A Six-Year Airborne Fungal Spore Calendar for a City in the Sonoran Desert, Mexico: Implications for Human Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Sampling Airborne Fungal Spores
2.3. Fungal Spore Calendar Construction
2.4. Climatic Variables
2.5. Statistical Analysis
3. Results
3.1. Airborne Fungal Spores’ Richness of Species
3.2. Fungal Spore Calendar
- Diatrypaceae
- Smut
- Cladosporium sp.
- Ascospora
- Alternaria sp.
- Bipolaris sp.
- Basidiospores
3.3. Climate and Spores’ Concentrations in Air
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ortega Rosas, C.I.; Calderón-Ezquerro, M.D.C.; Gutiérrez-Ruacho, O.G. Fungal spores and pollen are correlated with meteorological variables: Effects in human health at Hermosillo, Sonora, Mexico. Int. J. Environ. Health Res. 2020, 30, 677–695. [Google Scholar] [CrossRef] [PubMed]
- Sofiev, M.; Bergmann, K.-C. Allergenic Pollen: A Review of the Production, Release, Distribution and Health Impacts; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Ortega-Rosas, C.; Meza-Figueroa, D.; Vidal-Solano, J.; González-Grijalva, B.; Schiavo, B. Association of airborne particulate matter with pollen, fungal spores, and allergic symptoms in an arid urbanized area. Environ. Geochem. Health 2021, 43, 1761–1782. [Google Scholar] [CrossRef] [PubMed]
- Gioulekas, D.; Damialis, A.; Papakosta, D.; Spieksma, F.; Giouleka, P.; Patakas, D. Allergenic fungi spore records (15 years) and sensitization in patients with respiratory allergy in Thessaloniki-Greece. J. Investig. Allergol. Clin. Immunol. 2004, 14, 225–231. [Google Scholar] [PubMed]
- Fukutomi, Y.; Taniguchi, M. Sensitization to fungal allergens: Resolved and unresolved issues. Allergol. Int. 2015, 64, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Sztandera-Tymoczek, M.; Szuster-Ciesielska, A. Fungal Aeroallergens—The Impact of Climate Change. J. Fungi 2023, 9, 544. [Google Scholar] [CrossRef] [PubMed]
- Ščevková, J.; Kováč, J. First fungal spore calendar for the atmosphere of Bratislava, Slovakia. Aerobiologia 2019, 35, 343–356. [Google Scholar] [CrossRef]
- Fernández-Soto, R.; Navarrete-Rodríguez, E.; Del-Rio-Navarro, B.E.; Sienra-Monge, J.L.; Meneses-Sánchez, N.; Saucedo-Ramírez, O. Fungal Allergy: Pattern of sensitization over the past 11 years. Allergol. Immunopathol. 2018, 46, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Zureik, M.; Neukirch, C.; Leynaert, B.; Liard, R.; Bousquet, J.; Neukirch, F. Sensitisation to airborne moulds and severity of asthma: Cross sectional study from European Community respiratory health survey. BMJ 2002, 325, 411. [Google Scholar] [CrossRef] [PubMed]
- Twaroch, T.E.; Curin, M.; Valenta, R.; Swoboda, I. Mold allergens in respiratory allergy: From structure to therapy. Allergy Asthma Immunol. Res. 2015, 7, 205–220. [Google Scholar] [CrossRef] [PubMed]
- WHO. Asthma. Available online: https://www.who.int/news-room/fact-sheets/detail/asthma/?gad_source=1&gclid=CjwKCAjwmaO4BhAhEiwA5p4YLyseQOE2Dfp9Fn_p5eo9iU-ZLTIRzB8LUqQDTiWQotcqfOVY9JsM7xoCtgIQAvD_BwE (accessed on 6 May 2024).
- Moreno-Sarmiento, M.; Peñalba, M.C.; Belmonte, J.; Rosas-Pérez, I.; Lizarraga-Celaya, C.; Ortega-Nieblas, M.M.; Villa-Ibarra, M.; Lares-Villa, F.; Pizano-Nazara, L.J. Airborne fungal spores from an urban locality in southern Sonora, Mexico. Rev. Mex. Micol. 2016, 44, 11–20. [Google Scholar]
- Sánchez-Reyes, E.; Rodríguez de la Cruz, D.; Sánchez-Sánchez, J. First fungal spore calendar of the middle-west of the Iberian Peninsula. Aerobiologia 2016, 32, 529–539. [Google Scholar] [CrossRef]
- Bednarz, A.; Pawlowska, S. A fungal spore calendar for the atmosphere of Szczecin, Poland. Acta Agrobot. 2016, 69. [Google Scholar] [CrossRef]
- Molina Freaner, F.E.; Van Devender, T.R. Diversidad Biológica De Sonora; UNAM: Mexico City, Mexico, 2010. [Google Scholar]
- INEGI. Conociendo Sonora; Instituto Nacional de Estadística y Geografía: Mexico City, Mexico, 2013. [Google Scholar]
- Galán Soldevilla, C.; Cariñanos González, P.; Alcázar Teno, P.; Domínguez Vilches, E. Spanish Aerobiology Network (REA): Management and Quality Manual; Servicio de Publicaciones de la Universidad de Córdoba: Córdoba, Spain, 2007; Volume 184, pp. 1–300. [Google Scholar]
- Galán, C.; Ariatti, A.; Bonini, M.; Clot, B.; Crouzy, B.; Dahl, A.; Fernandez-González, D.; Frenguelli, G.; Gehrig, R.; Isard, S. Recommended terminology for aerobiological studies. Aerobiologia 2017, 33, 293–295. [Google Scholar] [CrossRef]
- Lacey, M.E.; West, J. The Air Spora. In A Manual for Catching and Identifying Airborne Biological Particles; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Smith, E.G. Sampling and Indentifyig Allergenic Pollen and Molds; Blewstone Press: San Antonio, TX, USA, 2000. [Google Scholar]
- Spieksama, F.T.M. Regional European pollen calendars. In Allergenic Pollen and Pollinosis in Europe; D’Amato, G., Spieksma, F.T.M., Bonini, S., Eds.; Taylor & Francis: Abingdon, UK, 1991. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Fahrmeir, L.; Kneib, T.; Lang, S.; Marx, B.; Fahrmeir, L.; Kneib, T.; Lang, S.; Marx, B. Regression Models; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Team, R.C. A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2021. [Google Scholar]
- Grinn-Gofroń, A.; Strzelczak, A. Hourly predictive artificial neural network and multivariate regression tree models of Alternaria and Cladosporium spore concentrations in Szczecin (Poland). Int. J. Biometeorol. 2009, 53, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Patel, T.Y.; Buttner, M.; Rivas, D.; Cross, C.; Bazylinski, D.A.; Seggev, J. Variation in airborne fungal spore concentrations among five monitoring locations in a desert urban environment. Environ. Monit. Assess. 2018, 190, 634. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, A.; Sen, M.M.; Gupta-Bhattacharya, S.; Chanda, S. Airborne viable, non-viable, and allergenic fungi in a rural agricultural area of India: A 2-year study at five outdoor sampling stations. Sci. Total Environ. 2004, 326, 123–141. [Google Scholar] [CrossRef] [PubMed]
- Rocha-Estrada, A.; Alvarado-Vázquez, M.A.; Gutiérrez-Reyes, R.; Salcedo-Martínez, S.M.; Moreno-Limón, S. Variación temporal de esporas de Alternaria, Cladosporium, Coprinus, Curvularia y Venturia en el aire del área metropolitana de Monterrey, Nuevo León, México. Rev. Int. Contam. Ambient. 2013, 29, 155–165. [Google Scholar]
- Solomon, G.M.; Hjelmroos-Koski, M.; Rotkin-Ellman, M.; Hammond, S.K. Airborne mold and endotoxin concentrations in New Orleans, Louisiana, after flooding, October through November 2005. Environ. Health Perspect. 2006, 114, 1381–1386. [Google Scholar] [CrossRef] [PubMed]
- NOAA. National Oceanic and Atmospheric Administration. Available online: https://www.noaa.gov/ (accessed on 20 May 2024).
- Boniek, D.; de Abreu, C.S.; dos Santos, A.F.B.; Stoianoff, M.A.d.R. Evaluation of microbiological air parameters and the fungal community involved in the potential risks of biodeterioration in a cultural heritage of humanity, Ouro Preto, Brazil. Folia Microbiol. 2021, 66, 797–807. [Google Scholar] [CrossRef] [PubMed]
Taxa | Total Spores | Percentage (%) |
---|---|---|
Cladosporium | 298,357 | 43.70 |
Ascospora | 115,629 | 16.93 |
Smut | 95,903 | 14.05 |
Alternaria | 80,451 | 11.78 |
Diatrypaceae | 49,279 | 7.22 |
Basidiospores | 12,093 | 1.77 |
Bipolaris | 8820 | 1.29 |
Myxomicetes | 5639 | 0.83 |
Pithomyces | 5046 | 0.74 |
Agaricus | 4954 | 0.73 |
Arthrinium | 2562 | 0.38 |
Curvularia | 1856 | 0.27 |
Torula | 862 | 0.13 |
Periconia | 500 | 0.07 |
Sporidesmium | 310 | 0.05 |
Boerlagella | 291 | 0.04 |
Spegazzinia | 117 | 0.02 |
Leptosphaeria | 116 | 0.02 |
Peronospora | 6 | 0.00 |
Beltrania | 1 | 0.00 |
Fuligo | 1 | 0.00 |
ASIn | 682,793 1 | 100% |
Taxa | 2016 | 2017 | 2018 | 2019 | 2023 | Average |
---|---|---|---|---|---|---|
Cladosporium | 73,205 | 44,876 | 55,439 | 36,455 | 80,510 1 | 58,097 |
Ascospora | 15,837 | 13,265 | 7520 | 5633 | 68,241 | 22,099 |
Smut | 50,601 | 24,662 | 10,661 | 9161 | 0 | 19,017 |
Alternaria | 20,252 | 18,279 | 12,905 | 9716 | 17,487 | 15,728 |
Diatrypaceae | 22,021 | 11,990 | 5183 | 2758 | 7296 | 9850 |
Basidiospores | 96 | 2410 | 1583 | 1439 | 6121 | 2330 |
Bipolaris | 1249 | 856 | 1367 | 1304 | 3663 | 1688 |
Myxomicetes | 2481 | 1420 | 854 | 764 | 0 | 1104 |
Pithomyces | 322 | 115 | 104 | 73 | 4431 | 1009 |
Agaricus | 3817 | 1133 | 0 | 0 | 0 | 990 |
Arthrinium | 855 | 845 | 409 | 414 | 0 | 505 |
Curvularia | 1 | 0 | 0 | 0 | 1851 | 370 |
Torula | 356 | 224 | 169 | 101 | 0 | 170 |
Periconia | 8 | 102 | 186 | 186 | 0 | 96 |
Sporidesmium | 93 | 86 | 69 | 56 | 0 | 61 |
Boerlagella | 116 | 79 | 48 | 45 | 0 | 58 |
Spegazzinia | 21 | 47 | 27 | 19 | 0 | 23 |
Leptosphaeria | 116 | 0 | 0 | 0 | 0 | 23 |
Peronospora | 0 | 0 | 0 | 6 | 0 | 1 |
Beltrania | 0 | 1 | 0 | 0 | 0 | 0 |
Fuligo | 1 | 0 | 0 | 0 | 0 | 0 |
ASIn | 191,448 | 120,390 | 96,524 | 68,130 | 189,600 | 133,218 |
Parameter (Lag in Days) | Cladosporium | Ascospora | Smut | Alternaria |
---|---|---|---|---|
Min. Temp. (0) | + + + | + | + + + | + + + |
Min. Temp. (1) | 0 | + | 0 | 0 |
Min. Temp. (2) | + + | + + + | + + | + + |
Max. Temp. (0) | − − − | 0 | 0 | 0 |
Max. Temp. (1) | 0 | 0 | 0 | 0 |
Max. Temp. (2) 1 | − − | − − − | − − − | − − − |
Precipitation (0) | 0 | + + + | 0 | 0 |
Precipitation (1) | 0 | + + + | 0 | 0 |
Precipitation (2) | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortega-Rosas, C.I.; Medina-Félix, D.; Macías-Duarte, A.; Gamez, T. A Six-Year Airborne Fungal Spore Calendar for a City in the Sonoran Desert, Mexico: Implications for Human Health. J. Fungi 2025, 11, 183. https://doi.org/10.3390/jof11030183
Ortega-Rosas CI, Medina-Félix D, Macías-Duarte A, Gamez T. A Six-Year Airborne Fungal Spore Calendar for a City in the Sonoran Desert, Mexico: Implications for Human Health. Journal of Fungi. 2025; 11(3):183. https://doi.org/10.3390/jof11030183
Chicago/Turabian StyleOrtega-Rosas, Carmen Isela, Diana Medina-Félix, Alberto Macías-Duarte, and Thanairi Gamez. 2025. "A Six-Year Airborne Fungal Spore Calendar for a City in the Sonoran Desert, Mexico: Implications for Human Health" Journal of Fungi 11, no. 3: 183. https://doi.org/10.3390/jof11030183
APA StyleOrtega-Rosas, C. I., Medina-Félix, D., Macías-Duarte, A., & Gamez, T. (2025). A Six-Year Airborne Fungal Spore Calendar for a City in the Sonoran Desert, Mexico: Implications for Human Health. Journal of Fungi, 11(3), 183. https://doi.org/10.3390/jof11030183