The Fungal Cell Death Regulator czt-1 Is Allelic to acr-3
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vallabhaneni, S.; Mody, R.K.; Walker, T.; Chiller, T. The Global Burden of Fungal Diseases. Infect. Dis. Clin. N. Am. 2016, 30, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Avery, S.V.; Singleton, I.; Magan, N.; Goldman, G.H. The fungal threat to global food security. Fungal Biol. 2019, 123, 555–557. [Google Scholar] [CrossRef] [PubMed]
- Kettles, G.J.; Luna, E. Food security in 2044: How do we control the fungal threat? Fungal Biol. 2019, 123, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Perlin, D.S.; Rautemaa-Richardson, R.; Alastruey-Izquierdo, A. The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect. Dis. 2017, 17, e383–e392. [Google Scholar] [CrossRef]
- Shor, E.; Perlin, D.S. Coping with stress and the emergence of multidrug resistance in fungi. PLoS Pathog. 2015, 11, e1004668. [Google Scholar] [CrossRef] [Green Version]
- Goncalves, A.P.; Heller, J.; Daskalov, A.; Videira, A.; Glass, N.L. Regulated Forms of Cell Death in Fungi. Front. Microbiol. 2017, 8, 1837. [Google Scholar] [CrossRef] [PubMed]
- McCluskey, K.; Wiest, A.; Plamann, M. The Fungal Genetics Stock Center: a repository for 50 years of fungal genetics research. J. Biosci. 2010, 35, 119–126. [Google Scholar] [CrossRef]
- Goncalves, A.P.; Cordeiro, J.M.; Monteiro, J.; Munoz, A.; Correia-de-Sa, P.; Read, N.D.; Videira, A. Activation of a TRP-like channel and intracellular Ca2+ dynamics during phospholipase-C-mediated cell death. J. Cell Sci. 2014, 127, 3817–3829. [Google Scholar] [CrossRef] [Green Version]
- Goncalves, A.P.; Cordeiro, J.M.; Monteiro, J.; Lucchi, C.; Correia-de-Sa, P.; Videira, A. Involvement of mitochondrial proteins in calcium signaling and cell death induced by staurosporine in Neurospora crassa. Biochim. Biophys. Acta 2015, 1847, 1064–1074. [Google Scholar] [CrossRef] [Green Version]
- Goncalves, A.P.; Hall, C.; Kowbel, D.J.; Glass, N.L.; Videira, A. CZT-1 is a novel transcription factor controlling cell death and natural drug resistance in Neurospora crassa. G3 (Bethesda) 2014, 4, 1091–1102. [Google Scholar] [CrossRef] [Green Version]
- Hsu, K.S. Acriflavin resistance controlled by chromosomal genes in Neurospora. Neurospora Newsl. 1965, 8, 4–6. [Google Scholar] [CrossRef] [Green Version]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, A.S.; Goncalves, A.P.; Castro, A.; Lopes, T.A.; Gardner, R.; Glass, N.L.; Videira, A. Modulation of fungal sensitivity to staurosporine by targeting proteins identified by transcriptional profiling. Fungal Genet. Biol. 2011, 48, 1130–1138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perkins, D.D.; Radford, A.; Sachs, M.S. The Neurospora Compendium: Chromosomal Loci; Academic Press: San Diego, CA, USA, 2001. [Google Scholar]
- McCluskey, K.; Wiest, A.E.; Grigoriev, I.V.; Lipzen, A.; Martin, J.; Schackwitz, W.; Baker, S.E. Rediscovery by Whole Genome Sequencing: Classical Mutations and Genome Polymorphisms in Neurospora crassa. G3 (Bethesda) 2011, 1, 303–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perkins, D.D.; Newmeyer, D.; Taylor, C.W.; Bennett, D.C. New markers and map sequences in Neurospora crassa, with a description of mapping by duplication coverage, and of multiple translocation stocks for testing linkage. Genetica 1969, 40, 247–278. [Google Scholar] [CrossRef]
- Sabolova, D.; Kristian, P.; Kozurkova, M. Proflavine/acriflavine derivatives with versatile biological activities. J. Appl. Toxicol. 2019. [Google Scholar] [CrossRef]
- Wiest, A.E.; Koch, S.; McCluskey, K. Analysis of the DNA sequence of the putative ABC transporter NCU09975 in Neurospora crassa strains carrying acriflavin resistance markers. Fungal Genet. Rep. 2012, 59, 26–29. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, M.; Nakashima, H. Molecular cloning of the acr-2 gene which controls acriflavine sensitivity in Neurospora crassa. Biochim. Biophys. Acta 1996, 1307, 187–192. [Google Scholar] [CrossRef]
- Carvajal, E.; Van den Hazel, H.B.; Cybularz-Kolaczkowska, A.; Balzi, E.; Goffeau, A. Molecular and phenotypic characterization of yeast PDR1 mutants that show hyperactive transcription of various ABC multidrug transporter genes. Mol. Gen. Genet. 1997, 256, 406–415. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, S.; Ischer, F.; Calabrese, D.; Posteraro, B.; Sanguinetti, M.; Fadda, G.; Rohde, B.; Bauser, C.; Bader, O.; Sanglard, D. Gain of function mutations in CgPDR1 of Candida glabrata not only mediate antifungal resistance but also enhance virulence. PLoS Pathog. 2009, 5, e1000268. [Google Scholar] [CrossRef] [Green Version]
- Carrillo, A.J.; Schacht, P.; Cabrera, I.E.; Blahut, J.; Prudhomme, L.; Dietrich, S.; Bekman, T.; Mei, J.; Carrera, C.; Chen, V.; et al. Functional Profiling of Transcription Factor Genes in Neurospora crassa. G3 (Bethesda) 2017, 7, 2945–2956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.Q.; Meng, F.Z.; Zhang, M.M.; Yin, L.F.; Yin, W.X.; Lin, Y.; Hsiang, T.; Peng, Y.L.; Wang, Z.H.; Luo, C.X. A Putative Zn2Cys6 Transcription Factor Is Associated With Isoprothiolane Resistance in Magnaporthe oryzae. Front. Microbiol. 2018, 9, 2608. [Google Scholar] [CrossRef] [PubMed]
- Karaman, M.W.; Herrgard, S.; Treiber, D.K.; Gallant, P.; Atteridge, C.E.; Campbell, B.T.; Chan, K.W.; Ciceri, P.; Davis, M.I.; Edeen, P.T.; et al. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 2008, 26, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Lin, G.; Gong, Y.; Pan, P.; Ma, Y.; Huang, P.; Ying, M.; Hou, T.; He, Q.; Yang, B. DNA-PKcs, a novel functional target of acriflavine, mediates acriflavine's p53-dependent synergistic anti-tumor efficiency with melphalan. Cancer Lett. 2016, 383, 115–124. [Google Scholar] [CrossRef]
- Hannun, Y.A.; Bell, R.M. Aminoacridines, potent inhibitors of protein kinase C. J. Biol. Chem. 1988, 263, 5124–5131. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, A.P.; McCluskey, K.; Glass, N.L.; Videira, A. The Fungal Cell Death Regulator czt-1 Is Allelic to acr-3. J. Fungi 2019, 5, 114. https://doi.org/10.3390/jof5040114
Gonçalves AP, McCluskey K, Glass NL, Videira A. The Fungal Cell Death Regulator czt-1 Is Allelic to acr-3. Journal of Fungi. 2019; 5(4):114. https://doi.org/10.3390/jof5040114
Chicago/Turabian StyleGonçalves, A. Pedro, Kevin McCluskey, N. Louise Glass, and Arnaldo Videira. 2019. "The Fungal Cell Death Regulator czt-1 Is Allelic to acr-3" Journal of Fungi 5, no. 4: 114. https://doi.org/10.3390/jof5040114
APA StyleGonçalves, A. P., McCluskey, K., Glass, N. L., & Videira, A. (2019). The Fungal Cell Death Regulator czt-1 Is Allelic to acr-3. Journal of Fungi, 5(4), 114. https://doi.org/10.3390/jof5040114