Phytophthora palmivora–Cocoa Interaction
Abstract
:1. Introduction
2. Morphology of P. palmivora (Ppal)
3. P. palmivora (Ppal)’s Infection Process in Cocoa
4. Overcoming Plant Host Immunity by Ppal and Other Oomycetes
4.1. Necrosis and Ethylene-Inducing Peptide 1 (Nep1)-Like Proteins
4.2. Lectins and Cellulose-Binding Elicitor Lectins (CBELs)
4.3. Elicitins
4.4. Glycoside Hydrolase 12 Proteins
4.5. Transglutaminases (Pep-13)
4.6. RxLR and CRN Effectors
5. Cocoa Diseases by P. palmivora (Ppal)
6. Ppal Isolates from Papua New Guinea Cocoa Plantations
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Erwin, D.; Ribeiro, O. Phytophthora Diseases Worldwide; APS Press: St. Paul, MN, USA, 1996. [Google Scholar]
- McCarthy, C.G.P.; Fitzpatrick, D.A. Phylogenomic reconstruction of the oomycete phylogeny derived from 37 genomes. mSphere 2017, 2, e00095-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acebo-Guerrero, Y.; Hernández-Rodríguez, A.; Heydrich-Pérez, M.; El Jaziri, M.; Hernández-Lauzardo, A. Management of black pod rot in cacao (Theobroma cacao L.): A review. Fruits 2012, 67, 41–48. [Google Scholar] [CrossRef]
- Guest, D. Black pod: Diverse pathogens with a global impact on cocoa yield. Phytopathology 2007, 97, 1650–1653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, E.J. Report of the imperial mycologist 1918–1919. Sci. Rep. Agric. Res. Inst. Pusa 1919, 1–82. [Google Scholar]
- Ploetz, R. The Impact of Diseases on Cacao Production: A Global Overview. In Cacao Diseases. A History of Old Enemies and New Encounters, 1st ed.; Bailey, B., Meinhardt, L., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 33–39. [Google Scholar]
- Kroon, L.; Brouwer, H.; de Cock, A.; Govers, F. The genus Phytophthora anno 2012. Phytopatholoy 2012, 102, 348–364. [Google Scholar] [CrossRef] [Green Version]
- Lamour, K.H.; Mudge, J.; Gobena, D.; Hurtado-Gonzales, O.P.; Schmutz, J.; Kuo, A.; Miller, N.A.; Rice, B.J.; Raffaele, S.; Cano, L.M.; et al. Genome sequencing and mapping reveal loss of heterozygosity as a mechanism for rapid adaptation in the vegetable pathogen Phytophthora capsici. Mol. Plant Microbe Interact. 2012, 25, 1350–1360. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Shao, J.; Lary, D.; Strem, M.; Meinhardt, L.; Bailey, B. Phytophthora megakarya and P. palmivora, Causal Agents of Black Pod Rot, Induce Similar Plant Defense Responses Late during Infection of Susceptible Cacao Pods. Front. Plant Sci. 2017, 8, 169. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.; Tyler, B.M. Genome organization of Phytophthora megasperma f.sp. glycinea. Exp. Mycol. 1991, 15, 283–291. [Google Scholar] [CrossRef]
- Mélida, H.; Sandoval-Sierra, J.V.; Diéguez-Uribeondo, J.; Bulonea, V. Analyses of extracellular carbohydrates in oomycetes unveil the existence of three different cell wall types. Eukaryot. Cell 2013, 12, 194–203. [Google Scholar] [CrossRef] [Green Version]
- Christen, J.; Hohl, H.R. Growth and ultrastructural differentiation of sporangia in Phytophthora palmivora. Can. J. Microbiol. 1972, 18, 1959–1964. [Google Scholar] [CrossRef]
- Saul Maora, J. Diversity of Phytophthora palmivora on Cocoa in Papua New Guinea. Ph.D. Thesis, University of Sydney, Sydney, Australia, August 2008. [Google Scholar]
- Cameron, J.N.; Carlile, M.J. Negative geotaxis of zoospores of the fungus Phytophthora. J. Gen. Microbiol. 1977, 98, 599–602. [Google Scholar] [CrossRef] [Green Version]
- Van West, P.; Morris, B.M.; Reid, B.; Appiah, A.A.; Osborne, M.C.; Campbell, T.A.; Shepherd, S.J.; Gow, N.A.R. Oomycete Plant Pathogens Use Electric Fields to Target Roots. MPMI 2002, 15, 790–798. [Google Scholar] [CrossRef] [Green Version]
- Bimpong, C.E.; Clerk, G.C. Motility and chemotaxis in zoospores of Phytophthora palmivora (Butl.) Butl. Ann. Bot. 1970, 34, 617–624. [Google Scholar] [CrossRef]
- Cameron, J.; Carlile, M. Fatty acids, aldehydes and alcohols as attractants for zoospores of Phytophthora palmivora. Nature 1978, 271, 448–449. [Google Scholar] [CrossRef]
- Cameron, J.N.; Carlile, M.J. Negative chemotaxis of zoospores of the fungus Phytophthora palmivora. J. Gen. Microbiol. 1980, 120, 347–353. [Google Scholar] [CrossRef] [Green Version]
- Uchida, J.Y.; Aragaki, M. Phytophthora Diseases of Orchids in Hawaii; HITAHR Research Extension Series 129; University of Hawaii: Honolulu, HI, USA, 1991; pp. 1–11. [Google Scholar]
- Surujdeo-Maharaj, S.; Sreenivasan, T.N.; Motilal, L.A.; Umaharan, P. Black Pod and Other Phytophthora Induced Diseases of Cacao: History, Biology, and Control. In Cacao Diseases. A History of Old Enemies and New Encounters, 1st ed.; Bailey, B., Meinhardt, L., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 213–266. [Google Scholar]
- Zentmyer, G.A.; Mitchell, D.J.; Jefferson, L.; Roheim, J.; Carnes, D. Distribution of mating types of Phytophthora palmivora. Phytopathology 1973, 63, 663–667. [Google Scholar] [CrossRef]
- Hemmes, D.; Lerma, A. The Ultrastructure of developing and germinating chlamydospores of Phytophthora palmivora. Mycologia 1985, 77, 743–755. [Google Scholar] [CrossRef]
- Ko, W. Long-term storage and survival structure of three species of Phytophthora in water. J. Gen. Plant. Pathol. 2003, 69, 186–188. [Google Scholar]
- Bodah, E.T. Root rot diseases in plants: A review of common causal agents and management strategies. Agric. Res. Technol. Open Access J. 2017, 5, 555661. [Google Scholar] [CrossRef]
- Rey, T.; Chatterjee, A.; Buttay, M.; Toulotte, J.; Schornack, S. Medicago truncatula symbiosis mutants affected in the interaction with a biotrophic root pathogen. New Phytol. 2015, 206, 497–500. [Google Scholar] [CrossRef] [Green Version]
- Rey, T.; Schornack, S. Interactions of beneficial and detrimental root colonizing filamentous microbes with plant hosts. Genome Biol. 2013, 14, 121. [Google Scholar] [CrossRef] [PubMed]
- Chaparro-Garcia, A.; Wilkinson, R.C.; Gimenez-Ibanez, S.; Findlay, K.; Coffey, M.D.; Zipfel, C.; Rathjen, J.P.; Kamoun, S.; Schornack, S. The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen Phytophthora infestans in Nicotiana benthamiana. PLoS ONE 2011, 6, e16608. [Google Scholar] [CrossRef] [PubMed]
- Evangelisti, E.; Gogleva, A.; Hainaux, T.; Doumane, M.; Tulin, F.; Quan, C.; Yunusov, T.; Floch, K.; Schornack, S. Time-resolved dual root-microbe transcriptomics reveals early induced Nicotiana benthamiana genes and conserved infection-promoting Phytophthora palmivora effectors. BMC Biol. 2017, 15, 39. [Google Scholar] [CrossRef] [PubMed]
- Carella, P.; Gogleva, A.; Tomaselli, M.; Alfs, C.; Schornack, S. Phytophthora palmivora establishes tissue-specific intracellular infection structures in the earliest divergent land plant lineage. Proc. Natl. Acad. Sci. USA 2018, 115, E3846–E3855. [Google Scholar] [CrossRef] [Green Version]
- Harris, D.C.; Cardon, J.A.; Justin, S.H.F.W.; Passey, A.J. Phytophthora palmivora on cultured roots of coconut. Trans. Brit. Mycol. Soc. 1984, 82, 249–255. [Google Scholar] [CrossRef]
- Mohamed Azni, I.; Sundram, S.; Ramachandran, V. Pathogenicity of Malaysian Phytophthora palmivora on cocoa, durian, rubber and oil palm determines the threat of bud rot disease. For. Pathol. 2019, 49, e12557. [Google Scholar] [CrossRef]
- Ochoa, J.C.; Herrera, M.; Navia, M.; Romero, H.M. Visualization of Phytophthora palmivora infection in oil palm leaflets with fluorescent proteins and cell viability markers. Plant. Pathol. J. 2019, 35, 19–31. [Google Scholar]
- Sarria, G.; Martinez, G.; Varon, F.; Drenth, A.; Guest, D. Histopathological studies of the process of Phytophthora palmivora infection in oil palm. Eur. J. Plant Pathol. 2016, 145, 39–51. [Google Scholar] [CrossRef]
- Johri, J.K.; Devi, S. Ultrastructural studies on Phytophthora palmivora infection on betelvine (Piper Betle, L.). Arch. Phytopathol. Pflanzenschutz. 1998, 31, 233–240. [Google Scholar] [CrossRef]
- Widmer, T.L. Phytophthora palmivora. For. Phytophthoras 2014, 4. [Google Scholar] [CrossRef]
- Widmer, T.L.; Graham, J.H.; Mitchell, D.J. Histological comparison of fibrous root infection of disease-tolerant and susceptible citrus hosts by Phytophthora nicotianae and P. palmivora. Phytopathology 1998, 88, 389–395. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, A.; Joseph, L.; Bindu, R.C. An insight into Hevea—Phytophthora interaction: The story of Hevea defense and Phytophthora counter defense mediated through molecular signalling. Curr. Plant Biol. 2019, 17, 33–41. [Google Scholar] [CrossRef]
- Hamill, S.D. Fruit rot of papaya caused by Phytophthora palmivora in Queensland. Australas. Plant Pathol. 1987, 16, 22. [Google Scholar] [CrossRef]
- Purwantara, A. Infection of Phytophthora palmivora from soil in cocoa plantation. Pelita Perkeb. 2008, 24, 205–218. [Google Scholar] [CrossRef]
- Bimpong, C.E.; Hickman, C.J. Ultrastructural and cytochemical studies of zoospores, cysts, and germinating cysts of Phytophthora palmivora. Can. J. Bot. 1975, 13, 1310–1327. [Google Scholar] [CrossRef]
- Sing, V.O.; Bartnicki-Garcia, S. Adhesion of zoospores of Phytophthora palmivora to solid surfaces. Phytopathology 1972, 62, 790. [Google Scholar]
- Deacon, J.W. Ecological implications of recognition events in the pre-infection stages of root pathogens. New Phytol. 1996, 133, 135–145. [Google Scholar] [CrossRef]
- Hardham, A.R.; Gubler, F. Polarity of attachment of zoospores of a root pathogen and prealignment of the emerging germ-tubes. Cell Biol. Int. 1990, 14, 947–956. [Google Scholar] [CrossRef]
- Islam, M.T.; Ito, T.; Tahara, S. Microscopic studies on attachment and differentiation of zoospores of the phytopathogenic fungus Aphanomyces cochlioides. J. Gen. Plant Pathol. 2002, 68, 111–117. [Google Scholar] [CrossRef]
- Dijksterhuis, J.; Deacon, J. Defective zoospore encystment and suppressed cyst germination of Phytophthora palmivora caused by transient leaching treatments. Antonie Van Leeuwenhoek 2003, 83, 235–243. [Google Scholar] [CrossRef]
- Grant, B.R.; Irving, H.R.; Radda, M. The effect of pectin and related compounds on encystment and germination of Phytophthora palmivora zoospores. J. Gen. Microbiol. 1984, 131, 669–676. [Google Scholar] [CrossRef] [Green Version]
- Irving, H.R.; Griffith, J.M.; Grant, B.R. Calcium efflux associated with encystment of Phytophthora palmivora zoospores. Cell Calcium 1984, 5, 487–500. [Google Scholar] [CrossRef]
- Zhang, Q.; Griffith, J.; Moore, J.; Iser, J.; Grant, B. The effect of modified pectin, pectin fragments and cations on Phytophthora palmivora zoospores. Phytochemistry 1990, 29, 695–700. [Google Scholar] [CrossRef]
- Guzmán, P.; Fernández, V.; García, M.; Khayet, M.; Fernández, A.; Gil, L. Localization of polysaccharides in isolated and intact cuticles of eucalypt, poplar and pear leaves by enzyme-gold labelling. Plant Physiol. Biochem. 2014, 76, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horowitz, B.; Ospina-Giraldo, M. The pectin methylesterase gene complement of Phytophthora sojae: Structural and functional analyses, and the evolutionary relationships with its oomycete homologs. PLoS ONE 2015, 10, e0142096. [Google Scholar] [CrossRef]
- Li, P.; Feng, B.; Wang, H.; Tooley, P.; Zhang, X.; Li, P. Isolation of nine Phytophthora capsici pectin methylesterase genes which are differentially expressed in various plant species. J. Basic. Microbiol. 2011, 51, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Mingora, C.; Ewer, J.; Ospina-Giraldo, M. Comparative structural and functional analysis of genes encoding pectin methylesterases in Phytophthora spp. Gene 2014, 538, 74–83. [Google Scholar] [CrossRef]
- Feng, B.; Li, P.; Wang, H.; Zhang, X. Functional analysis of Pcpme6 from oomycete plant pathogen Phytophthora capsici. Microb. Pathog. 2010, 49, 23–31. [Google Scholar] [CrossRef]
- Bircher, U.; Hohl, H.R. Environmental signalling during induction of appressorium formation in Phytophthora. Mycol. Res. 1997, 101, 395–402. [Google Scholar] [CrossRef]
- Ali, S.S.; Amoako-Attah, I.; Bailey, R.A.; Strem, M.D.; Schmidt, M.; Akrofi, A.Y.; Surujdeo-Maharaj, S.; Kolawole, O.O.; Begoude, B.A.D.; ten Hoopen, G.M.; et al. PCR-based identification of cacao black pod causal agents and identification of biological factors possibly contributing to Phytophthora megakarya’s field dominance in West Africa. Plant Pathol. 2016, 65, 1095–1108. [Google Scholar] [CrossRef]
- Tey, C.C. Control of Phytophthora palmivora (Butl.) Butl. on Cocoa. Ph.D. Thesis, University of London, London, UK, March 1982. [Google Scholar]
- Dale, M.L.; Irwin, J.A.G. Stomata as an infection court for Phytophthora megasperma f. sp. medicaginis in chickpea and a histological study of infection. Phytopathology 1991, 81, 375–379. [Google Scholar] [CrossRef]
- Howard, R.J. Breaching the Outer Barriers—Cuticle and Cell Wall Penetration. In Plant Relationships. The Mycota (A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research); Carroll, G.C., Tudzynski, P., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; Volume 5. [Google Scholar]
- Kebdani, N.; Pieuchot, L.; Deleury, E.; Panabières, F.; Le Berre, J.-Y.; Gourgues, M. Cellular and molecular characterization of Phytophthora parasitica appressorium-mediated penetration. New Phytologist. 2010, 185, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Le Fevre, R.; O’Boyle, B.; Moscou, M.; Schornack, S.; Le Fevre, R. Colonization of barley by the broad-host hemibiotrophic pathogen Phytophthora palmivora uncovers a leaf development-dependent involvement of Mlo. MPMI 2016, 29, 385–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardham, A. The cell biology behind Phytophthora pathogenicity. Australas. Plant Pathol. 2001, 30, 91–98. [Google Scholar] [CrossRef]
- Attard, A.; Gourgues, M.; Callemeyn-Torre, N.; Keller, H. The immediate activation of defense responses in Arabidopsis roots is not sufficient to prevent Phytophthora parasitica infection. New Phytologist. 2010, 187, 449–460. [Google Scholar] [CrossRef]
- Redondo, M.; Pérez-Sierra, A.; Abad-Campos, P.; Torres, L.; Solla, A.; Reig-Armiñana, J.; García-Breijo, F. Histology of Quercus ilex roots during infection by Phytophthora cinnamomi. Trees 2015, 29, 1943–1957. [Google Scholar] [CrossRef]
- Huisman, R.; Bouwmeester, K.; Brattinga, M.; Govers, F.; Bisseling, T.; Limpens, E. Haustorium formation in Medicago truncatula roots infected by Phytophthora palmivora does not involve the common endosymbiotic program shared by AM fungi and rhizobia. MPMI 2015, 8, 1271–1280. [Google Scholar] [CrossRef] [Green Version]
- Bozkurt, T.; Kamoun, S. The plant–pathogen haustorial interface at a glance. J. Cell Sci. 2020, 133, jcs237958. [Google Scholar] [CrossRef] [Green Version]
- Calonge, F. Ultrastructure of the haustoria or intracellular hyphae in four different fungi. Archiv. Für. Mikrobiol. 1969, 67, 209–225. [Google Scholar] [CrossRef]
- Daniel, R.; Guest, D. Defence responses induced by potassium phosphonate in Phytophthora palmivora-challenged Arabidopsis thaliana. Physiol. Mol. Plant Pathol. 2006, 67, 194–201. [Google Scholar] [CrossRef]
- Ehrlich, M.; Ehrlich, H. Fine structure of the host-parasite interfaces in mycoparasitism. Annu. Rev. Phytopathol. 1971, 9, 155–184. [Google Scholar] [CrossRef]
- Szabo, L.; Bushnell, W. Hidden Robbers: The role of fungal haustoria in parasitism of plants. Proc. Natl. Acad. Sci. USA 2001, 98, 7654–7655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozkurt, T.; Richardson, A.; Dagdas, Y.; Mongrand, S.; Kamoun, S.; Raffaele, S. The plant membrane-associated remorin1.3 accumulates in discrete perihaustorial domains and enhances susceptibility to Phytophthora infestans. Plant Physiol. 2014, 165, 1005–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhari, P.; Ahmed, B.; Joly, D.L.; Germain, H. Effector biology during biotrophic invasion of plant cells. Virulence 2014, 5, 703–709. [Google Scholar] [CrossRef] [Green Version]
- Chepsergon, J.; Motaung, T.; Bellieny-Rabelo, D.; Moleleki, L. Organize, Don’t Agonize: Strategic success of Phytophthora species. Microorganisms 2020, 8, 917. [Google Scholar] [CrossRef]
- Fawke, S.; Doumane, M.; Schornack, S. Oomycete interactions with plants: Infection strategies and resistance principles. MMBR 2015, 79, 263–280. [Google Scholar] [CrossRef] [Green Version]
- Judelson, H.S.; Ah-Fong, A.M.V. Exchanges at the plant-oomycete interface that influence disease. Plant Physiol. 2019, 179, 1198–1211. [Google Scholar] [CrossRef] [Green Version]
- Kamoun, S. A catalogue of the effector secretome of plant pathogenic oomycetes. Annu. Rev. Phytopathol. 2006, 44, 41–60. [Google Scholar] [CrossRef] [Green Version]
- Schornack, S.; Huitema, E.; Cano, L.M.; Bozkurt, T.O.; Oliva, R.; Van Damme, M.; Schwizer, S.; Raffaele, S.; Chaparro-Garcia, A.; Farrer, R.; et al. Ten things to know about oomycete effectors. Mol. Plant Pathol. 2009, 10, 795–803. [Google Scholar] [CrossRef] [Green Version]
- Stassen, J.H.M.; Van den Ackerveken, G. How do oomycete effectors interfere with plant life? Curr. Opin. Plant Biol. 2011, 14, 407–414. [Google Scholar] [CrossRef]
- Takemoto, D.; Yuri Mizuno, Y. Belowground and Aboveground Strategies of Plant Resistance against Phytophthora Species. In Belowground Defence Strategies in Plants. Signaling and Communication in Plants, 1st ed.; Vos, C., Kazan, K., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 151–169. [Google Scholar] [CrossRef]
- Tyler, B.M. Molecular basis of recognition between Phytophthora species and their hosts. Annu. Rev. Phytopathol. 2002, 40, 137–167. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Welsh, L.; Thorpe, P.; Whisson, S.C.; Boevink, P.C.; Birch, P. The Phytophthora infestans haustorium is a site for secretion of diverse classes of infection-associated proteins. MBio 2018, 9, e01216-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuechtbauer, W.; Yunusov, T.; Bozsóki, Z.; Gavrin, A.; James, E.K.; Stougaard, J.; Schornack, S.; Radutoiu, S. LYS 12 LysM Receptor decelerates Phytophthora palmivora disease progression in Lotus japonicus. Plant J. 2018, 93, 297–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orellana, R.G. Infection and tissue changes of Theobroma cacao L. by Phytophthora palmivora Butl. Turrialba 1953, 3, 167–172. [Google Scholar]
- Wang, S.; Boevink, P.C.; Welsh, L.; Zhang, R.; Whisson, S.C.; Birch, P. Delivery of cytoplasmic and apoplastic effectors from Phytophthora infestans haustoria by distinct secretion pathways. New Phytol. 2017, 216, 205–215. [Google Scholar] [CrossRef] [Green Version]
- Caplan, J.; Padmanabhan, M.; Dinesh-Kumar, S. Plant NB-LRR immune receptors: From recognition to transcriptional reprogramming. Cell Host Microbe 2008, 3, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Joshi, R.K.; Nayak, S. Functional characterization and signal transduction ability of nucleotide-binding site-leucine-rich repeat resistance genes in plants. GMR 2011, 10, 2637–2652. [Google Scholar] [CrossRef]
- Zhang, R.; Zheng, F.; Wei, S.; Zhang, S.; Li, G.; Cao, P.; Zhao, S. Evolution of disease defense genes and their regulators in plants. Int. J. Mol. Sci. 2019, 20, 335. [Google Scholar] [CrossRef] [Green Version]
- De Araújo, A.C.; Campos De Assis Fonseca, F.; Cotta, M.G.; Alves, G.S.C.; Miller, R.N.G. Plant NLR receptor proteins and their potential in the development of durable genetic resistance to biotic stresses, Biotechnol. Res. Innov. 2019, 3, 80–94. [Google Scholar]
- Balint-Kurti, P. The plant hypersensitive response: Concepts, control and consequences. Mol. Plant Pathol. 2019, 20, 1163–1178. [Google Scholar] [CrossRef] [Green Version]
- Eitas, T.K.; Dangl, J.L. NB-LRR proteins: Pairs, pieces, perception, partners, and pathways. Curr. Opin. Plant Biol. 2010, 13, 472–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomma, B.P.H.J.; Nürnberger, T.; Joosten, M.H.A.J. Of PAMPs and effectors: The blurred PTI-ETI Dichotomy. Plant. Cell 2011, 23, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Gu, B.; Cao, X.; Zhou, X.; Chen, Z.; Wang, Q.; Liu, W.; Chen, Q.; Zhao, H. The histological, effectoromic, and transcriptomic analyses of Solanum pinnatisectum reveal an upregulation of multiple NBS-LRR genes suppressing Phytophthora infestans infection. Int. J. Mol. Sci. 2020, 21, 3211. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, B.; Kalsi, H.; Godbole, P.; Malankar, N.; Thiagarayaselvam, A.; Siddappa, S.; Thulasiram, H.; Chakrabarti, S.; Banerjee, A. MiRNA160 is associated with local defense and systemic acquired resistance against Phytophthora infestans infection in potato. J. Exp. Bot. 2018, 69, 2023–2036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, N.; Cui, J.; Shi, Y.; Yang, G.; Zhou, X.; Hou, X.; Meng, J.; Luan, Y. Tomato lncRNA23468 functions as a competing endogenous RNA to modulate genes by decoying miR482b in the tomato interaction. Hortic. Res. 2019, 6, 28. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Yan, Q.; Gan, S.; Xue, D.; Dou, D.; Guo, N.; Xing, H. Overexpression of gma-miR1510a/b suppresses the expression of a NB-LRR domain gene and reduces resistance to Phytophthora sojae. Gene 2017, 621, 32–39. [Google Scholar] [CrossRef]
- Qiao, Y.; Liu, L.; Xiong, Q.; Flores, C.; Wong, J.; Shi, J.; Wang, X.; Liu, X.; Xiang, Q.; Jiang, S.; et al. Oomycete pathogens encode RNA silencing suppressors. Nat. Genet. 2013, 45, 330–333. [Google Scholar] [CrossRef] [Green Version]
- Sós-Hegedűs, A.; Domonkos, Á.; Tóth, T.; Gyula, P.; Kaló, P.; Szittya, G. Suppression of NB-LRR genes by miRNAs promotes nitrogen-fixing nodule development in Medicago truncatula. Plant. Cell Environ. 2020, 43, 1117–1129. [Google Scholar] [CrossRef] [Green Version]
- Hardham, A.R.; Blackman, L.M. Phytophthora cinnamomi. Mol. Plant Pathol. 2018, 19, 260–285. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Jiao, F. Effectors of Phytophthora pathogens are powerful weapons for manipulating host immunity. Planta 2019, 250, 413–425. [Google Scholar] [CrossRef] [Green Version]
- Raaymakers, T.M.; Van den Ackerveken, G. Extracellular recognition of oomycetes during biotrophic infection of plants. Front. Plant Sci. 2016, 7, 906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fellbrich, G.; Romanski, A.; Varet, A.; Blume, B.; Brunner, F.; Engelhardt, S.; Felix, G.; Kemmerling, B.; Krzymowska, M.; Nürnberger, T. NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant J. 2002, 32, 375–390. [Google Scholar] [CrossRef] [PubMed]
- Qutob, D.; Kemmerling, B.; Brunner, F.; Küfner, I.; Engelhardt, S.; Gust, A.A.; Luberacki, B.; Seitz, H.U.; Stahl, D.; Rauhut, T.; et al. Phytotoxicity and innate immune responses induced by Nep1-like proteins. Plant Cell 2006, 18, 3721–3744. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, S.; Grosser, K.; Voegele, R.T.; Kassemeyer, H.-H.; Fuchs, R. Identification and characterization of Nep1-like proteins from the grapevine downy mildew pathogen Plasmopara viticola. Front. Plant Sci. 2020, 11, 65. [Google Scholar] [CrossRef] [PubMed]
- Seidl, M.F.; Van den Ackerveken, G. Activity and phylogenetics of the broadly occurring family of microbial Nep1-like proteins. Annu. Rev. Phytopathol. 2019, 57, 367–386. [Google Scholar] [CrossRef]
- Bailey, B.A.; Bae, H.; Strem, M.D.; Antúnez de Mayolo, G.; Guiltinan, M.J.; Verica, J.A.; Maximova, S.N.; Bowers, J.H. Developmental expression of stress response genes in Theobroma cacao leaves and their response to Nep1 treatment and a compatible infection by Phytophthora megakarya. Plant Physiol. Biochem. 2005, 43, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Bae, H.; Bowers, J.H.; Tooley, P.W.; Bailey, B.A. NEP1 orthologs encoding necrosis and ethylene inducing proteins exist as a multigene family in Phytophthora megakarya, causal agent of black pod disease on cacao. Mycol. Res. 2005, 109, 1373–1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, S.S.; Shao, J.; Lary, D.J.; Kronmiller, B.A.; Shen, D.; Strem, M.D.; Amoako-Attah, I.; Akrofi, A.Y.; Begoude, B.A.D.; ten Hoopen, G.M.; et al. Phytophthora megakarya and Phytophthora palmivora, closely related causal agents of cacao black pod rot, underwent increases in genome sizes and gene numbers by different mechanisms. Genome Biol. Evol. 2017, 9, 536–557. [Google Scholar] [CrossRef]
- Kelley, B.S.; Lee, S.-J.; Damasceno, C.M.B.; Chakravarthy, S.; Kim, B.-D.; Martin, G.B.; Rose, J.K.C. A secreted effector protein (SNE1) from Phytophthora infestans is a broadly acting suppressor of programmed cell death. Plant J. 2010, 62, 357–366. [Google Scholar] [CrossRef]
- Gouget, A.; Senchou, V.; Govers, F.; Sanson, A.; Barre, A.; Rouge, P.; Pont-Lezica, R.; Canut, H.; Gouget, A. Lectin receptor kinases participate in protein-protein interactions to mediate plasma membrane-cell wall adhesions in Arabidopsis. Plant Physiol. 2006, 140, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Van Holle, S.; Van Damme, E.J.M. Signaling through plant lectins: Modulation of plant immunity and beyond. Biochem. Soc. Trans. 2018, 46, 217–233. [Google Scholar] [CrossRef] [PubMed]
- Furuichi, N.; Tomiyama, K.; Doke, N. The role of potato lectin in the binding of germ tubes of Phytophthora infestans to potato cell membrane. Physiol. Plant Pathol. 1980, 16, 249–256. [Google Scholar] [CrossRef]
- Garas, N.; Kuć, J. Potato lectin lyses zoospores of Phytophthora infestans and precipitates elicitors of terpenoid accumulation produced by the fungus. Physiol. Plant Pathol. 1981, 18, 227–237. [Google Scholar] [CrossRef]
- Bouwmeester, K.; Han, M.; Blanco-Portales, R.; Song, W.; Weide, R.; Guo, L.; Van Der Vossen, E.; Govers, F. The Arabidopsis lectin receptor kinase Lec RK-I.9 enhances resistance to Phytophthora infestans in Solanaceous plants. Plant Biotechnol. J. 2014, 12, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Gaulin, E.; Jauneau, A.; Villalba, F.; Rickauer, M.; Esquerré-Tugayé, M.T.; Bottin, A. The CBEL glycoprotein of Phytophthora parasitica var-nicotianae is involved in cell wall deposition and adhesion to cellulosic substrates. J. Cell Sci. 2002, 115, 4565–4575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, R.W.; Ospina-Giraldo, M. Novel cellulose-binding-domain protein in Phytophthora is cell wall localized. PLoS ONE 2011, 6, e23555. [Google Scholar] [CrossRef] [PubMed]
- Martinez, T.; Texier, H.; Nahoum, V.; Lafitte, C.; Cioci, G.; Heux, L.; Dumas, B.; O’Donohue, M.; Gaulin, E.; Dumon, C. Probing the functions of carbohydrate binding modules in the CBEL protein from the oomycete Phytophthora parasitica. PLoS ONE 2015, 10, e0137481. [Google Scholar] [CrossRef]
- Khatib, M.; Lafitte, C.; Esquerré-Tugayé, M.-T.; Bottin, A.; Rickauer, M. The CBEL elicitor of Phytophthora parasitica var. nicotianae activates defence in Arabidopsis thaliana via three different signalling pathways. New Phytol. 2004, 162, 501–510. [Google Scholar] [CrossRef]
- Larroque, M.; Belmas, E.; Martinez, T.; Vergnes, S.; Ladouce, N.; Lafitte, C.; Gaulin, E.; Dumas, B. Pathogen-associated molecular pattern-triggered immunity and resistance to the root pathogen Phytophthora parasitica in Arabidopsis. J. Exp. Bot. 2013, 64, 3615–3625. [Google Scholar] [CrossRef] [Green Version]
- Kamoun, S.; Young, M.; Förster, H.; Coffey, M.D.; Tyler, B.M. Potential role of elicitins in the interaction between Phytophthora species and tobacco. Appl. Environ. Microbiol. 1994, 60, 1593–1598. [Google Scholar] [CrossRef] [Green Version]
- Huitema, E.; Vleeshouwers, V.G.; Cakir, C.; Kamoun, S.; Govers, F. Differences in intensity and specificity of hypersensitive response induction in Nicotiana spp. by INF1, INF2A, and INF2B of Phytophthora infestans. MPMI 2005, 18, 183–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanneganti, T.D.; Huitema, E.; Cakir, C.; Kamoun, S. Synergistic interactions of the plant cell death pathways induced by Phytophthora infestans Nepl-like protein PiNPP1.1 and INF1 elicitin. MPMI 2006, 19, 854–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Churngchow, N.; Rattarasarn, M. The elicitin secreted by Phytophthora palmivora, a rubber tree pathogen. Phytochemistry 2000, 54, 33–38. [Google Scholar] [CrossRef]
- Dutsadee, C.; Nunta, C. Induction of peroxidase, scopoletin, phenolic compounds and resistance in Hevea brasiliensis by elicitin and a novel protein elicitor purified from Phytophthora palmivora. Physiol. Mol. Plant Pathol. 2008, 72, 179–187. [Google Scholar] [CrossRef]
- Pettongkhao, S.; Churngchow, N. Novel cell death-inducing elicitors from Phytophthora palmivora promote infection on Hevea brasiliensis. Phytopathology 2019, 109, 1769–1778. [Google Scholar] [CrossRef]
- Pettongkhao, S.; Navet, N.; Schornack, S.; Tian, M.; Churngchow, N. A secreted protein of 15 kDa plays an important role in Phytophthora palmivora development and pathogenicity. Sci. Rep. 2020, 10, 2319. [Google Scholar] [CrossRef]
- Ma, Z.; Song, T.; Zhu, L.; Ye, W.; Wang, Y.; Shao, Y.; Dong, S.; Zhang, Z.; Dou, D.; Zheng, X.; et al. A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. Plant Cell 2015, 27, 2057–2072. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Zhu, L.; Song, T.; Wang, Y.; Zhang, Q.; Xia, Y.; Qiu, M.; Lin, Y.; Li, H.; Kong, L.; et al. A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor. Science 2017, 355, 710–714. [Google Scholar] [CrossRef]
- Zerillo, M.M.; Adhikari, B.N.; Hamilton, J.P.; Buell, C.R.; Lévesque, C.A.; Tisserat, N. Carbohydrate-active enzymes in Pythium and their role in plant cell wall and storage polysaccharide degradation. PLoS ONE 2013, 8, e72572. [Google Scholar] [CrossRef]
- Ochola, S.; Huang, J.; Ali, H.; Shu, H.; Shen, D.; Qiu, M.; Wang, L.; Li, X.; Chen, H.; Kange, A.; et al. Editing of an effector gene promoter sequence impacts plant-Phytophthora interaction. J. Integr. Plant Biol. 2020, 62, 378–392. [Google Scholar] [CrossRef] [Green Version]
- Brunner, F.; Rosahl, S.; Lee, J.; Rudd, J.J.; Geiler, C.; Kauppinen, S.; Rasmussen, G.; Scheel, D.; Nürnberger, T. Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora transglutaminases. EMBO J. 2002, 21, 6681–6688. [Google Scholar] [CrossRef] [PubMed]
- Griffin, M.; Casadio, R.; Bergamini, C.M. Transglutaminases: Nature’s biological glues. Biochem. J. 2002, 368, 377–396. [Google Scholar] [CrossRef] [Green Version]
- Grenville-Briggs, L.; Avrova, A.; Hay, R.; Bruce, C.; Whisson, S.; van West, P. Identification of appressorial and mycelial cell wall proteins and a survey of the membrane proteome of Phytophthora infestans. Fungal Biol. 2010, 114, 702–723. [Google Scholar] [CrossRef]
- Nietzschmann, L.; Gorzolka, K.; Smolka, U.; Matern, A.; Eschen-Lippold, L.; Scheel, D.; Rosahl, S. Early Pep-13-induced immune responses are SERK3A/B-dependent in potato. Sci. Rep. 2019, 9, 18380. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; He, H.; Qi, Y.; McLellan, H.; Tian, Z.; Birch, P.; Tian, Z. The oomycete microbe-associated molecular pattern Pep-13 triggers SERK3/BAK1-independent plant immunity. Plant Cell Rep. 2019, 38, 173–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, J.; Verzaux, E.; Chaparro-Garcia, A.; Bijsterbosch, G.; Keizer, L.; Zhou, J.; Liebrand, T.; Xie, C.; Govers, F.; Robatzek, S.; et al. Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. Nat. Plants 2015, 1, 15034. [Google Scholar] [CrossRef] [PubMed]
- Evangelisti, E.; Govetto, B.; Minet-Kebdani, N.; Kuhn, M.L.; Attard, A.; Ponchet, M.; Panabières, F.; Gourgues, M. The Phytophthora parasitica RXLR effector penetration-specific effector 1 favours Arabidopsis thaliana infection by interfering with auxin physiology. New Phytol. 2013, 199, 476–489. [Google Scholar] [CrossRef]
- Morales-Cruz, A.; Ali, S.; Minio, A.; Figueroa-Balderas, R.; García, J.; Kasuga, T.; Puig, A.; Marelli, J.; Bailey, B.; Cantu, D. Independent whole-genome duplications define the architecture of the genomes of the devastating West African cacao black pod pathogen and its close relative. G3 (Bethesda Md.) 2020, 10, 2241–2255. [Google Scholar] [CrossRef]
- Wickramasuriya, A.M.; Dunwell, J.M. Cacao biotechnology: Current status and future prospects. Plant Biotechnol. J. 2018, 16, 4–17. [Google Scholar] [CrossRef]
- Bekele, F.; Bidaisee, G.; Singh, H.; Duraisamy, S. Morphological characterisation and evaluation of cacao (Theobroma cacao L.) in Trinidad to facilitate utilisation of Trinitario cacao globally. Genet. Resour. Crop. Evol. 2020, 67, 621–643. [Google Scholar] [CrossRef]
- Castro-Alayo, E.M.; Idrogo-Vásquez, G.; Siche, R.; Cardenas-Toro, F.P. Formation of aromatic compounds precursors during fermentation of Criollo and Forastero cocoa. Heliyon 2019, 5, e01157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thevenin, J.-M.; Rossi, V.; Ducamp, M.; Doare, F.; Condina, V.; Lachenaud, P. Numerous clones resistant to Phytophthora palmivora in the ‘‘Guiana’’ genetic group of Theobroma cacao L. PLoS ONE 2012, 7, e40915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwaro, A.D.; Sreenivasan, T.N.; Umahara, P. Phytophthora resistance in cacao (Theobroma cacao): Influence of pod morphological characteristics. Plant Pathol. 1997, 46, 557–565. [Google Scholar] [CrossRef]
- Iwaro, A.D.; Sreenivasan, T.N.; Umaharan, P. Foliar resistance to Phytophthora palmivora as an indicator of pod resistance in Theobroma cacao. Plant Dis. 1997, 81, 619–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appiah, A.; Opoku, I.; Akrofi, A. Natural occurrence and distribution of stem cankers caused by Phytophthora megakarya and Phytophthora palmivora on cocoa. Eur. J. Plant Pathol. 2004, 110, 983–990. [Google Scholar] [CrossRef]
- Vernon, A.J. Canker: The forgotten disease of cocoa. Cocoa Grow. Bull. 1971, 16, 9–14. [Google Scholar]
- Purwantara, A.; McMahon, P.; Susilo, A.W.; Sukamto, S.; Mulia, S.; Nurlaila; Saftar, A.; bin Purung, H.; Lambert, S.; Keane, P.; et al. Testing local cocoa selections in Sulawesi: (ii) resistance to stem canker and pod rot (black pod) caused by Phytophthora palmivora. Crop. Prot. 2015, 77, 18–26. [Google Scholar] [CrossRef]
- Okey, E.N.; Duncan, E.J.; Sirju-Charran, G.; Screenivasan, T.N. Factors affecting the susceptibility of six cocoa clones to Phytophthora palmivora (Butl) Butler bark canker in Trinidad. Plant Pathol. 1996, 45, 84–91. [Google Scholar] [CrossRef]
- Nyadanu, D.; Akromah, R.; Adomako, B.; Akrofi, A.; Dzahini-Obiatey, H.; Lowor, S.; Atta, O.; Kwoseh, C.; Awuah, R.; Adu-Dapaah, H.; et al. Genetic control, combining ability and heritability of resistance to stem canker in cacao (Theobroma cacao L.). Euphytica 2017, 213, 263. [Google Scholar] [CrossRef]
- Okey, E.N.; Duncan, E.J.; Sirju-Charran, G.; Sreenivasan, T.N. Wound-healing in cocoa (Theobroma cacao L.) stems and its effect on canker caused by phytophthora palmivora (Butl.) Butler. Int. J. Pest. Manag. 1995, 41, 224–228. [Google Scholar] [CrossRef]
- Okey, E.; Duncan, E.; Sirju-Charran, G.; Sreenivasan, T. Phytophthora canker resistance in cacao: Role of peroxidase, polyphenoloxidase and phenylalanine ammonia-lyase. J. Phytopathol. 1997, 145, 295–299. [Google Scholar] [CrossRef]
- Egea, C.; Ahmed, A.; Candela, M.; Candela, M. Elicitation of peroxidase activity and lignin biosynthesis in pepper suspension cells by Phytophthora capsici. J. Plant Physiol. 2001, 158, 151–158. [Google Scholar] [CrossRef]
- McMahon, P.; Purwantara, A.; Wahab, A.; Imron, M.; Lambert, S.; Keane, P.; Guest, D. Phosphonate applied by trunk injection controls stem canker and decreases Phytophthora pod rot (black pod) incidence in cocoa in Sulawesi. Australas. Plant Pathol. 2010, 39, 170–175. [Google Scholar] [CrossRef]
- Asomaning, E.J.A. Varietal resistance of young clones and seedlings of cocoa (Theobroma cacao L.) to root infection by Phytophthora palmivora. Trop. Agric. (Trinidad Tobago) 1964, 41, 251–256. [Google Scholar]
- Jackson, G.V.H.; Newhook, F.J. Sources of Phytophthora palmivora inoculum in Solomon Island cocoa plantations. Trans. Brit. Mycol. Soc. 1978, 71, 239–249. [Google Scholar] [CrossRef]
- Turner, P.D.; Asomaning, E.J.A. Root infection of Theobroma cacao by Phytophthora palmivora. Trop. Agric. Trin. 1962, 39, 339–343. [Google Scholar]
- Opoku, I.Y.; Wheeler, B.E.J. Survival of Phytophthora palmivora and Phytophthora megakarya on and in roots of cocoa seedlings. Cocoa Grow. Bull. 1999, 51, 33–41. [Google Scholar]
- Agrios, G.N. Plant. Pathology, 5th ed.; Elsevier Academic Press: Boston, MA, USA, 2015. [Google Scholar]
- Alston, D.G.; Sipes, B.S.; Uchida, J.; Schmitt, D.P.; Chia, C.L. Interactive effects of Rotylenchulus reniformis and Phytophthora palmivora on papaya (Carica papaya L.) survival and growth in greenhouse pots. Nematropica 2003, 33, 73–85. [Google Scholar]
- Jonathan, E.I.; Gajendran, G.; Arulmozhiyan, R. Interaction of Rotylenchulus reniformis and Phytophthora palmivora on betelvine. Nematol. Mediterr. 1997, 25, 191–194. [Google Scholar]
- Jonathan, E.I.; Sivakumar, M.; Padmanaban, D. Interaction of Meloidogyne incognita and Phytophthora palmivora on betelvine. Nematol. Mediterr. 1996, 24, 341–343. [Google Scholar]
- Saul Maora, J.; Liew, E.; Guest, D. Limited morphological, physiological and genetic diversity of Phytophthora palmivora from cocoa in Papua New Guinea. Plant Pathol. 2017, 66, 124–130. [Google Scholar] [CrossRef]
- Masanto, A.; Hieno, A.; Wibowo, S.; Subandiyah, M.; Shimizu, H.; Suga, K.; Kageyama, K. Genetic diversity of Phytophthora palmivora isolates from Indonesia and Japan using rep-PCR and microsatellite markers. J. Gen. Plant Pathol. 2019, 85, 367–381. [Google Scholar] [CrossRef]
- Appiah, A.A.; Flood, J.; Bridge, P.D.; Archer, S.A. Inter- and intraspecific morphometric variation and characterization of Phytophthora isolates from cocoa. Plant Pathol. 2003, 52, 168–180. [Google Scholar] [CrossRef]
- Opoku, I.Y.; Appiah, A.A.; Akrofi, A.Y.; Owusu, G.K. Phytophthora megakarya: A potential threat to the cocoa industry in Ghana. Ghana J. Agric. Sci. 2000, 33, 237–248. [Google Scholar] [CrossRef]
- Puig, A.; Ali, S.; Strem, M.; Sicher, R.; Gutierrez, O.; Bailey, B. The differential influence of temperature on Phytophthora megakarya and Phytophthora palmivora pod lesion expansion, mycelia growth, gene expression, and metabolite profiles. Physiol. Mol. Plant Pathol. 2018, 102, 95–112. [Google Scholar] [CrossRef]
- Derevnina, L.; Benjamin, P.; Kellner, R.; Dagdas, Y.; Sarowar, M.; Giannakopoulou, A.; De la Concepcion, J.; Concepcion, D.; Chaparro-Garcia, A.; Pennington, H.; et al. Emerging oomycete threats to plants and animals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20150459. [Google Scholar] [CrossRef] [Green Version]
- Gavino, P.D.; Smart, C.D.; Sandrock, R.W.; Miller, J.S.; Hamm, P.B.; Lee, T.Y.; Davis, R.M.; Fry, W.E. Implications of sexual reproduction for Phytophthora infestans in the United States: Generation of an aggressive lineage. Plant Dis. 2000, 84, 731–735. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, S.B. The population genetics of Phytophthora. Phytopathology 1997, 87, 462–473. [Google Scholar] [CrossRef] [Green Version]
- Brasier, C. Evolutionary biology of Phytophthora. Annu. Rev. Phytopathol. 1992, 30, 153–170. [Google Scholar] [CrossRef]
- Brasier, C.; Hansen, E. Evolutionary Biology of Phytophthora Part II: Phylogeny, speciation, and population Structure. Annu. Rev. Phytopathol. 1992, 30, 173–200. [Google Scholar] [CrossRef]
Species Name a | Geographical Distribution a | Clade b | Host b | Sex b | Papil. b | Genome Size (Mb) |
---|---|---|---|---|---|---|
Phytophthora capsici (Leonian) | Brazil, El Salvador, Guatemala, India, Jamaica, Mexico, Trinidad, Venezuela | 2 | Multiple | He | P | 64.00 [7] |
P. citrophthora (RE Smith and EH Smith) | Brazil, India, Mexico | 2 | Multiple | He | P | n.d |
P. heveae (Thompson) | Malaysia | 5 | Multiple | Ho | P | n.d |
P. megakarya (Brasier and Griffin) | Cameroon, Côte d’Ivoire, Fernando Po (aka Bioko), Gabon, Ghana, Nigeria, São Tomé (islands of Principe and São Tomé), and Togo | 4 | T. cacao | He | P | 126.88 [8] |
P. megasperma (Dreschler) | Venezuela | 6 | Multiple | Ho | NP | 62 [9] |
P. nicotianae var. parasitica | Cuba | 1 | Multiple | He | P | 76.50 [2] |
P. palmivora (Butler) | Pantropical | 4 | Multiple | He | P | 151.23 [10] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perrine-Walker, F. Phytophthora palmivora–Cocoa Interaction. J. Fungi 2020, 6, 167. https://doi.org/10.3390/jof6030167
Perrine-Walker F. Phytophthora palmivora–Cocoa Interaction. Journal of Fungi. 2020; 6(3):167. https://doi.org/10.3390/jof6030167
Chicago/Turabian StylePerrine-Walker, Francine. 2020. "Phytophthora palmivora–Cocoa Interaction" Journal of Fungi 6, no. 3: 167. https://doi.org/10.3390/jof6030167
APA StylePerrine-Walker, F. (2020). Phytophthora palmivora–Cocoa Interaction. Journal of Fungi, 6(3), 167. https://doi.org/10.3390/jof6030167