New Bioactive Sesquiterpeniods from the Plant-Derived Endophytic Fungus Schizophyllum sp. HM230
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Fungal Material and Fermentation
2.3. Extraction and Isolation
2.4. Antioxidant Activity Assays
2.4.1. DPPH Radical Scavenging Activity
2.4.2. Superoxide Anion Radical Scavenging Assay
2.4.3. Hydroxyl Radical Scavenging Activity
2.5. Antifungal Assay
3. Results and Discussion
3.1. Structure Elucidation
3.2. Antioxidant Activities
3.3. Antifungal Activities
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Liu, G. Analysis of secondary metabolites from plant endophytic fungi. Methods Mol. Biol. 2018, 1848, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Raghav, D.; Jyoti, A.; Siddiqui, A.J.; Saxena, J. Plant-associated endophytic fungi as potential bio-factories for extracellular enzymes: Progress, Challenges and Strain improvement with precision approaches. J. Appl. Microbiol. 2022, 133, 287–310. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.N.; Nagarajan, K.; Lim, V.; Azizi, J.; Khaw, K.Y.; Tong, W.Y.; Leong, C.R.; Chear, N.J. Metabolomics analysis and antioxidant potential of endophytic Diaporthe fraxini ED2 grown in different culture media. J. Fungi 2022, 8, 519. [Google Scholar] [CrossRef]
- Pambuka, G.T.; Kinge, T.R.; Ghosh, S.; Cason, E.D.; Nyaga, M.M.; Gryzenhout, M. Baseline data of the fungal phytobiome of three sorghum (Sorghum bicolor) cultivars in south africa using targeted environmental sequencing. J. Fungi 2021, 7, 978. [Google Scholar] [CrossRef]
- Amirzakariya, B.Z.; Shakeri, A. Bioactive terpenoids derived from plant endophytic fungi: An updated review (2011–2020). Phytochemistry 2022, 197, 113130. [Google Scholar] [CrossRef] [PubMed]
- Ancheeva, E.; Daletos, G.; Proksch, P. Bioactive secondary metabolites from endophytic fungi. Curr. Med. Chem. 2020, 27, 1836–1854. [Google Scholar] [CrossRef]
- Cruz, J.S.; da Silva, C.A.; Hamerski, L. Natural products from endophytic fungi associated with Rubiaceae species. J. Fungi 2020, 7, 128. [Google Scholar] [CrossRef]
- Takaki, M.; Williams, D.E.; Freire, V.F.; Sartori, S.B.; Lira, S.P.; Bizarria, R., Jr.; Rodrigues, A.; Gonçalves da Costa, D.R.; Amorim, M.R.; Ferreira, A.G.; et al. Metabolomics reveals a 26-membered macrolactone produced by endophytic Colletotrichum spp. from Alcatrazes island, Brazil. Org. Lett. 2022, 24, 9381–9385. [Google Scholar] [CrossRef]
- Le, T.T.M.; Pham, H.T.; Trinh, H.T.T.; Tran, H.T.; Chu, H.H. Isolation and characterization of novel huperzine-producing endophytic fungi from Lycopodiaceae species. J. Fungi 2023, 9, 1134. [Google Scholar] [CrossRef]
- Song, B.; Li, L.Y.; Shang, H.; Liu, Y.; Yu, M.; Ding, G.; Zou, Z.M. Trematosphones A and B, two unique dimeric structures from the desert plant endophytic fungus Trematosphaeria terricola. Org. Lett. 2019, 21, 2139–2142. [Google Scholar] [CrossRef]
- Rateb, M.E.; Houssen, W.E.; Arnold, M.; Abdelrahman, M.H.; Deng, H.; Harrison, W.T. Chaxamycins A-D, bioactive ansamycins from a hyper-arid desert Streptomyces sp. J. Nat. Prod. 2011, 74, 1491–1499. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, W.; Zou, G.; Wang, G.; Kang, W.; Yuan, J.; She, Z. Cytotoxic bromine- and iodine-containing cytochalasins produced by the mangrove endophytic fungus Phomopsis sp. QYM-13 using the OSMAC approach. J. Nat. Prod. 2022, 85, 1229–1238. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.C.; Wang, Y.M.; Rong, Z.J.; Hong, L.N.; Zhang, Q.; Jia, J.M.; Wang, A.H. Phytochemical and antitumor studies on Cynanchum mongolicum (Maxim.) Kom. Nat. Prod. Res. 2019, 34, 3437–3443. [Google Scholar] [CrossRef]
- Ge, Y.; Liu, P.; Yang, R.; Zhang, L.; Chen, H.; Camara, I.; Liu, Y.; Shi, W. Insecticidal constituents and activity of alkaloids from Cynanchum mongolicum. Molecules 2015, 20, 17483–17492. [Google Scholar] [CrossRef]
- Yang, W.; Zhao, A.; Congai, Z.; Qizhi, L.; Wangpeng, S. Composition of the essential oil of Cynanchum mongolicum (Asclepiadaceae) and insecticidal activities against Aphis glycines (Hemiptera: Aphidiae). Pharmacogn. Mag. 2014, 10, S130–S134. [Google Scholar] [CrossRef]
- Kim, C.S.; Oh, J.Y.; Choi, S.U.; Lee, K.R. Chemical constituents from the roots of Cynanchum paniculatum and their cytotoxic activity. Carbohydr. Res. 2013, 381, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.C.; Yu, L.L.; Tang, M.X.; Lu, X.J.; Zhao, D.; Wang, H.F.; Chen, G.; Su, G.Y.; Pei, Y.H. Two new steroidal saponins from the roots of Cynanchum limprichtii. J. Asian Nat. Prod. Res. 2018, 20, 875–882. [Google Scholar] [CrossRef]
- Han, L.; Zhou, X.; Yang, M.; Zhou, L.; Deng, X.; Wei, S.; Wang, W.; Wang, Z.; Qiao, X.; Bai, C. Ethnobotany, phytochemistry and pharmacological effects of plants in Genus Cynanchum Linn. (Asclepiadaceae). Molecules 2018, 23, 1194. [Google Scholar] [CrossRef] [PubMed]
- Greeshma, A.A.; Sridhar, K.R.; Pavithra, M.; Ghate, S.D. Impact of fire on the macrofungal diversity in scrub jungles of south-west India. Mycology 2016, 7, 15–28. [Google Scholar] [CrossRef]
- Hamedi, S.; Shojaosadati, S.A.; Najafi, V.; Alizadeh, V. A novel double-network antibacterial hydrogel based on aminated bacterial cellulose and schizophyllan. Carbohydr. Polym. 2020, 229, 115383–115416. [Google Scholar] [CrossRef]
- Wang, H.; Yan, M.; Liang, M.; Wei, X.; Zhang, Z.J. Regulation and activity evaluation of secondary metabolism of an oyster symbiotic fungus Schizophyllum sp. YS-08. Int. J. Microbiol. 2021, 6, 78–85. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, B.W.; Jiang, L.; Wang, H.; Ma, Q.Y.; Wang, H.F.; Zhang, J.; Chen, F.L.; Zhao, Y.X.; Luo, D.Q. Two new alkaloids from the endophytic fungus Schizophyllum sp. HM230 isolated from Vincetoxicum mongolicum Maxim. Nat. Prod. Res. 2024, 38, 2411–2418. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.H.; Yao, L.; Zhang, J.X.; Wang, L.A.; Zhang, J.; Wang, Y.P.; Xiao, S.Y.; Li, C.T.; Li, Y. Novel 2,5-diarylcyclopentenone derivatives from the wild edible mushroom Paxillus involutus and their antioxidant activities. J. Agric. Food Chem. 2021, 69, 5040–5048. [Google Scholar] [CrossRef]
- Duan, C.; Wang, S.; Huo, R.; Li, E.; Wang, M.; Ren, J.; Pan, Y.; Liu, L.; Liu, G. Sorbicillinoid derivatives with the radical scavenging activities from the marine-derived fungus Acremonium chrysogenum C10. J. Fungi 2022, 8, 530. [Google Scholar] [CrossRef]
- Fejér, J.; Kron, I.; Gruľová, D.; Eliašová, A. Seasonal variability of Juniperus communis L. Berry ethanol extracts: 1. in vitro hydroxyl radical scavenging activity. Molecules 2020, 25, 4114. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, J.; Zhang, P.; Xie, S.; Yuan, X.; Hou, X.; Yan, N.; Fang, Y.; Du, Y. In vitro and in vivo antifungal activity and preliminary mechanism of cembratrien-diols against Botrytis cinerea. Ind. Crops Prod. 2020, 154, 112745. [Google Scholar] [CrossRef]
- D’Abrosca, B.; Maria, P.D.; DellaGreca, M.; Fiorentino, A.; Golino, A.; Izzo, A.; Monaco, P. Amarantholidols and amarantholidosides: New nerolidol derivatives from the weed Amaranthus retroflexus. Tetrahedron 2006, 62, 640–646. [Google Scholar] [CrossRef]
- Fiorentino, A.; DellaGreca, M.; D’Abrosca, B.; Golino, A.; Pacifico, S.; Izzoa, A.; Monacoa, P. Unusual sesquiterpene glucosides from Amaranthus retroflexus. Tetrahedron 2006, 62, 8952–8958. [Google Scholar] [CrossRef]
- Gorin, P.A.J.; Mazurek, M. Further studies on the assignment of signals in 13C magnetic resonance spectra of aldoses and derived methyl glycosides. Can. J. Chem. 1975, 53, 1212–1223. [Google Scholar] [CrossRef]
- Hu, J.; Shi, X.; Mao, X.; Chen, J.; Li, H. Cytotoxic mannopyranosides of indole alkaloids from Zanthoxylum nitidum. Chem. Bio-divers. 2014, 11, 970–974. [Google Scholar] [CrossRef]
- Li, G.; Kusari, S.; Lamshöft, M.; Schüffler, A.; Laatsch, H.; Spiteller, M. Antibacterial secondary metabolites from an endophytic fungus, Eupenicillium sp. LG41. J. Nat. Prod. 2014, 77, 2335–2341. [Google Scholar] [CrossRef] [PubMed]
- Woo, E.E.; Kim, J.Y.; Kim, J.S.; Kwon, S.W.; Lee, I.K.; Yun, B.S. Mannonerolidol, a new nerolidol mannoside from culture broth of Schizophyllum commune. J. Antibiot. 2019, 72, 178–180. [Google Scholar] [CrossRef]
- Miyase, T.; Ueno, A.; Takizawa, N.; Kobayashi, H.; Oguchi, H. Studies on the glycosides of Epimedium grandiflorum MORR. var. thunbergianum (MIQ.) NAKAI. II. Chem. Pharm. Bull. 1987, 35, 3713–3719. [Google Scholar] [CrossRef]
- Tam, S.Y.; Uchida, K.; Enomoto, H.; Takahashi, S.; Makimura, K.; Sakuda, S. A new metabolite, mannogeranylnerol, specifically produced at body temperature by Schizophyllum commune, a causative fungus of human mycosis. J. Antibiot. 2022, 75, 243–246. [Google Scholar] [CrossRef]
- Kogen, H.; Tago, K.; Kaneko, S.; Hamano, K.; Onodera, K.; Haruyama, H.; Minagawa, K.; Kinoshita, T.; Ishikawa, T.; Tanimoto, T.; et al. Schizostatin, a Novel Squalene Synthase Inhibitor Produced by the Mushroom, Schizophyllum commune II. Structure Elucidation and Total Synthesis. J. Antibiot. 1996, 49, 624–630. [Google Scholar] [CrossRef]
- Chen, Z.; Zhong, C. Oxidative stress in Alzheimer’s disease. Neurosci. Bull. 2014, 30, 271–281. [Google Scholar] [CrossRef]
No. | 1 | 2 | 3 | 4 |
---|---|---|---|---|
1 | 3.53 (1H, dd, 11.1, 7.9) 3.77 (1H, dd, 11.1, 3.3) | 3.52 (1H, dd, 11.1, 7.8) 3.72 (1H, dd, 11.1, 3.2) | 5.01 (1H, dd, 10.8, 1.0) 5.18 (1H, dd, 17.4, 1.0) | 5.15 (1H, dd, 11.0, 1.0) 5.23 (1H, dd, 17.7, 1.0) |
2 | 3.46 (1H, dd, 7.9, 3.3) | 3.46 (1H, dd, 7.8, 3.2) | 5.90 (1H, dd, 17.4, 10.8) | 5.97 (1H, dd, 17.7, 11.0) |
4 | 1.45, 1.58 (each 1H, m) | 1.44, 1.58 (each 1H, m) | 1.46–1.54 (2H, m) | 1.61–1.69 (2H, m) |
5 | 2.04–2.16 (2H, m) | 2.09 (2H, q-like, 8.0) | 1.95–2.07 (2H, m) | 1.99–2.12 (2H, m) |
6 | 5.20 (1H, br t, 7.0) | 5.19 (1H, br t, 7.0) | 5.16 (1H, br t, 7.0) | 5.18 (1H, br t, 7.0) |
8 | 2.01, 2.24 (each 1H, m) | 2.01, 2.24 (each 1H, m) | 2.04, 2.36 (each 1H, m) | 2.00, 2.23 (each 1H, m) |
9 | 1.34, 1.71 (each 1H, m) | 1.34, 1.71 (each 1H, m) | 1.51, 1.64 (each 1H, m) | 1.33, 1.70 (each 1H, m) |
10 | 3.23 (1H, dd, 10.6, 1.5) | 3.23 (1H, dd, 10.6, 1.5) | 3.37 (1H, overlapped) | 3.22 (1H, br d, 10.5) |
12 | 1.15 (3H, s) | 1.15 (3H, s) | 1.16 (3H, s) | 1.15 (3H, s) |
13 | 1.12 (3H, s) | 1.12 (3H, s) | 1.17 (3H, s) | 1.12 (3H, s) |
14 | 1.64 (3H, br s) | 1.63 (3H, br s) | 1.58 (3H, br s) | 1.60 (3H, br s) |
15 | 1.13 (3H, s) | 1.14 (3H, s) | 1.24 (3H, s) | 1.31 (3H, s) |
1′ | 4.60 (1H, br s) | 4.58 (1H, br s) | ||
2′ | 3.98 (1H, br d, 3.2) | 3.75 (1H, br d, 3.2) | ||
3′ | 3.42 (1H, dd, 9.4, 3.2) | 3.42 (1H, dd, 9.3, 3.2) | ||
4′ | 3.53 (1H, t-like, 9.5) | 3.50 (1H, t-like, 9.5) | ||
5′ | 3.37 (1H, overlapped) | 3.29 (1H, overlapped) | ||
6′ | 4.22 (1H, dd, 11.7, 7.0) 4.41 (1H, dd, 11.7, 1.7) | 4.17 (1H, dd, 11.7, 7.1) 4.35 (1H, dd, 11.7, 1.8) | ||
2″ | 2.03 (3H, s) | 2.05 (3H, s) |
No. | 1 | 2 | 3 | 4 |
---|---|---|---|---|
1 | 64.0 (t) | 64.0 (t) | 112.0 (t) | 115.0 (t) |
2 | 78.2 (d) | 78.5 (d) | 146.3 (d) | 144.1 (d) |
3 | 74.9 (s) | 74.9 (s) | 73.9 (s) | 81.2 (s) |
4 | 40.1 (t) | 39.4 (t) | 43.5 (t) | 41.0 (t) |
5 | 22.8 (t) | 23.1 (t) | 23.7 (t) | 23.6 (t) |
6 | 126.0 (d) | 126.0 (d) | 125.6 (d) | 125.8 (d) |
7 | 136.0 (s) | 136.1 (s) | 136.7 (s) | 136.1 (s) |
8 | 37.9 (t) | 37.9 (t) | 37.6 (t) | 37.9 (t) |
9 | 30.8 (t) | 30.8 (t) | 30.8 (t) | 30.8 (t) |
10 | 79.0 (d) | 79.0 (d) | 89.0 (d) | 79.0 (d) |
11 | 73.8 (s) | 73.8 (s) | 74.4 (s) | 73.8 (s) |
12 | 25.6 (q) | 25.6 (q) | 26.5 (q) | 25.6 (q) |
13 | 25.0 (q) | 25.0 (q) | 25.1 (q) | 25.0 (q) |
14 | 16.1 (q) | 16.1 (q) | 16.2 (q) | 16.2 (q) |
15 | 22.3 (q) | 22.9 (q) | 27.6 (q) | 24.0 (q) |
1′ | 103.4 (d) | 96.5 (d) | ||
2′ | 72.3 (d) | 73.8 (d) | ||
3′ | 75.2 (d) | 75.4 (d) | ||
4′ | 68.8 (d) | 68.8 (d) | ||
5′ | 75.5 (d) | 75.4 (d) | ||
6′ | 65.4 (t) | 65.3 (t) | ||
1′’ | 172.8 (s) | 172.8 (s) | ||
2′’ | 20.9 (q) | 20.9 (q) |
Compounds | IC50 (μM) | ||
---|---|---|---|
Hydroxyl Radical | Dpph Free Radical | Superoxide Anion Radical | |
1 | 70.5 ± 3.0 | 96.8 ± 4.1 | 55.7 ± 2.5 |
2 | 65.8 ± 2.8 | 88.3 ± 5.2 | 60.2 ± 3.6 |
3 | 187.5 ± 7.4 | 141.2 ± 3.2 | 44.6 ± 3.9 |
4 | 190.5 ± 6.2 | 123.8 ± 5.2 | 77.2 ± 3.1 |
5 | 216.5 ± 3.2 | 212.2 ± 3.2 | 172.6 ± 4.2 |
6 | 80.9 ± 4.1 | 102.5 ± 3.6 | 181.2 ± 3.3 |
7 | 280.6 ± 4.5 | 132.2 ± 4.2 | 162.4 ± 6.1 |
8 | 170.2 ± 5.2 | 122.4 ± 2.9 | 159.5 ± 2.9 |
9 | 175.5 ± 4.5 | 126.7 ± 4.2 | 82.7 ± 3.1 |
TBHQ a | 90.8 ± 3.4 | 20.2 ± 1.6 | 140.7 ± 3.2 |
Compound | Inhibition Rate (%) | |||
---|---|---|---|---|
S. ginseng | R. solani | C. destructans | E. turcicum | |
1 | 10.2 ± 2.0 | 15.5 ± 2.5 | 6.4 ± 2.2 | 13.2 ± 1.7 |
2 | 8.6 ± 1.7 | 6.6 ± 1.2 | 9.0 ± 1.6 | 8.5 ± 1.2 |
3 | 34.8 ± 2.3 | 55.2 ± 2.6 | 22.7 ± 2.8 | 57.1 ± 2.5 |
4 | 42.3 ± 3.7 | 57.5 ± 2.4 | 65.4 ± 3.1 | 59.7 ± 1.9 |
5 | 5.9 ± 1.1 | 11.1 ± 1.8 | 7.9 ± 2.0 | 5.3 ± 2.1 |
6 | 9.6 ± 2.3 | 7.8 ± 1.1 | 8.4 ± 1.2 | 8.8 ± 1.1 |
7 | 22.5 ± 1.9 | 24.8 ± 2.6 | 57.5 ± 2.9 | 30.6 ± 2.8 |
8 | 27.6 ± 2.9 | 16.6 ± 1.9 | 13.4 ± 2.1 | 26.2 ± 1.8 |
9 | 47.8 ± 3.2 | 24.8 ± 6.2 | 45.6 ± 2.8 | 52.4 ± 3.2 |
carbendazim a | 80.2 ± 2.2 | 91.0 ± 3.2 | 87.2 ± 3.2 | 86.6 ± 2.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.-Y.; Yao, L.; Lv, J.-H.; Li, Z.; Xu, S.; Li, Y.; Li, D.; Li, C.-T. New Bioactive Sesquiterpeniods from the Plant-Derived Endophytic Fungus Schizophyllum sp. HM230. J. Fungi 2025, 11, 275. https://doi.org/10.3390/jof11040275
Li S-Y, Yao L, Lv J-H, Li Z, Xu S, Li Y, Li D, Li C-T. New Bioactive Sesquiterpeniods from the Plant-Derived Endophytic Fungus Schizophyllum sp. HM230. Journal of Fungi. 2025; 11(4):275. https://doi.org/10.3390/jof11040275
Chicago/Turabian StyleLi, Shi-Yu, Lan Yao, Jian-Hua Lv, Zhuang Li, Shuai Xu, Yu Li, Dan Li, and Chang-Tian Li. 2025. "New Bioactive Sesquiterpeniods from the Plant-Derived Endophytic Fungus Schizophyllum sp. HM230" Journal of Fungi 11, no. 4: 275. https://doi.org/10.3390/jof11040275
APA StyleLi, S.-Y., Yao, L., Lv, J.-H., Li, Z., Xu, S., Li, Y., Li, D., & Li, C.-T. (2025). New Bioactive Sesquiterpeniods from the Plant-Derived Endophytic Fungus Schizophyllum sp. HM230. Journal of Fungi, 11(4), 275. https://doi.org/10.3390/jof11040275