Next Issue
Volume 11, September
Previous Issue
Volume 11, July
 
 

J. Fungi, Volume 11, Issue 8 (August 2025) – 64 articles

Cover Story (view full-size image): Mycelium-based composites (MBCs) are an emerging class of affordable, eco-friendly materials gaining attention in construction, manufacturing, agriculture, and biomedicine. Using fungi as a natural, low-energy bio-fabrication system, they transform agricultural by-products into sustainable alternatives to synthetic construction materials. MBC foams and sandwich panels offer excellent thermal insulation, acoustic absorption, and fire safety, yet their foam-like strength, water uptake, and limited data restrict them to non-structural uses. This review explores fabrication methods and factors influencing performance, including fungal species, substrates, growth conditions, drying, post-processing, properties, and life cycle assessment. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
16 pages, 3052 KiB  
Article
Larvicidal and Immunomodulatory Effects of Conidia and Blastospores of Beauveria bassiana and Beauveria brongniartii in Aedes aegypti
by José L. Ramirez, Haley M. Gore, Angela Payne, Salorrane Miranda Nascimento Pinto, Lina B. Flor-Weiler, Everton K. K. Fernandes and Ephantus J. Muturi
J. Fungi 2025, 11(8), 608; https://doi.org/10.3390/jof11080608 - 21 Aug 2025
Abstract
The increasing global burden of mosquito-borne diseases and the widespread development of insecticide resistance in mosquitoes have fueled renewed interest in entomopathogenic fungi as effective tools that are compatible with existing mosquito control strategies. These fungi produce different types of infective propagules, including [...] Read more.
The increasing global burden of mosquito-borne diseases and the widespread development of insecticide resistance in mosquitoes have fueled renewed interest in entomopathogenic fungi as effective tools that are compatible with existing mosquito control strategies. These fungi produce different types of infective propagules, including hydrophobic conidia and yeast-like blastospores, which differ in structure, mode of infection, and virulence. In this study, we evaluated the larvicidal activity of conidial and blastospore propagules from Beauveria bassiana MBC076 and Beauveria brongniartii MBC397 against Aedes aegypti. Conidia exhibited more rapid and more potent larvicidal effects compared to blastospores, but the overall survival at seven days post-infection was similar between the two types of propagules. Interestingly, B. brongniartii blastospore infections resulted in a significantly higher proportion of pupal mortality, suggesting a delayed mode of action. Immune profiling of infected larvae indicated significant induction of antimicrobial effectors such as cecropin, defensin, and attacin, primarily in response to conidial infection. In contrast, blastospore infections were associated with reduced expression of several prophenoloxidase genes, particularly during infection with B. brongniartii blastospores. These findings indicate that different fungal species and their propagule types exert varying levels of virulence and immune modulation in mosquito larvae. This study provides insights into the infection dynamics of fungal propagules and identifies immune markers that can be leveraged to enhance the efficacy of fungal-based larvicides. Full article
(This article belongs to the Special Issue Application of Entomopathogenic Fungi for Pest Biocontrol)
Show Figures

Figure 1

26 pages, 914 KiB  
Article
Species Diversity and Resource Status of Macrofungi in Beijing: Insights from Natural and Urban Habitats
by Dong-Mei Liu, Shi-Hui Wang, Ke Wang, Jia-Xin Li, Wen-Qiang Yang, Xi-Xi Han, Bin Cao, Shuang-Hui He, Wei-Wei Liu and Rui-Lin Zhao
J. Fungi 2025, 11(8), 607; https://doi.org/10.3390/jof11080607 - 21 Aug 2025
Abstract
This study systematically documented macrofungal diversity in Beijing, China (field surveys conducted from 2020 to 2024) using line-transect and random sampling. A total of 1056 species were identified, spanning 2 phyla, 7 classes, 25 orders, 109 families, and 286 genera. The inventory includes [...] Read more.
This study systematically documented macrofungal diversity in Beijing, China (field surveys conducted from 2020 to 2024) using line-transect and random sampling. A total of 1056 species were identified, spanning 2 phyla, 7 classes, 25 orders, 109 families, and 286 genera. The inventory includes 12 new species, 456 new records for Beijing, 79 new records for China, and comprises 116 edible, 56 edible–medicinal, 123 medicinal, and 58 poisonous species. Among these, 542 species were assessed against China’s Macrofungi Redlist, revealing eight species needing conservation attention (seven Near Threatened, one Vulnerable). Analysis revealed stark differences in dominant taxa between natural ecosystems (protected areas) and urban green spaces/parks. In natural areas, macrofungi are dominated by 31 families (e.g., Russulaceae, Cortinariaceae) and 47 genera (e.g., Russula, Cortinarius). Ectomycorrhizal lineages prevailed, highlighting their critical role in forest nutrient cycling, plant symbiosis, and ecosystem integrity. In urban areas, 10 families (e.g., Agaricaceae, Psathyrellaceae) and 17 genera (e.g., Leucocoprinus, Coprinellus) were dominant. Saprotrophic genera dominated, indicating their adaptation to decomposing organic matter in human-modified habitats and the provision of ecosystem services. The study demonstrates relatively high macrofungal diversity in Beijing. The distinct functional guild composition—ectomycorrhizal dominance in natural areas versus saprotrophic prevalence in urban zones—reveals complementary ecosystem functions and underscores the conservation value of protected habitats for maintaining vital mycorrhizal networks. These findings provide fundamental data and scientific support for regional biodiversity conservation and sustainable macrofungal resource development. Full article
(This article belongs to the Special Issue Edible and Medicinal Macrofungi, 4th Edition)
Show Figures

Figure 1

8 pages, 743 KiB  
Commentary
Splitting Haploid Chromosomes into Different Nuclei: New Mechanisms of Adaptation in Fungi?
by Lu Liu, James W. Kronstad and Zhongshou Wu
J. Fungi 2025, 11(8), 606; https://doi.org/10.3390/jof11080606 - 21 Aug 2025
Viewed by 104
Abstract
A recent study challenges a fundamental principle of eukaryotic biology that each nucleus houses a complete genome. Two plant pathogenic fungi, Sclerotinia sclerotiorum and Botrytis cinerea, exhibit a segregated pattern of haploid chromosome distribution across two or more nuclei within each cell. [...] Read more.
A recent study challenges a fundamental principle of eukaryotic biology that each nucleus houses a complete genome. Two plant pathogenic fungi, Sclerotinia sclerotiorum and Botrytis cinerea, exhibit a segregated pattern of haploid chromosome distribution across two or more nuclei within each cell. The unequal distribution of the genome between nuclei suggests a coordinated system of internuclear recognition and regulation of cellular functions, a phenomenon previously associated with communication between nuclei of opposite mating type in both ascomycetes and basidiomycetes. Thus, the new study not only shatters expectations about genome biology but also opens new research avenues for understanding fungal adaptation and nuclear behavior. Full article
(This article belongs to the Special Issue Plant Pathogenic Sclerotiniaceae)
Show Figures

Figure 1

2 pages, 162 KiB  
Correction
Correction: Li et al. Whole-Genome Sequence Analysis of Flammulina filiformis and Functional Validation of Gad, a Key Gene for γ-Aminobutyric Acid Synthesis. J. Fungi 2024, 10, 862
by Wenyun Li, Junjun Shang, Dapeng Bao, Jianing Wan, Chenli Zhou, Zhan Feng, Hewen Li, Youran Shao and Yingying Wu
J. Fungi 2025, 11(8), 605; https://doi.org/10.3390/jof11080605 - 20 Aug 2025
Viewed by 65
Abstract
In the original publication [...] Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
14 pages, 9342 KiB  
Article
Establishment of Novel and Efficient Methods for Investigating Sexual Reproduction in Magnaporthe oryzae
by Yingying Cai, Jing Wang, Muhammad Noman, Zhongna Hao, Zhen Zhang, Haiping Qiu, Rongyao Chai, Yanli Wang, Jiaoyu Wang and Fucheng Lin
J. Fungi 2025, 11(8), 604; https://doi.org/10.3390/jof11080604 - 20 Aug 2025
Viewed by 212
Abstract
Rice blast, caused by Magnaporthe oryzae, significantly threatens global rice production. Disease control is complicated by the pathogen’s high genetic diversity, which is driven by heterothallic recombination between opposite mating types that underlies variation. However, mechanisms governing sexual reproduction in this fungus [...] Read more.
Rice blast, caused by Magnaporthe oryzae, significantly threatens global rice production. Disease control is complicated by the pathogen’s high genetic diversity, which is driven by heterothallic recombination between opposite mating types that underlies variation. However, mechanisms governing sexual reproduction in this fungus remain poorly characterized, largely due to the absence of reliable methods for scalable ascospore progeny production. In this study, we established two novel mating methods, namely Conidial Mixing Mating (CMM) and Hyphal Segments Mixed Mating (HMM). Both methods employed optimized suspensions (5 × 104 conidia/mL or equivalent hyphal density) mixed at 1:1 ratios, incubated under standardized conditions: 20 °C with a 12 h/12 h photoperiod. We characterized perithecia, asci, and ascospore morphology using fluorescence microscopy, paraffin sectioning, cryo-scanning electron microscopy, and transmission electron microscopy. Furthermore, both methods enabled phenotypic characterization of sexual reproduction-deficient mutants, including ΔMopmk1 and ΔMoopy2. In conclusion, we established two efficient methods for investigating M. oryzae sexual reproduction, providing foundational tools to advance studies of sexual mechanisms, pathogenicity evolution, and genetic variation. Full article
Show Figures

Figure 1

22 pages, 4613 KiB  
Systematic Review
Twenty-Year Course of Antifungal Resistance in Candida albicans in Türkiye: A Systematic Review and Meta-Analysis
by Imdat Kilbas, Elmas Pinar Kahraman Kilbas, Florin George Horhat and Ihsan Hakki Ciftci
J. Fungi 2025, 11(8), 603; https://doi.org/10.3390/jof11080603 - 19 Aug 2025
Viewed by 238
Abstract
This study aimed to systematically evaluate the resistance rates of Candida albicans to various antifungals based on studies conducted in Türkiye and published between 2005 and 2025 and to analyze the factors contributing to resistance. A systematic literature search was conducted using various [...] Read more.
This study aimed to systematically evaluate the resistance rates of Candida albicans to various antifungals based on studies conducted in Türkiye and published between 2005 and 2025 and to analyze the factors contributing to resistance. A systematic literature search was conducted using various keywords in electronic databases (PubMed, Embase, Web of Science, EBSCO, Scopus, Turk Medline and Google Scholar). A total of 42 studies were included in the meta-analysis according to the determined criteria. The quality of the studies was assessed using the Joanna Briggs Institute checklist, and the analyses were performed using appropriate statistical software. The highest resistance rates for fluconazole, itraconazole, and voriconazole were observed in the Aegean and Marmara regions. In the analyses performed with the random-effects model, heterogeneity was found to be high for itraconazole, fluconazole, posaconazole, voriconazole, and caspofungin, and the strongest explanatory variable of this heterogeneity was the geographical region variable. In our study, we determined that antifungal resistance in C. albicans strains in Türkiye is generally low; however, an increasing trend has been observed over the years, especially in amphotericin B resistance. Although the low resistance rates to major antifungal agents such as fluconazole, voriconazole and echinocandins are promising, regional differences and methodological heterogeneity necessitate the development of treatment strategies based on local data. Full article
Show Figures

Figure 1

19 pages, 5022 KiB  
Article
AoChk1 Is Required for Sporulation, Trap Formation, and Metabolic Process in Arthrobotrys oligospora
by Huan Luo, Qianqian Liu, Si Chen, Xiaoli Li, Haitao Chen, Yuanyuan Xia and Jinkui Yang
J. Fungi 2025, 11(8), 602; https://doi.org/10.3390/jof11080602 - 19 Aug 2025
Viewed by 128
Abstract
Chk1, a highly conserved serine/threonine protein kinase, functions as a critical regulator of fungal cell cycle progression, mitotic fidelity, and DNA damage response. In this study, we characterized an orthologous Chk1 (AoChk1) in a ubiquitous nematode-trapping fungus, Arthrobotrys oligospora, through targeted gene knockout [...] Read more.
Chk1, a highly conserved serine/threonine protein kinase, functions as a critical regulator of fungal cell cycle progression, mitotic fidelity, and DNA damage response. In this study, we characterized an orthologous Chk1 (AoChk1) in a ubiquitous nematode-trapping fungus, Arthrobotrys oligospora, through targeted gene knockout coupled with integrated phenotypic, metabolomic, and transcriptomic analyses. This study aims to elucidate the function and potential regulatory networks of AoChk1 in A. oligospora. Deletion of Aochk1 leads to significant reductions in nucleus number, hyphal cell length, conidial production, and trap formation, but an increase in the accumulation of lipid droplets and autophagy. In addition, transcriptomics data indicate that AoChk1 plays an important role in cell cycle and division, nuclear architecture and organelle dynamics, protein homeostasis maintenance, and membrane systems. In addition, the inactivation of the Aochk1 exhibited remarkably reduced metabolite abundance relative to the WT strain. In conclusion, our results identify AoChk1 as an important regulator of asexual development, pathogenicity, and metabolic processes in A. oligospora. Full article
Show Figures

Figure 1

24 pages, 3694 KiB  
Article
JA Signaling Inhibitor JAZ Is Involved in Regulation of AM Symbiosis with Cassava, Including Symbiosis Establishment and Cassava Growth
by Yu Gao, Siyuan Huang, Jingling Zhang, Lin Zhu, Baocan Zhan, Xiaohui Yu and Yinhua Chen
J. Fungi 2025, 11(8), 601; https://doi.org/10.3390/jof11080601 - 19 Aug 2025
Viewed by 292
Abstract
Mutualism between plants and arbuscular mycorrhizal fungi (AMF) is imperative for sustainable agricultural production. Jasmonic acid (JA) signal transduction has been demonstrated to play an important role in AMF symbiosis with the host. In this study, SC9 cassava was selected as the research [...] Read more.
Mutualism between plants and arbuscular mycorrhizal fungi (AMF) is imperative for sustainable agricultural production. Jasmonic acid (JA) signal transduction has been demonstrated to play an important role in AMF symbiosis with the host. In this study, SC9 cassava was selected as the research object to investigate the effect of the jasmonic acid signaling pathway on symbiosis establishment and cassava growth in AMF and cassava symbiosis. It was first found that the symbiosis of cassava and mycorrhizal fungi could increase the biomass of both the aboveground and belowground parts of cassava. Secondly, JA content increased significantly in the early stage of AMF inoculation and auxin content increased significantly in the late stage of AMF inoculation, suggesting that JA signal transduction played an important role in the symbiosis between cassava and mycorrhizal fungi. Transcriptome data were used to analyze the expression differences of genes related to JA synthesis and signal transduction in cassava. The MeJAZ gene positively responded to symbiosis between cassava and mycorrhizal fungi. The analysis of MeJAZ gene family expression and its promoter supported this result. Spraying different concentrations of MeJA on leaves could affect the colonization rate and root biomass of cassava, indicating that JA was an active regulator of mycorrhizal formation. PPI prediction and qPCR analysis suggested that the MeJAZ7 gene might be a key transcriptional regulator responding to jasmonic acid signals and regulating mycorrhizal influence on cassava growth and development. Full article
Show Figures

Figure 1

20 pages, 4054 KiB  
Article
Genomic Insights into the Molecular Basis of Broad Host Adaptability of the Entomopathogenic Fungus Conidiobolus coronatus (Entomophthoromycotina)
by Fan Bai, Tian Yang, Lvhao Zhang, Jiaqi Yang, Xinyu Chen and Xiang Zhou
J. Fungi 2025, 11(8), 600; https://doi.org/10.3390/jof11080600 - 19 Aug 2025
Viewed by 216
Abstract
Conidiobolus coronatus (Entomophthorales), a fungal pathogen with a broad insect host range, is a promising candidate for biocontrol applications. We sequenced a C. coronatus strain isolated from a Rhopalomyia sp. cadaver using PacBio long-read sequencing to elucidate the molecular basis of its wide [...] Read more.
Conidiobolus coronatus (Entomophthorales), a fungal pathogen with a broad insect host range, is a promising candidate for biocontrol applications. We sequenced a C. coronatus strain isolated from a Rhopalomyia sp. cadaver using PacBio long-read sequencing to elucidate the molecular basis of its wide host adaptability. The newly assembled 44.21 Mb genome exhibits high completeness (BUSCO score: 93.45%) and encodes 11,128 protein-coding genes, with 23.1% predicted to mediate pathogen–host interactions. Comparative genomics with the aphid-obligate pathogen C. obscurus revealed significant expansions in gene families associated with host adaptation mechanisms, including host recognition, transcriptional regulation, degradation of host components, detoxification, and immune evasion. Functional annotation highlighted enrichment in cellular component organization and energy metabolism. Pfam annotation identified one hundred twenty-five seven-transmembrane receptors (putative GPCRs), sixty-seven fungus-specific transcription factors, three hundred sixty-one peptidases (one hundred ninety-eight serine proteases and one hundred three metalloproteases), one hundred twenty-seven cytochrome P450 monooxygenases (P450s), thirty-five cysteine-rich secretory proteins, and fifty-five tyrosinases. Additionally, four hundred thirty carbohydrate-active enzymes (CAZymes) across six major modules were characterized. Untargeted metabolomics detected 22 highly expressed terpenoids, consistent with terpenoid biosynthesis gene clusters in the genome. Collectively, these expansions underpin the broad host range of C. coronatus by enabling cross-host signal decoding and gene expression reprogramming, breaching diverse host physicochemical barriers, and expanding its chemical ecological niche. This study provides genomic insights into broad host adaptability in entomopathogenic fungi, facilitating further understanding of pathogen–host interactions. Full article
(This article belongs to the Special Issue New Perspectives on Insect-Associated Fungi)
Show Figures

Figure 1

6 pages, 340 KiB  
Brief Report
Development of a Mouse Model of Coccidioidomycosis Using an Inhalation Exposure System
by Jonathan Rodrigo Erlich, Priscila Rodriguez, Ka Pui Sharon Yau, Matthew Tate, Aaron F. Carlin, Joshua Fierer, Theo N. Kirkland, Hal M. Hoffman, Sinem Beyhan and Ben A. Croker
J. Fungi 2025, 11(8), 599; https://doi.org/10.3390/jof11080599 - 19 Aug 2025
Viewed by 215
Abstract
Coccidioides species are thermally dimorphic fungal pathogens that cause coccidioidomycosis (Valley Fever) primarily in North and South America. Coccidioides grow as hyphae that differentiate into arthroconidia, which can be aerosolized upon soil disturbance, and inhaled by the mammalian host to cause pulmonary infections [...] Read more.
Coccidioides species are thermally dimorphic fungal pathogens that cause coccidioidomycosis (Valley Fever) primarily in North and South America. Coccidioides grow as hyphae that differentiate into arthroconidia, which can be aerosolized upon soil disturbance, and inhaled by the mammalian host to cause pulmonary infections with occasional dissemination to other organs. In the context of mouse models, current methods of infection include intranasal, intravenous, and intraperitoneal delivery of the arthroconidia into mice. To explore an aerosol route of infection, we compared the intranasal method with aerosolization using the Glass-Col Inhalation Exposure System (IES). Infection with a dose of 2 × 106 CFU/mL, nebulized in 5 mL of PBS, but not in water, was able to infect mice, albeit inconsistently, compared to intranasal challenge. Arthroconidia were detected inside the IES after the nebulization and decontamination cycles. These studies highlight some of the challenges with aerosolization of Coccidioides arthroconidia and serve as a reminder about biosafety considerations for use of the IES to aerosolize pathogens. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

20 pages, 5937 KiB  
Article
Verticillium-like Anamorphic Fungi in Sordariomycetes from Southwestern China: Two New Taxa and a New Record
by Quan-Ying Dong, Shun-Yu Gao, Jin-Na Zhou, Cheng-Dong Xu, Zhen-Ji Wang and Nian-Kai Zeng
J. Fungi 2025, 11(8), 598; https://doi.org/10.3390/jof11080598 - 18 Aug 2025
Viewed by 308
Abstract
Verticillium-like fungi within the Sordariomycetes hold significant ecological and economic importance, especially in biocontrol. This study describes two novel species, Leptobacillium gasaense and Ovicillium yunnanense, and provides DNA sequence data and identification keys for the genera Leptobacillium and Ovicillium. The [...] Read more.
Verticillium-like fungi within the Sordariomycetes hold significant ecological and economic importance, especially in biocontrol. This study describes two novel species, Leptobacillium gasaense and Ovicillium yunnanense, and provides DNA sequence data and identification keys for the genera Leptobacillium and Ovicillium. The genus Muscodor, known for its considerable biotechnological value, comprises endophytes characterized by sterile mycelia that produce antibiotic volatile organic compounds (VOCs). Historically, the classification of Muscodor has relied on culture characteristics, VOC chemical profiles, and molecular phylogenetic analyses. However, culture characteristics and VOC profiles lack a definitive diagnostic value. Although asexual morphological traits are crucial for genus-level classification, no conidiogenous structures have been observed in Muscodor. Here, we report the asexual morphological characteristics of Muscodor and describe M. coffeanus as a new record in China, supported by both its asexual morphology and molecular phylogenetic evidence. Full article
Show Figures

Figure 1

13 pages, 3136 KiB  
Communication
Transfer of Downy Mildew Resistance Genes from Wild Cucumbers to Beit Alpha Types
by Rivka S. Hammer, Yariv Ben Naim, Arnon Brand and Yigal Cohen
J. Fungi 2025, 11(8), 597; https://doi.org/10.3390/jof11080597 - 16 Aug 2025
Viewed by 349
Abstract
Downy mildew, caused by the oomycete Pseudoperonospora cubensis, is the most destructive foliar disease of cucumbers. While partially resistant slicer cultivars (with spined fruits) are commercially available, no resistant Beit Alpha cultivars (characterized by smooth, dark green fruit) have been developed to [...] Read more.
Downy mildew, caused by the oomycete Pseudoperonospora cubensis, is the most destructive foliar disease of cucumbers. While partially resistant slicer cultivars (with spined fruits) are commercially available, no resistant Beit Alpha cultivars (characterized by smooth, dark green fruit) have been developed to date. Here, we report the successful breeding of downy mildew-resistant Beit Alpha cucumber lines. Resistance was transferred from the wild Sikkim cucumber accessions PI 197088 and PI 330628 (characterized by round fruit, with heavily netted brown rind). The resistance and fruit phenotype were restored through backcrosses to elite commercial susceptible cultivars. Due to the recessive nature of the resistance genes and their distribution across multiple chromosomes, the breeding program required multiple backcrosses and stringent selections for both resistance and fruit type. Full article
(This article belongs to the Special Issue Plant Fungal Diseases and Crop Protection, 2nd Edition)
Show Figures

Figure 1

22 pages, 1916 KiB  
Article
Evaluating the Assembly Strategy of a Fungal Genome from Metagenomic Data: Solorina crocea (Peltigerales, Ascomycota) as a Case Study
by Ana García-Muñoz and Raquel Pino-Bodas
J. Fungi 2025, 11(8), 596; https://doi.org/10.3390/jof11080596 - 15 Aug 2025
Viewed by 482
Abstract
The advent of next-generation sequencing technologies has given rise to considerably diverse techniques. However, integrating data from these technologies to generate high-quality genomes remains challenging, particularly when starting from metagenomic data. To provide further insight into this process, the genome of the lichenized [...] Read more.
The advent of next-generation sequencing technologies has given rise to considerably diverse techniques. However, integrating data from these technologies to generate high-quality genomes remains challenging, particularly when starting from metagenomic data. To provide further insight into this process, the genome of the lichenized fungus Solorina crocea was sequenced using DNA extracted from the thallus, which contains the genome of the mycobiont, along with those of the photobionts (a green alga and a cyanobacterium), and other associated microorganisms. Three different strategies were assessed for the assembly of a de novo genome, employing data obtained from Illumina and PacBio HiFi technologies: (1) hybrid assembly based on metagenomic data; (2) assembly based on metagenomic long reads and scaffolded with filtered mycobiont long and short reads; (3) hybrid assembly based on filtered mycobiont short and long reads. Assemblies were compared according to contiguity and completeness criteria. Strategy 2 achieved the most continuous and complete genome, with a size of 55.5 Mb, an N50 of 148.5 kb, and 519 scaffolds. Genome annotation and functional prediction were performed, including identification of secondary metabolite biosynthetic gene clusters. Genome annotation predicted 6151 genes, revealing a high number of genes associated with transport, carbohydrate metabolism, and stress response. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

12 pages, 1129 KiB  
Article
Analysis of the Effects of Beauveria bassiana Appressorium Formation on Insect Cuticle Metabolism Based on LC-MS
by Jiarui Chen, Wenzhe Li, Canxia Wu, Songqing Wu and Yinghua Tong
J. Fungi 2025, 11(8), 595; https://doi.org/10.3390/jof11080595 - 15 Aug 2025
Viewed by 328
Abstract
The appressorium is a specialised infection structure formed by Beauveria bassiana during host invasion. This study used sulforaphane to regulate the formation rate of B. bassiana appressoria, evaluated the correlation between appressorium formation and fungal pathogenicity, and explored its impact on insect [...] Read more.
The appressorium is a specialised infection structure formed by Beauveria bassiana during host invasion. This study used sulforaphane to regulate the formation rate of B. bassiana appressoria, evaluated the correlation between appressorium formation and fungal pathogenicity, and explored its impact on insect cuticular metabolism. The results showed that sulforaphane significantly modulated appressorium formation. Spore suspensions with varying appressorium formation rates were injected into Opisina arenosella and Bombyx mori larvae. As the appressorium formation rate increased, B. bassiana exhibited enhanced pathogenicity, leading to accelerated larval mortality. A significant positive correlation (p ≤ 0.05) was observed between appressorium formation and pathogenicity. LC-MS analysis revealed that, prior to appressorium development, larvae activated defence mechanisms involving secondary metabolites, hormone signalling, and toxin metabolism pathways. Following appressorium formation, 61 unique cuticular compounds were identified, along with activation of host lipid metabolism (notably glycerophospholipid degradation), programmed cell death pathways (ferroptosis, necroptosis), and enhanced energy metabolism via the citric acid cycle—collectively indicating disruption of the epidermal defence barrier. Overall, appressorium development by B. bassiana significantly reshapes the metabolic landscape of the larval cuticle, thereby enhancing fungal virulence. This study provides a theoretical foundation for understanding the pathogenic mechanisms of B. bassiana. Full article
Show Figures

Figure 1

19 pages, 3893 KiB  
Article
Biological Characteristics and Domestication of Dichomitus squalens and the Antioxidant Activity of Its Cultivated Fruiting Bodies
by Li-Bo Wang, Zheng-Xiang Qi, Tao Zhang, Ke-Qing Qian, Hai-Yan Lv, Bo Zhang and Yu Li
J. Fungi 2025, 11(8), 594; https://doi.org/10.3390/jof11080594 - 15 Aug 2025
Viewed by 309
Abstract
Single-factor and orthogonal experiments were conducted to investigate the biological characteristics of Dichomitus squalens strains isolated from wild fruiting bodies collected in Tekes County, Xinjiang Uygur Autonomous Region. Building upon the optimal mycelial culture conditions identified, domestication cultivation studies were performed, including experiments [...] Read more.
Single-factor and orthogonal experiments were conducted to investigate the biological characteristics of Dichomitus squalens strains isolated from wild fruiting bodies collected in Tekes County, Xinjiang Uygur Autonomous Region. Building upon the optimal mycelial culture conditions identified, domestication cultivation studies were performed, including experiments to induce fruiting body formation. Liquid strains were inoculated into substrates to monitor developmental stages from primordia formation to mature fruiting bodies, with macroscopic characteristics recorded throughout the cultivation process. Crude polysaccharides were extracted from the cultivated fruiting bodies using the water extraction and ethanol precipitation method. The scavenging rates of these polysaccharides against hydroxyl radicals (OH) and superoxide anion radicals (O2) were measured to evaluate their in vitro antioxidant activity. Results demonstrated that the optimal growth conditions for D. squalens were as follows: sucrose as the preferred carbon source, yeast extract powder as the optimal nitrogen source, a pH of 5.0, and a temperature of 30 °C. Among these factors, pH exerted the most significant influence on the mycelial growth rate, followed by nitrogen source, carbon source, and temperature. Mature fruiting bodies developed approximately 57 days after inoculation with liquid strains. The crude polysaccharide extraction yield from the cultivated fruiting bodies reached 7.07%, with a total polysaccharide content of 24.69% in the extract. The crude polysaccharides exhibited potent radical scavenging activity: at a concentration of 5.0 mg/mL, the hydroxyl radical scavenging rate was 56.74%, while the superoxide anion radical scavenging rate reached 78.3%. These findings indicate that D. squalens possesses significant antioxidant potential. Full article
(This article belongs to the Section Fungal Cell Biology, Metabolism and Physiology)
Show Figures

Figure 1

13 pages, 1537 KiB  
Article
Different Disease Levels Reveal Kiwifruit Brown Spot Impacts on Fruit Yield and Quality
by Yuhang Zhu, Jing Xu, Jun Wang, Rui Yang, Wen Chen, Kaikai Yao, Miaomiao Ma, Qinghua Chen, Zhonghan Fan, Cuiping Wu, Rongping Hu and Guoshu Gong
J. Fungi 2025, 11(8), 593; https://doi.org/10.3390/jof11080593 - 15 Aug 2025
Viewed by 367
Abstract
Kiwifruit brown spot, caused by the fungus Corynespora cassiicola, has recently emerged as a problematic foliar disease of kiwifruit, causing premature defoliation. The objective of this study was to determine the effects of kiwifruit brown spot on the yield and quality of [...] Read more.
Kiwifruit brown spot, caused by the fungus Corynespora cassiicola, has recently emerged as a problematic foliar disease of kiwifruit, causing premature defoliation. The objective of this study was to determine the effects of kiwifruit brown spot on the yield and quality of kiwifruit. Principal component analysis (PCA) was used to conduct a comprehensive evaluation of the fruit quality of ‘Hongyang’ kiwifruit in the main producing regions. The first principal component for PCA included the weight of individual fruit, soluble solids content, and dry matter content, which were negative significantly correlated with disease index. The significant differences among different disease levels indicated that the impact of the disease on fruit quality was largely determined by these three intrinsic flavor indices. Due to kiwifruit brown spot, the average yield loss was 22.652%, which leads to kiwifruit quality being downgraded by one grade, resulting in an economic loss of 73,591 yuan/ha. The Pearson correlation coefficient between disease index and comprehensive score of fruit quality was −0.762 (p < 0.01), indicating a significant relationship. Accordingly, the disease loss model was constructed, and the damage threshold based on disease index for kiwifruit brown spot was calculated to be 36.14. In conclusion, this study found that kiwifruit brown spot could have a significant impact on yield and fruit quality. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

16 pages, 1217 KiB  
Article
Genomic Analysis of Laccaria Genomes at High Altitude
by Yu Bao, Ye Mu, Jinghuan Hu, Mengchao Chen and Jing Xing
J. Fungi 2025, 11(8), 592; https://doi.org/10.3390/jof11080592 - 14 Aug 2025
Viewed by 374
Abstract
The Qinghai–Tibet Plateau (QTP) harbors extreme environmental conditions (e.g., low temperature, intense UV radiation, and hypoxia), presenting unique challenges for biological adaptation. However, the genetic mechanisms underlying the adaptation of macrofungi to high-altitude environments on the QTP remain poorly understood. In this study, [...] Read more.
The Qinghai–Tibet Plateau (QTP) harbors extreme environmental conditions (e.g., low temperature, intense UV radiation, and hypoxia), presenting unique challenges for biological adaptation. However, the genetic mechanisms underlying the adaptation of macrofungi to high-altitude environments on the QTP remain poorly understood. In this study, we de novo sequenced and assembled the genomes of three Laccaria species collected from the QTP, aiming to unravel the genomic basis of their adaptation to high altitudes. The genomic data indicates that the genome of high-altitude species is slightly larger than that of their low-altitude relatives, particularly due to LTR retrotransposons, which also show a negative correlation with altitude. The expanded and positively selected gene families in high-altitude species were enriched in pathways related to DNA damage repair, maintenance of cell membrane stability, signal transduction, enzyme activity, stress response, and reproduction. In contrast, contracted gene families in high-altitude species were primarily associated with disease and immune responses, likely due to the reduced pathogen pressure in extreme high-altitude environments. Additionally, species-specific genes of high-altitude Laccaria were enriched in functions related to enzyme activity, membrane stability, and signal transduction, further supporting their adaptive roles. Analysis of carbohydrate-active enzymes (CAZymes) showed distinct gene family distributions between high- and low-altitude species, with several families absent in the low-altitude species, suggesting their potential involvement in environmental adaptation. Overall, our findings indicate that genome size expansion driven by LTR retrotransposons, coordinated evolution of gene families, positive selection, and divergence in CAZymes collectively may contribute to the adaptation of Laccaria to extreme high-altitude environments. This study provides basic data into the genetic mechanisms of fungal adaptation to harsh plateau environments and lays a foundation for further research on extremophilic fungi. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

21 pages, 11920 KiB  
Brief Report
Breeding of High-Polysaccharide-Producing Volvariella volvacea Strains Based on Genome Shuffling Technology
by Lihui Liang, Qihang Su, Yawei Wang, Peichen Du, Suzhen Zhao, Huanjie Zhang and Xiaofeng Gao
J. Fungi 2025, 11(8), 591; https://doi.org/10.3390/jof11080591 - 14 Aug 2025
Viewed by 396
Abstract
Volvariella volvacea, a fungal species of Volvariella within the Pluteaceae family, is predominantly cultivated in southern China. Polysaccharides, the primary bioactive constituents of V. volvacea, exhibit diverse pharmacological activities. However, current cultivation practices face challenges due to the genetic heterogeneity of [...] Read more.
Volvariella volvacea, a fungal species of Volvariella within the Pluteaceae family, is predominantly cultivated in southern China. Polysaccharides, the primary bioactive constituents of V. volvacea, exhibit diverse pharmacological activities. However, current cultivation practices face challenges due to the genetic heterogeneity of strains, leading to inconsistent content and compositional variability of polysaccharides and other functional components. ARTP, denoting atmospheric and room-temperature plasma, is a technology capable of generating plasma jets at ambient pressure with temperatures ranging from 25 to 40 °C. These jets feature high concentrations of highly reactive species, including but not limited to excited-state helium atoms, oxygen atoms, nitrogen atoms, and OH radicals. This study aims to develop high-yielding exopolysaccharide (EPS) strains through integrated ARTP mutagenesis and genome shuffling, thereby overcoming current cultivation bottlenecks. ARTP mutagenesis and genome shuffling significantly boosted EPS production in V. volvacea. ARTP generated nine stable mutants with >20% higher EPS yields. Subsequent genome shuffling (three rounds of protoplast fusion) produced the hybrid strain SL212, which achieved 46.85 g/L of EPS, an 111.67% increase over that of the parent strain under identical conditions. Metabolomics and transcriptomics analyses revealed that differential metabolites and genes were mainly enriched in galactose metabolism, ABC transporter pathways, and the tricarboxylic acid cycle. These pathways enhance monosaccharide biosynthesis and generate ATP, providing both precursors and energy for polysaccharide polymerization, thereby driving EPS overproduction. Preliminary mechanistic analysis identified the key contributing factors driving the elevated polysaccharide biosynthesis. Full article
Show Figures

Figure 1

10 pages, 590 KiB  
Article
Fungal Pathogens in Pet Dogs and Cats in Grenada: Identification and Antifungal Susceptibility
by Erica Hazel-Ann Brathwaite, Kamashi Kumar, Grace Dolphin-Bond, Wayne Sylvester, Victor Amadi and Andy Alhassan
J. Fungi 2025, 11(8), 590; https://doi.org/10.3390/jof11080590 - 12 Aug 2025
Viewed by 457
Abstract
Considering the clinical relevance of commensal yeasts (Malassezia and Candida) and zoophilic dermatophytes (Microsporum canis and Trichophyton mentagrophytes) in dogs and cats, this study determines the prevalence of fungal species involved in ear and superficial skin infections in dogs [...] Read more.
Considering the clinical relevance of commensal yeasts (Malassezia and Candida) and zoophilic dermatophytes (Microsporum canis and Trichophyton mentagrophytes) in dogs and cats, this study determines the prevalence of fungal species involved in ear and superficial skin infections in dogs and cats in Grenada and examines their antifungal susceptibility. The etiological agents were isolated from ear, skin, and hair samples of suspected clinical fungal cases using Sabouraud Dextrose Agar (SAB). The isolates’ identification comprised morphological, biochemical, and molecular methods encompassing micro-/macroscopy analysis. Biochemically, yeast isolates were identified by the BD Phoenix M50 microbial identification system, and additional validation of all fungal isolates was performed by polymerase chain reaction (PCR) and sequencing of the ITS region. Furthermore, the E-Test (Epsilometer Test) was used to determine the susceptibility patterns for four azole drugs: ketoconazole, itraconazole, fluconazole, and voriconazole. A total of 405 samples (266 ear, 61 skin, and 78 hair) were collected from 136 dogs and 43 cats. The identified species were Malassezia pachydermatis, Candida tropicalis, and Trichophyton spp. All isolates demonstrated (100%) resistant activity to fluconazole. Importantly, this knowledge will significantly contribute to our understanding of the epidemiology of fungal infections as well as provide guidelines for preventive measures against fungal infections in Grenada. Full article
Show Figures

Figure 1

13 pages, 275 KiB  
Review
Diagnosing Blastomycosis: A Review of Laboratory Methods and Clinical Utility
by Tejaswini Saravanababu, Sameer Elsayed, Ruchika Gupta, Johan Delport, Mohammedreza Rahimi Shahmirzadi and Fatimah AlMutawa
J. Fungi 2025, 11(8), 589; https://doi.org/10.3390/jof11080589 - 12 Aug 2025
Viewed by 515
Abstract
Blastomycosis, caused by dimorphic fungi of the Blastomyces genus, is endemic to regions in North America, including the Great Lakes and other parts of Canada and the United States of America. The infection primarily occurs through the inhalation of airborne conidia from contaminated [...] Read more.
Blastomycosis, caused by dimorphic fungi of the Blastomyces genus, is endemic to regions in North America, including the Great Lakes and other parts of Canada and the United States of America. The infection primarily occurs through the inhalation of airborne conidia from contaminated soil and decaying organic matter. Pulmonary involvement is most common, but dissemination to other organs such as the skin and bones can occur, especially in immunocompromised individuals. Diagnosis is challenging due to its clinical overlap with other diseases. Culture remains the gold-standard diagnostic method, but is time-consuming, with sensitivity ranging from 66.4% to 86%. Tissue histopathology offers quicker results but has sensitivities ranging from 36% to 85%. Antigen detection assays show high sensitivity from 76.3% to 91.3% but suffer from cross-reactivity with other fungi. PCR methods offer high specificity, with sensitivity ranging from 67.6% to 100%. In immunocompromised patients, blastomycosis is often more severe, with a mortality rate exceeding 30%. Multi-modal diagnostic approaches are crucial for accurate detection and management. Full article
15 pages, 3777 KiB  
Article
Talaromyces pinophilus Strain HD25G2 as a Novel Biocontrol Agent of Fusarium culmorum, the Causal Agent of Root and Crown Rot of Soft Wheat
by Amel Bennacer, Fatma Sahir-Halouane, Micaela Alvarez, Zahia Oukali, Nour El Houda Bennacer, Abdelhamid Foughalia and Josué Delgado
J. Fungi 2025, 11(8), 588; https://doi.org/10.3390/jof11080588 - 11 Aug 2025
Viewed by 578
Abstract
Fusarium culmorum is the causal agent of root rot and crown rot in soft wheat. The aim of this study was to investigate the control mechanism of Talaromyces pinophilus HD25G2 as a biocontrol agent against F. culmorum. This involved the isolation and [...] Read more.
Fusarium culmorum is the causal agent of root rot and crown rot in soft wheat. The aim of this study was to investigate the control mechanism of Talaromyces pinophilus HD25G2 as a biocontrol agent against F. culmorum. This involved the isolation and molecular identification of Fusarium and Talaromyces strains from soft wheat. The assay included the inhibition test of F. culmorum mycelial growth on potato dextrose agar and soft wheat media at two water activity values (0.98 and 0.95), its production of mycotoxins, and the fungal cell wall-degrading enzymes implicated in the antagonistic effect of T. pinophilus. The results showed that T. pinophilus and its extract free of cells reduced the growth of F. culmorum by over 55%. Interestingly, the T. pinophilus HD25G2 showed high chitinase, protease, and cellulose production on solid media. In addition, chitinolytic and proteolytic activities were estimated at the values of 1.72 ± 0.02UI and 0.49 ± 0.01UI, respectively. However, the mycotoxin evaluation assay revealed that F. culmorum HD15C10 produced zearalenone (ZEA) and the biocontrol agent enhanced its production, but the early inoculation of T. pinophilus, before F. culmorum growth onset, inhibited 100% its growth and, therefore, prevented the presence of ZEA. Hence, this strain can be proposed as a biocontrol agent against F. culmorum, and it can be further investigated for biocontrol of Fusarium root and crown rot in vivo. Full article
(This article belongs to the Special Issue Plant Pathogens and Mycotoxins)
Show Figures

Graphical abstract

22 pages, 14611 KiB  
Article
Transcriptomic and Metabolomic Insights into the Effects of Arbuscular Mycorrhizal Fungi on Root Vegetative Growth and Saline–Alkali Stress Response in Oat (Avena sativa L.)
by Xingzhe Wang, Xiaodan Ma, Senyuan Wang, Peng Zhang, Lu Sun, Zhenyu Jia, Yuehua Zhang, Qiuli Bao, Yuying Bao and Jie Wei
J. Fungi 2025, 11(8), 587; https://doi.org/10.3390/jof11080587 - 9 Aug 2025
Viewed by 531
Abstract
Soil salinization limits the growth of agricultural crops in the world, requiring the use of methods to increase the tolerance of agricultural crops to salinity–alkali stress. Arbuscular mycorrhizal fungi (AMF) enhance plant stress adaptation through symbiosis and offer a promising strategy for remediation. [...] Read more.
Soil salinization limits the growth of agricultural crops in the world, requiring the use of methods to increase the tolerance of agricultural crops to salinity–alkali stress. Arbuscular mycorrhizal fungi (AMF) enhance plant stress adaptation through symbiosis and offer a promising strategy for remediation. However, in non-model crops such as oat (Avena sativa L.), research has mainly focused on physiological assessments, while the key genes and metabolic pathways involved in AMF-mediated growth and saline–alkali tolerance remain unclear. In this study, we employed integrated multi-omics and physiological analyses to explore the regulatory mechanisms of AMF in oats under normal and saline–alkali stress. The results indicated that AMF symbiosis significantly promoted oat growth and physiological performance under both normal and saline–alkali stress conditions. Compared to the non-inoculated group under normal conditions, AMF increased plant height and biomass by 8.5% and 15.3%, respectively. Under saline–alkali stress, AMF enhanced SPAD value and relative water content by 16.7% and 7.3%, reduced MDA content by 35.8%, increased soluble protein by 21.8%, and decreased proline by 13.3%. In addition, antioxidant enzyme activities (SOD, POD, and CAT) were elevated by 18.4%, 18.2%, and 14.8%, respectively. Transcriptomic analysis revealed that AMF colonization under saline–alkali stress induced about twice as many differentially expressed genes (DEGs) as under non-saline–alkali stressed conditions. These DEGs were primarily associated with Environmental Information Processing, Genetic Information Processing, and Metabolic Processes. According to metabolomic analysis, a total of 573 metabolites were identified across treatments, mainly comprising lipids (29.3%), organic compounds (36.8%), and secondary metabolites (21.5%). Integrated multi-omics analysis indicated that AMF optimized energy utilization and antioxidant defense by enhancing phenylpropanoid biosynthesis and amino acid metabolism pathways. This study provides new insights into how AMF may enhance oat growth and tolerance to saline–alkali stress. Full article
Show Figures

Figure 1

21 pages, 14870 KiB  
Article
Exploring the Mechanisms of Amino Acid and Bioactive Constituent Formation During Fruiting Body Development in Lyophyllum decastes by Metabolomic and Transcriptomic Analyses
by Lidan Liang, Peijin Zhang, Jiayan Lu, Wenjin Han, Pengfei Ren, Yufei Lan, Qingji Wang, Zhuang Li and Li Meng
J. Fungi 2025, 11(8), 586; https://doi.org/10.3390/jof11080586 - 8 Aug 2025
Viewed by 509
Abstract
Lyophyllum decastes, a common edible mushroom, is prized for its exceptional taste and rich nutritional composition. The concentrations of amino acids and polysaccharides in the fruiting body exhibited a dynamic increase throughout development, reaching their highest levels in the maturation stages, with [...] Read more.
Lyophyllum decastes, a common edible mushroom, is prized for its exceptional taste and rich nutritional composition. The concentrations of amino acids and polysaccharides in the fruiting body exhibited a dynamic increase throughout development, reaching their highest levels in the maturation stages, with values of 45,107.39 μg/g and 13.66 mg/g, respectively. Integrated metabolomic and transcriptomic analyses uncovered dynamic metabolites changing during the transition from vegetative growth to reproductive development. Several differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were identified, associated with secondary metabolite, amino acid, and carbohydrate metabolism. The shift in metabolites was linked to key nutrient synthesis, explaining the abundant production of amino acids and polysaccharides at maturity. Our results provide novel insights into the developmental biology of L. decastes, demonstrating that this mushroom is a valuable source of bioactive compounds and contributing to the optimization of cultivation strategies, as well as improving research into its application as a functional food and nutraceutical source. Full article
Show Figures

Figure 1

12 pages, 719 KiB  
Brief Report
Epidemiology and Characteristics of Invasive Yeast Infections in Patients with Hematologic Diseases: 12-Year Single-Center Retrospective Cohort Study
by Dong Young Kim, Keon Oh, Minseung Song, Hyemin Kweon, Dukhee Nho, Hanter Hong, Raeseok Lee, Dong-Gun Lee and Sung-Yeon Cho
J. Fungi 2025, 11(8), 585; https://doi.org/10.3390/jof11080585 - 8 Aug 2025
Viewed by 520
Abstract
Invasive yeast infections (IYIs) remain a significant cause of morbidity and mortality in patients with hematologic diseases. We retrospectively analyzed 193 IYI episodes among 179 patients admitted to a tertiary hematology hospital (2012–2023). Candida species accounted for 91.7% (n = 177), while non- [...] Read more.
Invasive yeast infections (IYIs) remain a significant cause of morbidity and mortality in patients with hematologic diseases. We retrospectively analyzed 193 IYI episodes among 179 patients admitted to a tertiary hematology hospital (2012–2023). Candida species accounted for 91.7% (n = 177), while non-Candida yeasts comprised 8.3% (n = 16). Among invasive candidiasis, non-albicans Candida spp. were predominant, representing 76.8% (136/177), with C. tropicalis (36.2%, 64/177) being the most frequently isolated species. Among non-Candida yeasts, Cryptococcus neoformans (n = 10) was the most commonly identified pathogen. The incidence and 42-day mortality rate of IYIs were 0.199 and 0.095 per 1000 patient-days, respectively. The 42-day case-fatality rate remained high at 47.7%. In categorical analysis, age >65 years, corticosteroid use, elevated lactate (>2 mmol/L), neutropenia (<500/mm3), vasopressor use, and mechanical ventilation were more common in non-survivors. Primary bloodstream infections were more frequent in non-survivors, whereas catheter-related and abdominal-origin infections were predominant among survivors. Concomitant bacteremia was observed in 32.6% of IYI cases (n = 63), with Enterococcus faecium being the most frequently isolated co-pathogen. Our findings illustrate the evolving epidemiology of IYIs in hematologic patients, marked by the emergence of C. tropicalis as the predominant species, sustained mortality, and frequent bacterial co-infections, collectively reflecting the substantial clinical burden of IYIs. Full article
(This article belongs to the Special Issue Clinical and Epidemiological Study of Mycoses)
Show Figures

Figure 1

18 pages, 865 KiB  
Review
Proteomics-Based Approaches to Decipher the Molecular Strategies of Botrytis cinerea: A Review
by Olivier B. N. Coste, Almudena Escobar-Niño and Francisco Javier Fernández-Acero
J. Fungi 2025, 11(8), 584; https://doi.org/10.3390/jof11080584 - 6 Aug 2025
Viewed by 554
Abstract
Botrytis cinerea is a highly versatile pathogenic fungus, causing significant damage across a wide range of plant species. A central focus of this review is the recent advances made through proteomics, an advanced molecular tool, in understanding the mechanisms of B. cinerea infection. [...] Read more.
Botrytis cinerea is a highly versatile pathogenic fungus, causing significant damage across a wide range of plant species. A central focus of this review is the recent advances made through proteomics, an advanced molecular tool, in understanding the mechanisms of B. cinerea infection. Recent advances in mass spectrometry-based proteomics—including LC-MS/MS, iTRAQ, MALDI-TOF, and surface shaving—have enabled the in-depth characterization of B. cinerea subproteomes such as the secretome, surfactome, phosphoproteome, and extracellular vesicles, revealing condition-specific pathogenic mechanisms. Notably, in under a decade, the proportion of predicted proteins experimentally identified has increased from 10% to 52%, reflecting the rapid progress in proteomic capabilities. We explore how proteomic studies have significantly enhanced our knowledge of the fungus secretome and the role of extracellular vesicles (EVs), which play key roles in pathogenesis, by identifying secreted proteins—such as pH-responsive elements—that may serve as biomarkers and therapeutic targets. These technologies have also uncovered fine regulatory mechanisms across multiple levels of the fungal proteome, including post-translational modifications (PTMs), the phosphomembranome, and the surfactome, providing a more integrated view of its infection strategy. Moreover, proteomic approaches have contributed to a better understanding of host–pathogen interactions, including aspects of the plant’s defensive responses. Furthermore, this review discusses how proteomic data have helped to identify metabolic pathways affected by novel, more environmentally friendly antifungal compounds. A further update on the advances achieved in the field of proteomics discovery for the organism under consideration is provided in this paper, along with a perspective on emerging tools and future developments expected to accelerate research and improve targeted intervention strategies. Full article
(This article belongs to the Special Issue Plant Pathogenic Sclerotiniaceae)
Show Figures

Graphical abstract

37 pages, 910 KiB  
Review
Invasive Candidiasis in Contexts of Armed Conflict, High Violence, and Forced Displacement in Latin America and the Caribbean (2005–2025)
by Pilar Rivas-Pinedo, Juan Camilo Motta and Jose Millan Onate Gutierrez
J. Fungi 2025, 11(8), 583; https://doi.org/10.3390/jof11080583 - 6 Aug 2025
Viewed by 860
Abstract
Invasive candidiasis (IC), characterized by the most common clinical manifestation of candidemia, is a fungal infection with a high mortality rate and a significant impact on global public health. It is estimated that each year there are between 227,000 and 250,000 hospitalizations related [...] Read more.
Invasive candidiasis (IC), characterized by the most common clinical manifestation of candidemia, is a fungal infection with a high mortality rate and a significant impact on global public health. It is estimated that each year there are between 227,000 and 250,000 hospitalizations related to IC, with more than 100,000 associated deaths. In Latin America and the Caribbean (LA&C), the absence of a standardized surveillance system has led to multicenter studies documenting incidences ranging from 0.74 to 6.0 cases per 1000 hospital admissions, equivalent to 50,000–60,000 hospitalizations annually, with mortality rates of up to 60% in certain high-risk groups. Armed conflicts and structural violence in LA&C cause forced displacement, the collapse of health systems, and poor living conditions—such as overcrowding, malnutrition, and lack of sanitation—which increase vulnerability to opportunistic infections, such as IC. Insufficient specialized laboratories, diagnostic technology, and trained personnel impede pathogen identification and delay timely initiation of antifungal therapy. Furthermore, the empirical use of broad-spectrum antibiotics and the limited availability of echinocandins and lipid formulations of amphotericin B have promoted the emergence of resistant non-albicans strains, such as Candida tropicalis, Candida parapsilosis, and, in recent outbreaks, Candidozyma auris. Full article
Show Figures

Figure 1

16 pages, 1827 KiB  
Article
Mixed Candida albicansStaphylococcus aureus Biofilm Is Reduced by Light-Activated Nanocomposite with Phloxine B
by Jarmila Czucz Varga, Juraj Bujdák and Helena Bujdáková
J. Fungi 2025, 11(8), 582; https://doi.org/10.3390/jof11080582 - 5 Aug 2025
Viewed by 597
Abstract
Candida albicans and Staphylococcus aureus are opportunistic pathogens that cause life-threatening infections. This study focused on using photodynamic inactivation (PDI) to eliminate mixed biofilms of C. albicans–S. aureus formed on poly (urethane) (PU) discs functionalized with a nanocomposite layer containing phloxine B (PhB). [...] Read more.
Candida albicans and Staphylococcus aureus are opportunistic pathogens that cause life-threatening infections. This study focused on using photodynamic inactivation (PDI) to eliminate mixed biofilms of C. albicans–S. aureus formed on poly (urethane) (PU) discs functionalized with a nanocomposite layer containing phloxine B (PhB). Additionally, the effect of PDI on the ALS3 and HWP1 genes of C. albicans was examined in mixed biofilms. Spectral analysis showed a continuous release of PhB from the nanocomposite in Mueller–Hinton broth within 48 h, with a released amount of PhB < 5% of the total amount. The anti-biofilm effectiveness of the light-activated nanocomposite with PhB showed a reduction in the survival rate of biofilm cells to 0.35% and 31.79% for S. aureus and C. albicans, respectively, compared to the control biofilm on PU alone. Scanning electron microscopy images showed that the nanocomposite effectively reduced the colonization and growth of the mixed biofilm. While PDI reduced the regulation of the ALS3 gene, the HWP1 gene was upregulated. Nevertheless, the cell survival of the C. albicansS. aureus biofilm was significantly reduced, showing great potential for the elimination of mixed biofilms. Full article
Show Figures

Figure 1

12 pages, 3657 KiB  
Communication
The Role of Setophoma terrestris in Pink Root Disease: New Insights and Host Range in Brazil
by Gustavo Henrique Silva Peixoto, Thais Franca Silva, Laura Freitas Copati, Ailton Reis, Valter Rodrigues Oliveira, Valdir Lourenço, Jr. and Danilo Batista Pinho
J. Fungi 2025, 11(8), 581; https://doi.org/10.3390/jof11080581 - 5 Aug 2025
Viewed by 562
Abstract
The soil-borne fungi, Setophoma terrestris and Fusarium spp., are often associated with pink root, although the etiology of the disease remains doubtful. While recognized as the primary inoculum, studies show conflicting views on the formation of chlamydospores and microsclerotia in Setophoma. Therefore, [...] Read more.
The soil-borne fungi, Setophoma terrestris and Fusarium spp., are often associated with pink root, although the etiology of the disease remains doubtful. While recognized as the primary inoculum, studies show conflicting views on the formation of chlamydospores and microsclerotia in Setophoma. Therefore, this study aims to clarify the etiology of the pink root of garlic and onion and the formation of chlamydospores and microsclerotia in Setophoma. The isolates were obtained from symptomatic tissues of garlic, leeks, brachiaria, onions, chives, and maize collected from seven different states in Brazil. Representative isolates were selected for pathogenicity tests. Sequence comparison of the tubulin gene showed Setophoma (n = 50) and Fusarium clades (n = 25). Garlic and onion plants inoculated with Setophoma showed pink root symptoms, while plants inoculated with different Fusarium isolates remained asymptomatic. Multigene analysis of pathogenic isolates confirms that only Setophoma terrestris causes pink root in garlic and onion. In addition, brachiaria, chives, and leeks are newly identified hosts of this pathogen in Brazil. To our knowledge, the main sources of primary inoculum of the disease are chlamydospores, pycnidia, colonized roots of garlic, onion, and plant debris of susceptible crops. The new information obtained in this study will be fundamental for researchers in the development of genotypes that are resistant to pink root and will help the efficient management of the disease. Full article
(This article belongs to the Special Issue Current Research in Soil Borne Plant Pathogens)
Show Figures

Figure 1

19 pages, 7841 KiB  
Article
Co-Expression Network Analysis Suggests PacC Transcriptional Factor Involved in Botryosphaeria dothidea Pathogenicity in Chinese Hickory
by Dong Liang, Yiru Jiang, Wei Ai, Yu Zhang, Chengxing Mao, Tianlin Ma and Chuanqing Zhang
J. Fungi 2025, 11(8), 580; https://doi.org/10.3390/jof11080580 - 4 Aug 2025
Viewed by 511
Abstract
Botryosphaeria dothidea is the causative agent of Chinese hickory trunk canker, which poses significant threat to the production of Chinese hickory (Carya cathayensis Sarg.). Previous studies reported that endophytic–pathogenic phase transition, also referred to as latent infection, plays an important role in [...] Read more.
Botryosphaeria dothidea is the causative agent of Chinese hickory trunk canker, which poses significant threat to the production of Chinese hickory (Carya cathayensis Sarg.). Previous studies reported that endophytic–pathogenic phase transition, also referred to as latent infection, plays an important role in the interaction of Botryosphaeria dothidea with various host plants, including Chinese hickory. However, the mechanism underlying this phase transition is not well understood. Here, we employed RNA-Seq to investigate transcriptional changes in B. dothidea during its phase transition upon interaction with Chinese hickory. A co-expression network was generated based on 6391 differentially expressed genes (DEGs) identified from different infection stages and temperature treatments. One co-expressed module was found that highly correlated with temperature treatments which simulated conditions of B. dothidea latent infection in the field. Subsequently, 53 hub genes were detected, and gene ontology (GO) enrichment analysis revealed three categories of enriched GO terms: transmembrane transport or activity, ion homeostasis or transport, and carbohydrate metabolism. One PacC transcriptional factor (BDLA_00001555, an ambient pH regulator), and one endo-β-1,3-glucanase (BDLA_00010249) were specifically upregulated under temperature treatments that corresponded with the activation stage of B. dothidea’s pathogenic state. The knockout mutant strain of BDLA_00001555 demonstrated defective capability upon the activation of the pathogenic state. This confirmed that BDLA_00001555, the PacC transcriptional factor, plays an important role in the latent infection phase of B. dothidea. Our findings provide insights into the pathogenic mechanism of Chinese hickory trunk canker disease. Full article
(This article belongs to the Special Issue Fungal Metabolomics and Genomics, 2nd Edition)
Show Figures

Figure 1

22 pages, 3515 KiB  
Article
Biodegradation of Chloroquine by a Fungus from Amazonian Soil, Penicillium guaibinense CBMAI 2758
by Patrícia de Almeida Nóbrega, Samuel Q. Lopes, Lucas S. Sá, Ryan da Silva Ramos, Fabrício H. e Holanda, Inana F. de Araújo, André Luiz M. Porto, Willian G. Birolli and Irlon M. Ferreira
J. Fungi 2025, 11(8), 579; https://doi.org/10.3390/jof11080579 - 4 Aug 2025
Viewed by 625
Abstract
Concern over the presence of pharmaceutical waste in the environment has prompted research into the management of emerging organic micropollutants (EOMs). In response, sustainable technologies have been applied as alternatives to reduce the effects of these contaminants. This study investigated the capacity of [...] Read more.
Concern over the presence of pharmaceutical waste in the environment has prompted research into the management of emerging organic micropollutants (EOMs). In response, sustainable technologies have been applied as alternatives to reduce the effects of these contaminants. This study investigated the capacity of filamentous fungi isolated from iron mine soil in the Amazon region to biodegrade the drug chloroquine diphosphate. An initial screening assessed the growth of four fungal strains on solid media containing chloroquine diphosphate: Trichoderma pseudoasperelloides CBMAI 2752, Penicillium rolfsii CBMAI 2753, Talaromyces verruculosus CBMAI 2754, and Penicillium sp. cf. guaibinense CBMAI 2758. Among them, Penicillium sp. cf. guaibinense CBMAI 2758 was selected for further testing in liquid media. A Box–Behnken factorial design was applied with three variables, pH (5, 7, and 9), incubation time (5, 10, and 15 days), and chloroquine diphosphate concentration (50, 75, and 100 mg·L−1), totaling 15 experiments. The samples were analyzed by gas chromatography–mass spectrometry (GC-MS). The most effective conditions for chloroquine biodegradation were pH 7, 100 mg·L−1 concentration, and 10 days of incubation. Four metabolites were identified: one resulting from N-deethylation M1 (N4-(7-chloroquinolin-4-yl)-N1-ethylpentane-1,4-diamine), two from carbon–carbon bond cleavage M2 (7-chloro-N-ethylquinolin-4-amine) and M3 (N1,N1-diethylpentane-1,4-diamine), and one from aromatic deamination M4 (N1-ethylbutane-1,4-diamine) by enzymatic reactions. The toxicity analysis showed that the products obtained from the biodegradation of chloroquine were less toxic than the commercial formulation of this compound. These findings highlight the biotechnological potential of Amazonian fungi for drug biodegradation and decontamination. Full article
(This article belongs to the Special Issue Fungal Biotechnology and Application 3.0)
Show Figures

Graphical abstract

Previous Issue
Back to TopTop