; Fakharian, A.; Khalilzadeh, S.; Modaresi, M.R.; Haghani, I.; et al. High Prevalence of Azole-Resistant Aspergillus fumigatus Among Iranian Cystic Fibrosis Patients: Should We Be Concerned? Mycoses 2024, 67, e13791. [Google Scholar] [CrossRef]
- Ghazanfari, M.; Abastabar, M.; Haghani, I.; Moazeni, M.; Hedayati, S.; Yaalimadad, S.; Nikoueian Shirvan, B.; Bongomin, F.; Hedayati, M.T. Azole-Containing Agar Plates and Antifungal Susceptibility Testing for the Detection of Azole-Resistant Aspergillus Species in Hospital Environmental Samples. Microb. Drug Resist. 2023, 29, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Khojasteh, S.; Abastabar, M.; Haghani, I.; Valadan, R.; Ghazanfari, S.; Abbasi, K.; Ahangarkani, F.; Zarrinfar, H.; Khodavaisy, S.; Badali, H. Five-year surveillance study of clinical and environmental Triazole-Resistant Aspergillus fumigatus isolates in Iran. Mycoses 2023, 66, 98–105. [Google Scholar] [CrossRef]
- Badiee, P.; Boekhout, T.; Zarei Mahmoudabadi, A.; Mohammadi, R.; Ayatollahi Mousavi, S.A.; Najafzadeh, M.J.; Soltani, J.; Hashemi, J.; Diba, K.; Ghadimi-Moghadam, A.; et al. Multicenter Study of Susceptibility of Aspergillus Species Isolated from Iranian University Hospitals to Seven Antifungal Agents. Microbiol. Spectr. 2022, 10, e0253921. [Google Scholar] [CrossRef]
- Mohammadi, F.; Hashemi, S.J.; Seyedmousavi, S.M.; Akbarzade, D. Isolation and Characterization of Clinical Triazole Resistance Aspergillus fumigatus in Iran. Iran. J. Public Health 2018, 47, 994–1000. [Google Scholar] [PubMed]
- Mohammadi, F.; Dehghan, P.; Nekoeian, S.; Hashemi, S.J. Determination of antifungal susceptibility patterns among the environmental isolates of Aspergillus fumigatus in Iran. Adv. Biomed. Res. 2016, 5, 136. [Google Scholar] [CrossRef]
- Nabili, M.; Shokohi, T.; Moazeni, M.; Khodavaisy, S.; Aliyali, M.; Badiee, P.; Zarrinfar, H.; Hagen, F.; Badali, H. High prevalence of clinical and environmental triazole-resistant Aspergillus fumigatus in Iran: Is it a challenging issue? J. Med. Microbiol. 2016, 65, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Halliday, C.L.; Tay, E.; Green, W.; Law, D.; Lopez, R.; Faris, S.; Meehan, L.; Harvey, E.; Birch, M.; Chen, S.C.A. In vitro activity of olorofim against 507 filamentous fungi including antifungal drug-resistant strains at a tertiary laboratory in Australia: 2020–2023. J. Antimicrob. Chemother. 2024, 79, 2611–2621. [Google Scholar] [CrossRef] [PubMed]
- Talbot, J.J.; Subedi, S.; Halliday, C.L.; Hibbs, D.E.; Lai, F.; Lopez-Ruiz, F.J.; Harper, L.; Park, R.F.; Cuddy, W.S.; Biswas, C.; et al. Surveillance for azole resistance in clinical and environmental isolates of Aspergillus fumigatus in Australia and cyp51A homology modelling of azole-resistant isolates. J. Antimicrob. Chemother. 2018, 73, 2347–2351. [Google Scholar] [CrossRef]
- McKinney, W.P.; Vesty, A.; Sood, J.; Bhally, H.; Morris, A.J. The emergence of azole resistance in Aspergillus fumigatus complex in New Zealand. N. Z. Med. J. 2021, 134, 41–51. [Google Scholar] [PubMed]
- Morris, A.J.; McKinney, W.P.; Rogers, K.; Freeman, J.T.; Roberts, S.A. Antifungal susceptibility of clinical mould isolates in New Zealand, 2001–2019. Pathology 2021, 53, 639–644. [Google Scholar] [CrossRef]
- Tio, S.Y.; Chen, S.C.; Hamilton, K.; Heath, C.H.; Pradhan, A.; Morris, A.J.; Korman, T.M.; Morrissey, O.; Halliday, C.L.; Kidd, S.; et al. Invasive aspergillosis in adult patients in Australia and New Zealand: 2017–2020. Lancet Reg. Health–West. Pac. 2023, 40, 100888. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Carvalhaes, C.G.; Deshpande, L.M.; Rhomberg, P.R.; Castanheira, M. In Vitro Activity of Isavuconazole and Other Mould-Active Azoles against Aspergillus fumigatus with and without CYP51 Alterations. J. Fungi 2023, 9, 608. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Carvalhaes, C.G.; Rhomberg, P.; Messer, S.A.; Castanheira, M. Antifungal susceptibilities of opportunistic filamentous fungal pathogens from the Asia and Western Pacific Region: Data from the SENTRY Antifungal Surveillance Program (2011–2019). J. Antibiot. 2021, 74, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.; Deshpande, L.M.; Davis, A.P.; Rhomberg, P.R.; Pfaller, M.A. Monitoring Antifungal Resistance in a Global Collection of Invasive Yeasts and Molds: Application of CLSI Epidemiological Cutoff Values and Whole-Genome Sequencing Analysis for Detection of Azole Resistance in Candida albicans. Antimicrob. Agents Chemother. 2017, 61, e00906-17. [Google Scholar] [CrossRef]
- Castanheira, M.; Messer, S.A.; Rhomberg, P.R.; Pfaller, M.A. Antifungal susceptibility patterns of a global collection of fungal isolates: Results of the SENTRY Antifungal Surveillance Program (2013). Diagn. Microbiol. Infect. Dis. 2016, 85, 200–204. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Messer, S.A.; Jones, R.N.; Castanheira, M. Antifungal susceptibilities of Candida, Cryptococcus neoformans and Aspergillus fumigatus from the Asia and Western Pacific region: Data from the SENTRY antifungal surveillance program (2010–2012). J. Antibiot. 2015, 68, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Y.; Gricourt, M.; Arne, P.; Thierry, S.; Seguin, D.; Chermette, R.; Huang, W.Y.; Dannaoui, E.; Botterel, F.; Guillot, J. Mutations in the Cyp51A gene and susceptibility to itraconazole in Aspergillus fumigatus isolated from avian farms in France and China. Poult. Sci. 2014, 93, 12–15. [Google Scholar] [CrossRef]
- Lockhart, S.R.; Frade, J.P.; Etienne, K.A.; Pfaller, M.A.; Diekema, D.J.; Balajee, S.A. Azole resistance in Aspergillus fumigatus isolates from the ARTEMIS global surveillance study is primarily due to the TR/L98H mutation in the cyp51A gene. Antimicrob. Agents Chemother. 2011, 55, 4465–4468. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.; Boyken, L.; Hollis, R.; Kroeger, J.; Messer, S.; Tendolkar, S.; Diekema, D. Use of epidemiological cutoff values to examine 9-year trends in susceptibility of Aspergillus species to the triazoles. J. Clin. Microbiol. 2011, 49, 586–590. [Google Scholar] [CrossRef] [PubMed]
- Espinel-Ingroff, A.; Diekema, D.J.; Fothergill, A.; Johnson, E.; Pelaez, T.; Pfaller, M.A.; Rinaldi, M.G.; Canton, E.; Turnidge, J. Wild-type MIC distributions and epidemiological cutoff values for the triazoles and six Aspergillus spp. for the CLSI broth microdilution method (M38-A2 document). J. Clin. Microbiol. 2010, 48, 3251–3257. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J.; Ghannoum, M.A.; Rex, J.H.; Alexander, B.D.; Andes, D.; Brown, S.D.; Chaturvedi, V.; Espinel-Ingroff, A.; Fowler, C.L.; et al. Wild-type MIC distribution and epidemiological cutoff values for Aspergillus fumigatus and three triazoles as determined by the Clinical and Laboratory Standards Institute broth microdilution methods. J. Clin. Microbiol. 2009, 47, 3142–3146. [Google Scholar] [CrossRef]
- Arastehfar, A.; Carvalho, A.; Houbraken, J.; Lombardi, L.; Garcia-Rubio, R.; Jenks, J.D.; Rivero-Menendez, O.; Aljohani, R.; Jacobsen, I.D.; Berman, J.; et al. Aspergillus fumigatus and aspergillosis: From basics to clinics. Stud. Mycol. 2021, 100, 100115. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, D.; Watanabe, A.; Kamei, K.; Goldman, G.H. Epidemiological and Genomic Landscape of Azole Resistance Mechanisms in Aspergillus Fungi. Front. Microbiol. 2016, 7, 1382. [Google Scholar] [CrossRef] [PubMed]
- Berger, S.; El Chazli, Y.; Babu, A.F.; Coste, A.T. Azole Resistance in Aspergillus fumigatus: A Consequence of Antifungal Use in Agriculture? Front. Microbiol. 2017, 8, 1024. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Snelders, E.; Zwaan, B.J.; Schoustra, S.E.; Meis, J.F.; van Dijk, K.; Hagen, F.; van der Beek, M.T.; Kampinga, G.A.; Zoll, J.; et al. A Novel Environmental Azole Resistance Mutation in Aspergillus fumigatus and a Possible Role of Sexual Reproduction in Its Emergence. mBio 2017, 8, e00791-17. [Google Scholar] [CrossRef] [PubMed]
- O’Gorman, C.M.; Fuller, H.; Dyer, P.S. Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature 2009, 457, 471–474. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, D.; Arai, T.; Takahashi, H.; Kusuya, Y.; Watanabe, A.; Kamei, K. Non-cyp51A Azole-Resistant Aspergillus fumigatus Isolates with Mutation in HMG-CoA Reductase. Emerg. Infect. Dis. 2018, 24, 1889–1897. [Google Scholar] [CrossRef]
- Bain, J.M.; Tavanti, A.; Davidson, A.D.; Jacobsen, M.D.; Shaw, D.; Gow, N.A.; Odds, F.C. Multilocus sequence typing of the pathogenic fungus Aspergillus fumigatus. J. Clin. Microbiol. 2007, 45, 1469–1477. [Google Scholar] [CrossRef]
- Klaassen, C.H. MLST versus microsatellites for typing Aspergillus fumigatus isolates. Med. Mycol. 2009, 47 (Suppl. S1), S27–S33. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rubio, R.; Escribano, P.; Gomez, A.; Guinea, J.; Mellado, E. Comparison of Two Highly Discriminatory Typing Methods to Analyze Aspergillus fumigatus Azole Resistance. Front. Microbiol. 2018, 9, 1626. [Google Scholar] [CrossRef]
- Gomez Londono, L.F.; Brewer, M.T. Detection of azole-resistant Aspergillus fumigatus in the environment from air, plant debris, compost, and soil. PLoS ONE 2023, 18, e0282499. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.S.; Rodriguez-Manzano, J.; Moser, N.; Moniri, A.; Malpartida-Cardenas, K.; Miscourides, N.; Sewell, T.; Kochina, T.; Brackin, A.; Rhodes, J.; et al. Rapid Detection of Azole-Resistant Aspergillus fumigatus in Clinical and Environmental Isolates by Use of a Lab-on-a-Chip Diagnostic System. J. Clin. Microbiol. 2020, 58, e00843-20. [Google Scholar] [CrossRef]
- AsperGenius®: A multiplex Real Time PCR Assay for the Detection of Aspergillus fumigatus and Identification of Azole Resistance Markers; PathoNostics: Maastricht, The Netherlands, 2018.
- Rocchi, S.; Sewell, T.R.; Valot, B.; Godeau, C.; Laboissiere, A.; Millon, L.; Fisher, M.C. Molecular Epidemiology of Azole-Resistant Aspergillus fumigatus in France Shows Patient and Healthcare Links to Environmentally Occurring Genotypes. Front. Cell Infect. Microbiol. 2021, 11, 729476. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Jimenez, I.; Lucio, J.; Menendez-Fraga, M.D.; Mellado, E.; Pelaez, T. Hospital Environment as a Source of Azole-Resistant Aspergillus fumigatus Strains with TR34/L98H and G448S Cyp51A Mutations. J. Fungi 2021, 7, 22. [Google Scholar] [CrossRef]
- Chowdhary, A.; Meis, J.F. Emergence of azole resistant Aspergillus fumigatus and One Health: Time to implement environmental stewardship. Environ. Microbiol. 2018, 20, 1299–1301. [Google Scholar] [CrossRef]
- Langfeldt, A.; Gold, J.A.W.; Chiller, T. Emerging Fungal Infections: From the Fields to the Clinic, Resistant Aspergillus fumigatus and Dermatophyte Species: A One Health Perspective on an Urgent Public Health Problem. Curr. Clin. Microbiol. Rep. 2022, 9, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Melo, A.M.; Stevens, D.A.; Tell, L.A.; Verissimo, C.; Sabino, R.; Xavier, M.O. Aspergillosis, Avian Species and the One Health Perspective: The Possible Importance of Birds in Azole Resistance. Microorganisms 2020, 8, 2037. [Google Scholar] [CrossRef]
- Raposo Puglia, D.; Raposo Puglia, J.A.; Garcia-Cabrera, E.; Morales, F.; Camacho-Vega, J.C.; Vilches-Arenas, A. Risk Factors and Environmental Preventive Actions for Aspergillosis in Patients with Hematological Malignancies. Clin. Pract. 2024, 14, 280–292. [Google Scholar] [CrossRef]
- Pelaez, T.; Munoz, P.; Guinea, J.; Valerio, M.; Giannella, M.; Klaassen, C.H.; Bouza, E. Outbreak of invasive aspergillosis after major heart surgery caused by spores in the air of the intensive care unit. Clin. Infect. Dis. 2012, 54, e24–e31. [Google Scholar] [CrossRef]
- Simmons, R.B.; Crow, S.A. Fungal colonization of air filters for use in heating, ventilating, and air conditioning (HVAC) systems. J. Ind. Microbiol. 1995, 14, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Levetin, E.; Shaughnessy, R.; Rogers, C.A.; Scheir, R. Effectiveness of germicidal UV radiation for reducing fungal contamination within air-handling units. Appl. Environ. Microbiol. 2001, 67, 3712–3715. [Google Scholar] [CrossRef] [PubMed]
- Kanamori, H.; Rutala, W.A.; Sickbert-Bennett, E.E.; Weber, D.J. Review of fungal outbreaks and infection prevention in healthcare settings during construction and renovation. Clin. Infect. Dis. 2015, 61, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Lesnik, B.; Crumbling, D. Guidelines for Preparing Sampling and Analysis Plans (SAPS) Using Systematic Planning and Performance-Based Measurement System (PBMS). Available online: https://www.epa.gov/hw-sw846/guidelines-preparing-sampling-and-analysis-plans-saps-using-systematic-planning-and (accessed on 12 December 2024).
- Sehulster, L.; Chinn, R.Y.W. Guidelines for Environmental Infection Control in Health-Care Facilities; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention: Atlanta, GA, USA, 2003. [Google Scholar]
- Gold, J.A.W.; Jackson, B.R.; Glowicz, J.; Mead, K.R.; Beer, K.D. Surveillance practices and air-sampling strategies to address healthcare-associated invasive mold infections in Society for Healthcare Epidemiology of America (SHEA) Research Network hospitals-United States, 2020. Infect. Control. Hosp. Epidemiol. 2022, 43, 1708–1711. [Google Scholar] [CrossRef]
- Weber, D.J.; Peppercorn, A.; Miller, M.B.; Sickbert-Benett, E.; Rutala, W.A. Preventing healthcare-associated Aspergillus infections: Review of recent CDC/HICPAC recommendations. Med. Mycol. 2009, 47 (Suppl. S1), S199–S209. [Google Scholar] [CrossRef] [PubMed]
- Marekovic, I. What’s New in Prevention of Invasive Fungal Diseases during Hospital Construction and Renovation Work: An Overview. J. Fungi 2023, 9, 151. [Google Scholar] [CrossRef]
- Ducel, G.; Fabry, J.; Nicolle, L. Prevention of Hospital-Acquired Infections: A Practical Guide; WHO Department of Communicable Disease Surveillance and Response: Geneva, Switzerland, 2002. [Google Scholar]
- Anees-Hill, S.; Douglas, P.; Pashley, C.H.; Hansell, A.; Marczylo, E.L. A systematic review of outdoor airborne fungal spore seasonality across Europe and the implications for health. Sci. Total Environ. 2022, 818, 151716. [Google Scholar] [CrossRef] [PubMed]
- Priyamvada, H.; Singh, R.K.; Akila, M.; Ravikrishna, R.; Verma, R.S.; Gunthe, S.S. Seasonal variation of the dominant allergenic fungal aerosols—One year study from southern Indian region. Sci. Rep. 2017, 7, 11171. [Google Scholar] [CrossRef]
- Hales, B.; Terblanche, M.; Fowler, R.; Sibbald, W. Development of medical checklists for improved quality of patient care. Int. J. Qual. Health Care 2008, 20, 22–30. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO STEPS Surveillance: Planning and Set Up; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Arendrup, M.C.; Verweij, P.E.; Mouton, J.W.; Lagrou, K.; Meletiadis, J. Multicentre validation of 4-well azole agar plates as a screening method for detection of clinically relevant azole-resistant Aspergillus fumigatus. J. Antimicrob. Chemother. 2017, 72, 3325–3333. [Google Scholar] [CrossRef]
- Willinger, B. Culture-Based Techniques. In Human Fungal Pathogen Identification: Methods and Protocols; Lion, T., Ed.; Springer: New York, NY, USA, 2017; pp. 195–207. [Google Scholar] [CrossRef]
- Huygens, S.; Dunbar, A.; Buil, J.B.; Klaassen, C.H.W.; Verweij, P.E.; van Dijk, K.; de Jonge, N.; Janssen, J.; van der Velden, W.; Biemond, B.J.; et al. Clinical Impact of Polymerase Chain Reaction-Based Aspergillus and Azole Resistance Detection in Invasive Aspergillosis: A Prospective Multicenter Study. Clin. Infect. Dis. 2023, 77, 38–45. [Google Scholar] [CrossRef]
- Lieberman, J.A.; Bourassa, L.A. Maximizing Yield and Speed of Fungal Pathogen Identification with Molecular Testing Performed Directly on Patient Specimens. Curr. Fungal Infect. Rep. 2023, 17, 214–225. [Google Scholar] [CrossRef]
- Anjum, M.F.; Zankari, E.; Hasman, H. Molecular Methods for Detection of Antimicrobial Resistance. Microbiol. Spectr. 2017, 5. [Google Scholar] [CrossRef] [PubMed]
- Guinea, J.; Meletiadis, J.; Arikan-Akdagli, S.; Muehlethaler, K.; Kahlmeter, G.; Arendrup, M.C. EUCAST E.Def 9.4 March 2022: Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Conidia Forming Moulds; EUCAST: Vaxjo, Sweden, 2022. [Google Scholar]
- Alexander, B.D.; Procop, G.W.; Dufresne, P.; Espinel-Ingroff, A.; Fuller, J.; Ghannoum, M.A.; Hanson, K.E.; Holliday, D.; Holliday, N.M.; Ostrosky-Zeichner, L.; et al. CLSI M38Ed3E: Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi, 3rd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- European Committee on Antimicrobial Susceptibility Testing. Overview of Antifungal ECOFFs and Clinical Breakpoints for Yeasts, Moulds and Dermatophytes Using the EUCAST E.Def 7.4, E.Def 9.4 and E.Def 11.0 Procedures; EUCAST: Vaxjo, Sweden, 2024. [Google Scholar]
- Clinical and Laboratory Standards Institute. Epidemiological Cutoff Values for Antifungal Susceptibility Testing, 4th ed.; CLSI Supplement M57S; Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2022. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antifungal Susceptibility Testing of Filamentous Fungi, 3rd ed.; Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2022. [Google Scholar]
- Turnidge, J.; Paterson, D.L. Setting and revising antibacterial susceptibility breakpoints. Clin. Microbiol. Rev. 2007, 20, 391–408. [Google Scholar] [CrossRef] [PubMed]
- Espinel-Ingroff, A.; Turnidge, J. The role of epidemiological cutoff values (ECVs/ECOFFs) in antifungal susceptibility testing and interpretation for uncommon yeasts and moulds. Rev. Iberoam. Micol. 2016, 33, 63–75. [Google Scholar] [CrossRef]
- Winkler, M.L.; Rhomberg, P.R.; Fedler, K.A.; Huband, M.D.; Karr, M.; Kimbrough, J.H.; Castanheira, M. Use of voriconazole to predict susceptibility and resistance to isavuconazole for Aspergillus fumigatus using CLSI methods and interpretive criteria. J. Clin. Microbiol. 2024, 20, e0120724. [Google Scholar] [CrossRef] [PubMed]
- Meletiadis, J.; Guinea, J.; Arikan-Akdagli, S.; Friberg, N.; Kahlmeter, G.; Arendrup, M.C. EUCAST E.Def 10.2 June 2022: Screening Method for the Detection of Azole and Echinocandin Resistance in Aspergillus spp; EUCAST: Vaxjo, Sweden, 2022. [Google Scholar]
- Centers for Disease Control Prevention. Laboratory Azole-Resistant Aspergillus fumigatus Screening. Available online: https://www.cdc.gov/aspergillosis/php/azole-resistant-aspergillus/index.html (accessed on 31 December 2024).
- Paranos, P.; Espinel-Ingroff, A.; Meletiadis, J. Commercial Methods for Antifungal Susceptibility Testing of Saprophytic Molds: Can They Be Used to Detect Resistance? J. Fungi 2024, 10, 214. [Google Scholar] [CrossRef]
- Naicker, S.; Mohanlall, V.; Ngubane, S.; Mellem, J.; McHunu, N.P. Phenotypic Array for Identification and Screening of Antifungals against Aspergillus Isolates from Respiratory Infections in KwaZulu Natal, South Africa. J. Fungi 2023, 9, 616. [Google Scholar] [CrossRef]
- Zhang, J.; Debets, A.J.M.; Verweij, P.E.; Schoustra, S.E. Selective Flamingo Medium for the Isolation of Aspergillus fumigatus. Microorganisms 2021, 9, 1155. [Google Scholar] [CrossRef] [PubMed]
- Chong, G.M.; van der Beek, M.T.; von dem Borne, P.A.; Boelens, J.; Steel, E.; Kampinga, G.A.; Span, L.F.; Lagrou, K.; Maertens, J.A.; Dingemans, G.J.; et al. PCR-based detection of Aspergillus fumigatus Cyp51A mutations on bronchoalveolar lavage: A multicentre validation of the AsperGenius assay(R) in 201 patients with haematological disease suspected for invasive aspergillosis. J. Antimicrob. Chemother. 2016, 71, 3528–3535. [Google Scholar] [CrossRef]
- Lofgren, L.A.; Ross, B.S.; Cramer, R.A.; Stajich, J.E. The pan-genome of Aspergillus fumigatus provides a high-resolution view of its population structure revealing high levels of lineage-specific diversity driven by recombination. PLoS Biol. 2022, 20, e3001890. [Google Scholar] [CrossRef]
- Li, Z.; Wang, M.; Xu, T.; Zhan, Y.; Chen, F.; Lin, Y.; Li, S.; Cheng, J.; Ye, F. Development and clinical implications of a novel CRISPR-based diagnostic test for pulmonary Aspergillus fumigatus infection. J. Microbiol. Immunol. Infect. 2022, 55, 749–756. [Google Scholar] [CrossRef]
- Yu, L.S.; Rodriguez-Manzano, J.; Malpartida-Cardenas, K.; Sewell, T.; Bader, O.; Armstrong-James, D.; Fisher, M.C.; Georgiou, P. Rapid and Sensitive Detection of Azole-Resistant Aspergillus fumigatus by Tandem Repeat Loop-Mediated Isothermal Amplification. J. Mol. Diagn. 2019, 21, 286–295. [Google Scholar] [CrossRef]
- Trabasso, P.; Matsuzawa, T.; Arai, T.; Hagiwara, D.; Mikami, Y.; Moretti, M.L.; Watanabe, A. Development and validation of LAMP primer sets for rapid identification of Aspergillus fumigatus carrying the cyp51A TR(46) azole resistance gene. Sci. Rep. 2021, 11, 17087. [Google Scholar] [CrossRef] [PubMed]
- Bani, A.; Whitby, C.; Colbeck, I.; Dumbrell, A.J.; Ferguson, R.M.W. Rapid In-Field Detection of Airborne Pathogens Using Loop-Mediated Isothermal Amplification (LAMP). Microorganisms 2024, 12, 2578. [Google Scholar] [CrossRef] [PubMed]
- Zvezdanova, M.E.; Arroyo, M.J.; Mendez, G.; Candela, A.; Mancera, L.; Rodriguez, J.G.; Serra, J.L.; Jimenez, R.; Lozano, I.; Castro, C.; et al. Detection of azole resistance in Aspergillus fumigatus complex isolates using MALDI-TOF mass spectrometry. Clin. Microbiol. Infect. 2022, 28, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, G.; Kerridge, I. Hospital Infection Prevention and Control (IPC) and Antimicrobial Stewardship Programmes. In Ethics and Drug Resistance: Collective Responsibility for Global Public Health; Springer International Publishing: Cham, Switzerland, 2019; pp. 89–108. [Google Scholar] [CrossRef]
- Jeanvoine, A.; Rocchi, S.; Bellanger, A.P.; Reboux, G.; Millon, L. Azole-resistant Aspergillus fumigatus: A global phenomenon originating in the environment? Med. Mal. Infect. 2019, 49, 577–587. [Google Scholar] [CrossRef]
- World Health Organization. Surveillance of Health Care-Associated Infections at National and Facility Levels: Practical Handbook; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Garcia, R.; Barnes, S.; Boukidjian, R.; Goss, L.K.; Spencer, M.; Septimus, E.J.; Wright, M.O.; Munro, S.; Reese, S.M.; Fakih, M.G.; et al. Recommendations for change in infection prevention programs and practice. Am. J. Infect. Control 2022, 50, 1281–1295. [Google Scholar] [CrossRef]
- ISO 9001:2015(en); Quality Management Systems—Requirements. Available online: https://www.iso.org/obp/ui/#iso:std:iso:9001:ed-5:v1:en (accessed on 22 December 2024).
- Rocchi, S.; Godeau, C.; Scherer, E.; Reboux, G.; Millon, L. One year later: The effect of changing azole-treated bulbs for organic tulips bulbs in hospital environment on the azole-resistant Aspergillus fumigatus rate. Med. Mycol. 2021, 59, 741–743. [Google Scholar] [CrossRef] [PubMed]
- Government of Japan. National Action Plan on Antimicrobial Resistance (AMR) 2023–2027; The Government of Japan: Tokyo, Japan, 2023. [Google Scholar]
- Dladla, M.; Gyzenhout, M.; Marias, G.; Ghosh, S. Azole resistance in Aspergillus fumigatus-comprehensive review. Arch. Microbiol. 2024, 206, 305. [Google Scholar] [CrossRef] [PubMed]
Key Message | Implication for Practice | |
---|---|---|
1 | Azole-resistant A. fumigatus is a growing threat globally, especially for immunocompromised patients. | Hospitals should prioritize proactive surveillance, focusing on high-risk wards to prevent major outbreaks. |
2 | Environmental factors (agricultural fungicides, imported plant bulbs) contribute to resistant strain dissemination. | Collaboration with agricultural and public health authorities is needed to mitigate external sources of resistant spores. |
3 | Both culture-based and molecular diagnostics are crucial, but culture remains the gold standard. | While molecular methods speed up detection, they may not capture unknown mechanisms, so culture-based surveillance is indispensable. |
4 | Rapid identification of resistant strains is crucial for timely interventions and better patient outcomes. | Integrating surveillance results into clinical decisions enables timely drug regimen adjustments and reduces treatment failures. |
5 | Periodic reevaluation (e.g., using PDCA) ensures environmental surveillance stays cost-effective, sustainable, and responsive to new threats. | Surveillance programs must adapt sampling frequency, test methods, and interventions as local conditions change. |
6 | International and One Health–based data-sharing networks enhance early detection of emerging resistance and foster coordinated responses. | Standardizing protocols across centers allows rapid alerts and coordinated actions against newly identified resistance mechanisms or strains. |
Strategy/Method | Equipment and Approach | Advantages | Limitations and Cost |
---|---|---|---|
Air sampling (volumetric) |
|
|
|
Air sampling (settle plates) |
|
|
|
Surface sampling (swab) |
|
|
|
Surface sampling (contact plates) |
|
|
|
Seasonal/construction factors (adaptive strategy) |
|
|
|
Step/Item | Key Actions/Considerations | Timing/Frequency | Notes |
---|---|---|---|
1. Define Objectives and Scope |
| Initial Phase/Start-up Phase |
|
2. Assemble Surveillance Team |
| Initial Phase/Start-up Phase |
|
3. Select Sampling Methods |
| After scope defined |
|
4. Identify Sites and Frequency |
| Before first sampling |
|
5. Prepare Resources and Equipment |
| Just prior to sampling (e.g., the day before) |
|
6. Conduct Sampling |
| As per set frequency (e.g., weekly) |
|
7. Transport and Process Samples |
| Same day as sampling |
|
8. Analyze Results and Compare with Thresholds |
| Post-incubation (72 h or as needed), plus additional time for azole susceptibility screening |
|
9. Interpret and Report Findings |
| Within 1 week after lab results were finalized |
|
10. Trigger Interventions if Needed |
| Immediately upon detection |
|
11. Feedback and Continuous Improvement |
| Monthly or quarterly review |
|
Clinical Breakpoints (μg/mL) | Epidemiological Cut-Off Values (μg/mL) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
EUCAST | CLSI | EUCAST | CLSI | |||||||
Antifungals | S | ATU | R | S | I | R | WT | Non-WT | WT | Non-WT |
Isavuconazole | ≤1 | 2 | ≥4 | ≤1 | 2 | ≥4 | ≤2 | ≥4 | ≤1 | ≥2 |
Itraconazole | ≤1 | – | ≥2 | – | – | – | ≤1 | ≥2 | ≤1 | ≥2 |
Posaconazole | ≤0.125 | 0.25 | ≥0.5 | – | – | – | ≤0.25 | ≥0.5 | ≤0.25 | ≥0.5 |
Voriconazole | ≤1 | – | ≥2 | ≤0.5 | 1 | ≥2 | ≤1 | ≥2 | ≤1 | ≥2 |
PDCA Step | Key Activities and Considerations | Typical Timing/Frequency | Example Output/Next Step |
---|---|---|---|
PLAN |
|
|
|
DO |
|
|
|
CHECK |
|
|
|
ACT |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tashiro, M.; Nakano, Y.; Shirahige, T.; Kakiuchi, S.; Fujita, A.; Tanaka, T.; Takazono, T.; Izumikawa, K. Comprehensive Review of Environmental Surveillance for Azole-Resistant Aspergillus fumigatus: A Practical Roadmap for Hospital Clinicians and Infection Control Teams. J. Fungi 2025, 11, 96. https://doi.org/10.3390/jof11020096
Tashiro M, Nakano Y, Shirahige T, Kakiuchi S, Fujita A, Tanaka T, Takazono T, Izumikawa K. Comprehensive Review of Environmental Surveillance for Azole-Resistant Aspergillus fumigatus: A Practical Roadmap for Hospital Clinicians and Infection Control Teams. Journal of Fungi. 2025; 11(2):96. https://doi.org/10.3390/jof11020096
Chicago/Turabian StyleTashiro, Masato, Yuichiro Nakano, Tomoyuki Shirahige, Satoshi Kakiuchi, Ayumi Fujita, Takeshi Tanaka, Takahiro Takazono, and Koichi Izumikawa. 2025. "Comprehensive Review of Environmental Surveillance for Azole-Resistant Aspergillus fumigatus: A Practical Roadmap for Hospital Clinicians and Infection Control Teams" Journal of Fungi 11, no. 2: 96. https://doi.org/10.3390/jof11020096
APA StyleTashiro, M., Nakano, Y., Shirahige, T., Kakiuchi, S., Fujita, A., Tanaka, T., Takazono, T., & Izumikawa, K. (2025). Comprehensive Review of Environmental Surveillance for Azole-Resistant Aspergillus fumigatus: A Practical Roadmap for Hospital Clinicians and Infection Control Teams. Journal of Fungi, 11(2), 96. https://doi.org/10.3390/jof11020096