Native Arbuscular Mycorrhizal Fungi Characterization from Saline Lands in Arid Oases, Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Soil Sampling
2.2. Preparation of Trap Plants and Cultivation
2.3. Morphological Analysis for AMF Detection
2.4. Root and Soil DNA Extraction, Nested PCR Amplification, Cloning, and RFLP Typing
2.5. Phylogenetic Analysis
3. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Evelin, H.; Devi, T.S.; Gupta, S.; Kapoor, R. Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: Current understanding and new challenges. Front. Plant Sci. 2019, 10, 470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashem, A.; Alqarawi, A.A.; Radhakrishnan, R.; Al-Arjani, A.F.; Aldehaish, H.A.; Egamberdieva, D.; Abd Allah, E.F. Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saud. J. Biol. Sci. 2018, 25, 1102–1114. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, A.; Zong, L.; Huang, C.H.; Vitale, L.; Volpe, M.G.; Xue, X. Effect of salinity on growth parameters, soil water potential and ion composition in Cucumis melo cv. Huanghemi in North-Western China. J. Agric. Crop Sci. 2017, 203, 41–55. [Google Scholar] [CrossRef]
- Chinnusamy, V.; Jagendorf, A.; Zhu, J.-K. Understanding and improving salt tolerance in plants. Crop Sci. 2005, 45, 437–448. [Google Scholar] [CrossRef] [Green Version]
- Rozema, J.; Flowers, T. Crops for a salinized world. Science 2008, 322, 1478–1480. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.; Ramanarao, M.V.; Bedre, R.; Sanchez, L.; Pilcher, W.; Zandkarimi, H.; Baisakh, N. Salt adaptation mechanisms of halophytes: Improvement of salt tolerance in crop plants. In Elucidation of Abiotic Stress Signaling in Plants: Functional Genomics Perspectives; Pandey, G.K., Ed.; Springer: New York, NY, USA, 2015; Volume 2, pp. 243–280. [Google Scholar]
- Dodd, I.C.; Perez-Alfocea, F. Microbial amelioration of crop salinity stress. J. Exp. Bot. 2012, 63, 3415–3428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balestrini, R.; Lumini, E. Focus on mycorrhizal symbioses. Appl. Soil Ecol. 2018, 123, 299–304. [Google Scholar] [CrossRef]
- Etesami, H.; Beattie, G.A. Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front. Microbiol. 2018, 9, 148. [Google Scholar] [CrossRef] [Green Version]
- Navarro, J.M.; Pérez-Tornero, O.; Morte, A. Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. J. Plant Physiol. 2014, 171, 76–85. [Google Scholar] [CrossRef]
- Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Ahmed, N.; Zhang, L. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Front. Plant Sci. 2019, 10, 1068. [Google Scholar] [CrossRef] [Green Version]
- Estrada, B.; Aroca, R.; Barea, J.M.; Ruiz-Lozano, J.M. Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Sci. 2013, 201, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Estrada, B.; Beltrán-Hermoso, M.; Palenzuela, J.; Iwase, K.; Ruiz-Lozano, J.M.; Barea, J.M.; Oehl, F. Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Asteriscus maritimus Less., a representative plant species in arid and saline Mediterranean ecosystems. J. Arid Environ. 2013, 97, 170–175. [Google Scholar] [CrossRef]
- Juniper, S.; Abbott, L.K. Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 2006, 16, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Armada, E.; Azcón, R.; López-Castillo, O.M.; Calvo-Polanco, M.; Ruiz-Lozano, J.M. Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions. Plant Physiol. Biochem. 2015, 90, 64–74. [Google Scholar] [CrossRef]
- Lenoir, I.; Fontaine, J.; Sahraoui, A.L.H. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review. Phytochemistry 2016, 123, 4–15. [Google Scholar] [CrossRef]
- Xue, X.; Liao, J.; Hsing, Y.T.; Huang, C.H.; Liu, F.M. Policies, land use, and water resource management in an arid oasis ecosystem. Environ. Manag. 2015, 55, 1036–1051. [Google Scholar] [CrossRef]
- Pollastri, S.; Savvides, A.; Pesando, M.; Lumini, E.; Volpe, M.G.; Ozudogru, E.A.; Faccio, A.; De Cunzo, F.; Michelozzi, M.; Lambardi, M.; et al. Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. Planta 2018, 247, 573–585. [Google Scholar] [CrossRef]
- Borriello, R.; Berruti, A.; Lumini, E.; Della Beffa, M.T.; Scariot, V.; Bianciotto, V. Edaphic factors trigger diverse AM fungal communities associated to exotic camellias in closely located Lake Maggiore (Italy) sites. Mycorrhiza 2015, 25, 253–265. [Google Scholar] [CrossRef]
- Błaszkowski, J.; Chwat, G.; Góralska, A.; Ryszka, P.; Orfanoudakis, M. Septoglomus jasnowskae and Septoglomus turnauae, two new species of arbuscular mycorrhizal fungi (Glomeromycota). Mycol. Prog. 2014, 13, 999–1009. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE); IEEE Publisher, New Orleans, LA, USA, 2010; pp. 1–8. [Google Scholar]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Brundrett, M.C. Mycorrhizas in natural ecosystems. In Advances in Ecological Research; Macfayden, A., Begon, M., Fitter, A.H., Eds.; Academic Press: London, UK, 1991; Volume 21, pp. 171–313. [Google Scholar]
- Carvalho, L.M.; Correia, P.H.; Martins-Loucao, A. Arbuscular mycorrhizal fungal propagules in a salt marsh. Mycorrhiza 2001, 14, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Aliasgharzadeh, N.; Saleh Rastin, N.; Towfighi, H.; Alizadeh, A. Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 2001, 11, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Becerra, A.; Bartoloni, N.; Cofré, N.; Soteras, F.; Cabello, M. Arbuscular mycorrhizal fungi in saline soils: Vertical distribution at different soil depth. Braz. J. Microbiol. 2014, 45, 585–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antunes, P.M.; Koch, A.M.; Morton, J.B.; Rillig, M.C.; Klironomos, J.N. Evidence for functional divergence in arbuscular mycorrhizal fungi from contrasting climatic origins. New Phytol. 2011, 189, 507–514. [Google Scholar] [CrossRef]
- Ferrol, N.; Calvente, R.; Cano, C.; Barea, J.-M.; Azcón-Aguilar, C. Analysing arbuscular mycorrhizal fungal diversity in shrub-associated resource islands from a desertification-threatened semiarid Mediterranean ecosystem. Appl. Soil Ecol. 2004, 25, 123–133. [Google Scholar] [CrossRef]
- Berruti, A.; Borriello, R.; Lumini, E.; Scariot, V.; Bianciotto, V.; Balestrini, R. Application of laser microdissection to identify the mycorrhizal fungi that establish arbuscules inside root cells. Front. Plant Sci. 2013, 4, 135. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Yu, H.; Zhang, T.; Guo, J. Mycorrhizal colonization of chenopods and its influencing factors in different saline habitats. China J. Arid Land 2017, 9, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Goomaral, A.; Iwase, K.; Undarmaa, J.; Matsumoto, T.; Yamato, M. Communities of arbuscular mycorrhizal fungi in Stipa krylovii (Poaceae) in the Mongolian steppe. Mycoscience 2013, 54, 122–129. [Google Scholar] [CrossRef]
- Guo, X.; Gong, J. Differential effects of abiotic factors and host plant traits on diversity and community composition of root-colonizing arbuscular mycorrhizal fungi in a salt-stressed ecosystem. Mycorrhiza 2014, 24, 79–94. [Google Scholar] [CrossRef]
- Torrecillas, E.; Torres, P.; Alguacil, M.M.; Querejeta, J.I.; Roldan, A. Influence of habitat and climate variables on arbuscular mycorrhizal fungus community distribution, as revealed by a case study of facultative plant epiphytism under semiarid conditions. J. Appl. Environ. Microbiol. 2013, 79, 7203–7209. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Echevarria, S.; Freitas, H. Diversity of AMF associated with Ammophila arenaria ssp arundinacea in Portuguese sand dunes. Mycorrhiza 2006, 16, 543–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Reference AMF | Node | Confidence Values | Phylogroups | N° of Clones Sequenced | |
---|---|---|---|---|---|
Soil | Root | ||||
Gigaspora margarita | I111 | 1.00 | Gi1 | 24 | 0 |
Diversispora spurca | I182 | 0.80 | Div1 | 0 | 1 |
Diversispora spurca | I183 | 0.83 | Div2 | 0 | 7 |
Diversispora sp. | I206 | 0.74 | Div3 | 0 | 1 |
Diversisporaceae sp. | I222 | 0.95 | Div4 | 0 | 15 |
Claroideoglomus sp. | I236 | 1 | Cla1 | 1 | 1 |
Claroideoglomus sp. | I240 | 0.95 | Cla2 | 0 | 1 |
Claroideoglomus sp. | I239 | 0.36 | Cla3 | 0 | 6 |
Claroideoglomus sp. | I267 | 0.35 | Cla4 | 0 | 2 |
Claroideoglomus sp. | I268 | 0.83 | Cla5 | 0 | 3 |
Funneliformis sp. | I281 | 0.82 | Fun1 | 0 | 1 |
Funneliformis mosseae | I287 | 0.95 | Fun2 | 0 | 1 |
Funneliformis sp. | I291 | 0.78 | Fun3 | 0 | 2 |
Septoglomus sp. | I304 | 0.90 | Sept1 | 1 | 0 |
Septoglomus sp. | I297 | 1.00 | Sept2 | 26 | 3 |
Glomeraceae sp. | I312 | 1.00 | Glo1 | 2 | 2 |
Dominikia iranica | I321 | 0.68 | Do1 | 1 | 0 |
Glomeraceae sp. | I322 | 1.00 | Glo2 | 3 | 4 |
Glomeraceae sp. | I326 | 0.93 | Glo3 | 8 | 3 |
Glomeraceae sp. | I327 | 0.95 | Glo4 | 5 | 0 |
Dominikia indica | I339 | 1.00 | Do2 | 1 | 0 |
Glomeraceae sp. | I340 | 1.00 | Glo5 | 11 | 7 |
Rhizophagus intraradices | I351 | 0.80 | Rh1 | 1 | 0 |
Rhizophagus arabicus | I373 | 0.89 | Rh2 | 28 | 0 |
Glomeraceae sp. | I380 | 0.85 | Glo6 | 26 | 0 |
Glomeraceae sp. | I383 | 1 | Glo7 | 1 | 0 |
Total | 26 | 139 | 60 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lumini, E.; Pan, J.; Magurno, F.; Huang, C.; Bianciotto, V.; Xue, X.; Balestrini, R.; Tedeschi, A. Native Arbuscular Mycorrhizal Fungi Characterization from Saline Lands in Arid Oases, Northwest China. J. Fungi 2020, 6, 80. https://doi.org/10.3390/jof6020080
Lumini E, Pan J, Magurno F, Huang C, Bianciotto V, Xue X, Balestrini R, Tedeschi A. Native Arbuscular Mycorrhizal Fungi Characterization from Saline Lands in Arid Oases, Northwest China. Journal of Fungi. 2020; 6(2):80. https://doi.org/10.3390/jof6020080
Chicago/Turabian StyleLumini, Erica, Jing Pan, Franco Magurno, Cuihua Huang, Valeria Bianciotto, Xian Xue, Raffaella Balestrini, and Anna Tedeschi. 2020. "Native Arbuscular Mycorrhizal Fungi Characterization from Saline Lands in Arid Oases, Northwest China" Journal of Fungi 6, no. 2: 80. https://doi.org/10.3390/jof6020080
APA StyleLumini, E., Pan, J., Magurno, F., Huang, C., Bianciotto, V., Xue, X., Balestrini, R., & Tedeschi, A. (2020). Native Arbuscular Mycorrhizal Fungi Characterization from Saline Lands in Arid Oases, Northwest China. Journal of Fungi, 6(2), 80. https://doi.org/10.3390/jof6020080