PC945, a Novel Inhaled Antifungal Agent, for the Treatment of Respiratory Fungal Infections
Abstract
:1. Introduction
2. Limitations of Current Antifungal Agents
3. PC945: Preclinical Profile
- PC945 inhibited Aspergillus infection (fungal load, serum and BAL galactomannan (GM)) and biomarkers whether treatment was administered prophylactically, immediately before infection or started 24 h post infection.
- The pattern of the effects seen on the different prophylactic regimens explored strongly suggested that antifungal effects of PC945 accumulated in the lungs of mice on repeat dosing. These results clearly indicated that investigation of the PK:PD relationship would be valuable.
4. Clinical Experience
4.1. Clinical Trials
4.2. Special Needs
5. Conclusions and Future Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fairs, A.; Agbetile, J.; Bourne, M.; Hargadon, B.; Monteiro, W.R.; Morley, J.P.; Edwards, R.E.; Wardlaw, A.J.; Pashley, C.H. Isolation of Aspergillus fumigatus from sputum is associated with elevated airborne levels in homes of patients with asthma. Indoor Air 2013, 23, 275–284. [Google Scholar] [CrossRef]
- Pasupneti, S.; Manouvakhova, O.; Nicolls, M.R.; Hsu, J.L. Aspergillus-related pulmonary diseases in lung transplantation. Med. Mycol. 2017, 55, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Takazono, T.; Sheppard, D.C. Aspergillus in chronic lung disease: Modeling what goes on in the airways. Med. Mycol. 2017, 55, 39–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Namvar, S.; Warn, P.; Farnell, E.; Bromley, M.; Fraczek, M.; Bowyer, P.; Herrick, S. Aspergillus fumigatus proteases, Asp f 5 and Asp f 13, are essential for airway inflammation and remodelling in a murine inhalation model. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 2015, 45, 982–993. [Google Scholar] [CrossRef] [PubMed]
- Gayathri, L.; Akbarsha, M.A.; Ruckmani, K. In vitro study on aspects of molecular mechanisms underlying invasive aspergillosis caused by gliotoxin and fumagillin, alone and in combination. Sci. Rep. 2020, 10, 14473. [Google Scholar] [CrossRef] [PubMed]
- Druey, K.M.; McCullough, M.; Krishnan, R. Aspergillus fumigatus Protease Alkaline Protease 1 (Alp1): A New Therapeutic target for fungal asthma. J. Fungi. 2020, 6, 88. [Google Scholar] [CrossRef]
- Urb, M.; Pouliot, P.; Gravelat, F.N.; Olivier, M.; Sheppard, D.C. Aspergillus fumigatus induces immunoglobulin E-independent mast cell degranulation. J. Infect. Dis. 2009, 200, 464–472. [Google Scholar] [CrossRef] [Green Version]
- Samanta, P.; Clancy, C.J.; Marini, R.V.; Rivosecchi, R.M.; McCreary, E.K.; Shields, R.K.; Falcione, B.A.; Viehman, A.; Sacha, L.; Kwak, E.J.; et al. Isavuconazole is as effective as and better tolerated than voriconazole for antifungal prophylaxis in lung transplant recipients. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Baker, A.W.; Maziarz, E.K.; Arnold, C.J.; Johnson, M.D.; Workman, A.D.; Reynolds, J.M.; Perfect, J.R.; Alexander, B.D. Invasive fungal infection after lung transplantation: Epidemiology in the setting of antifungal prophylaxis. Clin. Infect. Dis. 2020, 70, 30–39. [Google Scholar] [CrossRef]
- Ullmann, A.J.; Aguado, J.M.; Arikan-Akdagli, S.; Denning, D.W.; Groll, A.H.; Lagrou, K.; Lass-Florl, C.; Lewis, R.E.; Munoz, P.; Verweij, P.E.; et al. Diagnosis and management of Aspergillus diseases: Executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2018, 24 (Suppl. 1), e1–e38. [Google Scholar] [CrossRef] [Green Version]
- Thompson, G.R., III; Cornely, O.A.; Pappas, P.G.; Patterson, T.F.; Hoenigl, M.; Jenks, J.D.; Clancy, C.J.; Nguyen, M.H. Invasive aspergillosis as an under-recognized superinfection in COVID-19. Open Forum Infect. Dis. 2020, 7. [Google Scholar] [CrossRef] [PubMed]
- Kistemann, T.; Hüneburg, H.; Exner, M.; Vacata, V.; Engelhart, S. Role of increased environmental Aspergillus exposure for patients with chronic obstructive pulmonary disease (COPD) treated with corticosteroids in an intensive care unit. Int. J. Hyg. Environ. Health 2002, 204, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Muquim, A.; Dial, S.; Menzies, D. Invasive aspergillosis in patients with chronic obstructive pulmonary diseases. Can. Respir. J. 2005, 12, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Husain, S.; Camargo, J.F. Invasive Aspergillosis in solid-organ transplant recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin. Transplant. 2019, 33, e13544. [Google Scholar] [CrossRef] [PubMed]
- Sole, A.; Morant, P.; Salavert, M.; Peman, J.; Morales, P.; Valencia Lung Transplant, G. Aspergillus infections in lung transplant recipients: Risk factors and outcome. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2005, 11, 359–365. [Google Scholar] [CrossRef] [Green Version]
- Husain, S.; Sole, A.; Alexander, B.D.; Aslam, S.; Avery, R.; Benden, C.; Billaud, E.M.; Chambers, D.; Danziger-Isakov, L.; Fedson, S.; et al. The 2015 International Society for Heart and Lung Transplantation Guidelines for the management of fungal infections in mechanical circulatory support and cardiothoracic organ transplant recipients: Executive summary. J. Heart Lung Transplant. Off. Publ. Int. Soc. Heart Transplant. 2016, 35, 261–282. [Google Scholar] [CrossRef] [Green Version]
- Odashima, K.; Kagiyama, N.; Kanauchi, T.; Ishiguro, T.; Takayanagi, N. Incidence and etiology of chronic pulmonary infections in patients with idiopathic pulmonary fibrosis. PLoS ONE 2020, 15, e0230746. [Google Scholar] [CrossRef]
- Kosmidis, C.; Powell, G.; Borrow, R.; Morris, J.; Alachkar, H.; Denning, D.W. Response to pneumococcal polysaccharide vaccination in patients with chronic and allergic aspergillosis. Vaccine 2015, 33, 7271–7275. [Google Scholar] [CrossRef]
- Spagnolo, P.; Balestro, E.; Aliberti, S.; Cocconcelli, E.; Biondini, D.; Casa, G.D.; Sverzellati, N.; Maher, T.M. Pulmonary fibrosis secondary to COVID-19: A call to arms? Lancet Respir. Med. 2020, 8, 750–752. [Google Scholar] [CrossRef]
- Li, Y.; Wu, J.; Wang, S.; Li, X.; Zhou, J.; Huang, B.; Luo, D.; Cao, Q.; Chen, Y.; Chen, S.; et al. Progression to fibrosing diffuse alveolar damage in a series of 30 minimally invasive autopsies with COVID-19 pneumonia in Wuhan, China. Histopathology 2020. [Google Scholar] [CrossRef]
- Chung, K.F.; Wenzel, S.E.; Brozek, J.L.; Bush, A.; Castro, M.; Sterk, P.J.; Adcock, I.M.; Bateman, E.D.; Bel, E.H.; Bleecker, E.R.; et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur. Respir. J. 2014, 43, 343–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denning, D.W.; O’Driscoll, B.R.; Hogaboam, C.M.; Bowyer, P.; Niven, R.M. The link between fungi and severe asthma: A summary of the evidence. Eur. Respir. J. 2006, 27, 615–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denning, D.W.; Pashley, C.; Hartl, D.; Wardlaw, A.; Godet, C.; Del Giacco, S.; Delhaes, L.; Sergejeva, S. Fungal allergy in asthma-state of the art and research needs. Clin. Translant. Allergy 2014, 4, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoselton, S.A.; Samarasinghe, A.E.; Seydel, J.M.; Schuh, J.M. An inhalation model of airway allergic response to inhalation of environmental Aspergillus fumigatus conidia in sensitized BALB/c mice. Med. Mycol. 2010, 48, 1056–1065. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, Y. Role of Allergen Source-Derived Proteases in Sensitization via Airway Epithelial Cells. J. Allergy 2012, 2012, 903659. [Google Scholar] [CrossRef] [Green Version]
- Crameri, R.; Garbani, M.; Rhyner, C.; Huitema, C. Fungi: The neglected allergenic sources. Allergy 2014, 69, 176–185. [Google Scholar] [CrossRef]
- Cornely, O.A.; Kontoyiannis, D.P. How to prophylax against invasive fungal infections in adult ALL? An unmet need. Mycoses 2018, 61, 646–649. [Google Scholar] [CrossRef]
- Skov, M.; Main, K.M.; Sillesen, I.B.; Muller, J.; Koch, C.; Lanng, S. Iatrogenic adrenal insufficiency as a side-effect of combined treatment of itraconazole and budesonide. Eur. Respir. J. 2002, 20, 127–133. [Google Scholar] [CrossRef] [Green Version]
- De Wachter, E.; Vanbesien, J.; De Schutter, I.; Malfroot, A.; De Schepper, J. Rapidly developing Cushing syndrome in a 4-year-old patient during combined treatment with itraconazole and inhaled budesonide. Eur. J. Pediatr. 2003, 162, 488–489. [Google Scholar] [CrossRef]
- Benitez, L.L.; Carver, P.L. Adverse effects associated with long-term administration of azole antifungal agents. Drugs 2019, 79, 833–853. [Google Scholar] [CrossRef]
- Patterson, T.F.; Thompson, G.R., 3rd; Denning, D.W.; Fishman, J.A.; Hadley, S.; Herbrecht, R.; Kontoyiannis, D.P.; Marr, K.A.; Morrison, V.A.; Nguyen, M.H.; et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 63, e1–e60. [Google Scholar] [CrossRef] [PubMed]
- Maertens, J.A.; Raad, I.I.; Marr, K.A.; Patterson, T.F.; Kontoyiannis, D.P.; Cornely, O.A.; Bow, E.J.; Rahav, G.; Neofytos, D.; Aoun, M.; et al. Isavuconazole versus voriconazole for primary treatment of invasive mould disease caused by Aspergillus and other filamentous fungi (SECURE): A phase 3, randomised-controlled, non-inferiority trial. Lancet 2016, 387, 760–769. [Google Scholar] [CrossRef]
- Zilberberg, M.D.; Nathanson, B.H.; Harrington, R.; Spalding, J.R.; Shorr, A.F. Epidemiology and outcomes of hospitalizations with invasive aspergillosis in the United States, 2009–2013. Clin. Infect. Dis. 2018, 67, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.E.; Cahyame-Zuniga, L.; Leventakos, K.; Chamilos, G.; Ben-Ami, R.; Tamboli, P.; Tarrand, J.; Bodey, G.P.; Luna, M.; Kontoyiannis, D.P. Epidemiology and sites of involvement of invasive fungal infections in patients with haematological malignancies: A 20-year autopsy study. Mycoses 2013, 56, 638–645. [Google Scholar] [CrossRef]
- Hilberg, O.; Andersen, C.U.; Henning, O.; Lundby, T.; Mortensen, J.; Bendstrup, E. Remarkably efficient inhaled antifungal monotherapy for invasive pulmonary aspergillosis. Eur. Respir. J. 2012, 40, 271–273. [Google Scholar] [CrossRef] [Green Version]
- Andersen, C.U.; Sonderskov, L.D.; Bendstrup, E.; Voldby, N.; Cass, L.; Ayrton, J.; Hilberg, O. Voriconazole concentrations in plasma and epithelial lining fluid after inhalation and oral treatment. Basic Clin. Pharmacol. Toxicol. 2017, 121, 430–434. [Google Scholar] [CrossRef] [Green Version]
- Hava, D.L.; Tan, L.; Johnson, P.; Curran, A.K.; Perry, J.; Kramer, S.; Kane, K.; Bedwell, P.; Layton, G.; Swann, C.; et al. A phase 1/1b study of PUR1900, an inhaled formulation of itraconazole, in healthy volunteers and asthmatics to study safety, tolerability and pharmacokinetics. Br. J. Clin. Pharm. 2020, 86, 723–733. [Google Scholar] [CrossRef] [Green Version]
- ClinicalTiralsgov. Phase 1 Three Part SAD, MAD & Cross-Over Study of ZP-059 in Healthy and Asthmatic Subjects, NCT04229303. Available online: https://clinicaltrials.gov/ct2/show/NCT04229303 (accessed on 8 December 2020).
- TFF Pharmaceuticals. TFF Pharmaceuticals Announces Topline Results of Voriconazole Inhalation Powder Phase 1 Clinical Trial. 2020. Available online: https://ir.tffpharma.com/news-releases/news-release-details/tff-pharmaceuticals-announces-topline-results-voriconazole (accessed on 8 December 2020).
- Strong, P.; Ito, K.; Murray, J.; Rapeport, G. Current approaches to the discovery of novel inhaled medicines. Drug Discov. Today 2018, 23, 1705–1717. [Google Scholar] [CrossRef]
- Colley, T.; Alanio, A.; Kelly, S.L.; Sehra, G.; Kizawa, Y.; Warrilow, A.G.S.; Parker, J.E.; Kelly, D.E.; Kimura, G.; Anderson-Dring, L.; et al. In vitro and in vivo antifungal profile of a novel and long-acting inhaled azole, PC945, on Aspergillus fumigatus infection. Antimicrob. Agents Chemother. 2017, 61, e02280-16. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Yu, R.; Zhen, D.; Tao, S.; Schmidt, M.; Han, L. beta-1,3-Glucan-induced host phospholipase D activation is involved in Aspergillus fumigatus internalization into type II human pneumocyte A549 cells. PLoS ONE 2011, 6, e21468. [Google Scholar] [CrossRef] [Green Version]
- Bertuzzi, M.; Schrettl, M.; Alcazar-Fuoli, L.; Cairns, T.C.; Munoz, A.; Walker, L.A.; Herbst, S.; Safari, M.; Cheverton, A.M.; Chen, D.; et al. The pH-responsive PacC transcription factor of Aspergillus fumigatus governs epithelial entry and tissue invasion during pulmonary aspergillosis. PLoS Pathog. 2014, 10, e1004413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escobar, N.; Ordonez, S.R.; Wosten, H.A.; Haas, P.J.; de Cock, H.; Haagsman, H.P. Hide, keep quiet, and keep low: Properties that make Aspergillus fumigatus a successful lung pathogen. Front. Microbiol. 2016, 7, 438. [Google Scholar] [CrossRef] [PubMed]
- Rudramurthy, S.M.; Colley, T.; Abdolrasouli, A.; Ashman, J.; Dhaliwal, M.; Kaur, H.; Armstrong-James, D.; Strong, P.; Rapeport, G.; Schelenz, S.; et al. In vitro antifungal activity of a novel topical triazole PC945 against emerging yeast Candida auris. J. Antimicrob. Chemother. 2019, 74, 2943–2949. [Google Scholar] [CrossRef] [PubMed]
- Colley, T.; Strong, P.; Rapeport, G.; Ito, K. PC945 shows a higher barrier than itraconazole to induction of Aspergillus fumigatus resistant mutants. In Proceedings of the AAA2018, Lisbon, Portugal, 1–3 February 2018. [Google Scholar]
- Kimura, G.; Nakaoki, T.; Colley, T.; Rapeport, G.; Strong, P.; Ito, K.; Kizawa, Y. In vivo biomarker analysis of the effects of intranasally dosed PC945, a novel antifungal triazole, on Aspergillus fumigatus infection in immunocompromised mice. Antimicrob. Agents Chemother. 2017, 61, e00124-17. [Google Scholar] [CrossRef] [Green Version]
- Ito, K.; Kizawa, Y.; Kimura, G.; Nishimoto, Y.; Rapeport, G.; Strong, P. Accumulation of a novel inhaled azole, PC945 in alveolar cells in temporally neutropenic immunocompromised mice infected with Aspergillus fumigatus. In Proceedings of the AAAM2020, Lugano, Switzerland, 27–29 February 2020. [Google Scholar]
- Brummer, E.; Bhagavathula, P.R.; Hanson, L.H.; Stevens, D.A. Synergy of itraconazole with macrophages in killing Blastomyces dermatitidis. Antimicrob. Agents Chemother. 1992, 36, 2487–2492. [Google Scholar] [CrossRef] [Green Version]
- Baistrocchi, S.R.; Lee, M.J.; Lehoux, M.; Ralph, B.; Snarr, B.D.; Robitaille, R.; Sheppard, D.C. Posaconazole-loaded leukocytes as a novel treatment strategy targeting invasive pulmonary aspergillosis. J. Infect. Dis. 2016. [Google Scholar] [CrossRef] [Green Version]
- Nishimoto, Y.; Kimura, G.; Nakaoki, T.; Strong, P.; Ito, K.; Kizawa, Y. Effects of PC945, a Novel Antifungal Agent Optimised for Lung Delivery, on Candida albicans Lung Infection in Immunocompromised Mice. In Proceedings of the ERS International Congress, 7–9 September 2020; Virtual. Available online: https://academic.oup.com/ofid/article/7/7/ofaa242/5859620 (accessed on 8 December 2020).
- Colley, T.; Sehra, G.; Daly, L.; Kimura, G.; Nakaoki, T.; Nishimoto, Y.; Kizawa, Y.; Strong, P.; Rapeport, G.; Ito, K. Antifungal synergy of a topical triazole, PC945, with a systemic triazole against respiratory Aspergillus fumigatus infection. Sci. Rep. 2019, 9, 9482. [Google Scholar] [CrossRef]
- Daly, L.; Lucas, K.A.; Colley, T.; Strong, P.; Rapeport, G.; Ito, K. Synergic anti-fungal activity of topical PC945, a novel inhaled azole, with systemic echinocandin on Aspergillus fumigatus in vitro human alveoli model. In Proceedings of the AAAM2020, Lugano, Switzerland, 27–29 February 2020. [Google Scholar]
- Jones, R.M.; Neef, N. Interpretation and prediction of inhaled drug particle accumulation in the lung and its associated toxicity. Xenobiotica 2012, 42, 86–93. [Google Scholar] [CrossRef]
- Nikula, K.J.; McCartney, J.E.; McGovern, T.; Miller, G.K.; Odin, M.; Pino, M.V.; Reed, M.D. STP position paper: Interpreting the significance of increased alveolar macrophages in rodents following inhalation of pharmaceutical materials. Toxicol. Pathol. 2014, 42, 472–486. [Google Scholar] [CrossRef] [Green Version]
- Sahota, P.S.; Popp, J.A.; Hardisty, J.F.; Gopinath, C. Toxicologic Pathology: Nonclinical Safety Assessment; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- ClinicalTiralsgov. A Study to Investigate the Safety, Tolerability and Pharmacokinetics of Single and Repeat Doses of PC945, NCT02715570. 2018. Available online: https://clinicaltrials.gov/ct2/show/NCT02715570 (accessed on 1 May 2018).
- Cass, L.; Murray, A.; Davis, A.; Woodward, K.; Albayaty, M.; Ito, K.; Strong, P.; Ayrton, J.; Brindley, C.; Prosser, J.; et al. Safety and nonclinical and clinical pharmacokinetics of PC945, a novel inhaled triazole antifungal agent. Pharmacol. Res. Perspect. 2020, in press. [Google Scholar]
- Pagani, N.; Armstrong-James, D.; Reed, A. Successful salvage therapy for fungal bronchial anastomotic infection after -lung transplantation with an inhaled triazole anti-fungal PC945. J. Heart Lung Transplant. Off. Publ. Int. Soc. Heart Transplant. 2020. [Google Scholar] [CrossRef] [PubMed]
Test Agent | MIC (µg/mL) a | ||
---|---|---|---|
Geo Mean b | MIC50 | MIC90 | |
PC945 | 0.17 | 0.125 | 1 |
Voriconazole | 0.42 | 0.5 | 1 |
Posaconazole | 0.1 | 0.063 | 0.5 |
Binding assays in vitro to assess potential for off-target interactions In vitro and in vivo genotoxicology Safety pharmacology (cardiovascular and behavioural) Oral bioavailability and interaction with CYP enzymes 14 day- and 13 week-repeat dose safety assessment (inhaled dosing) in rats and dogs Reproductive toxicology Phototoxicology |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murray, A.; Cass, L.; Ito, K.; Pagani, N.; Armstrong-James, D.; Dalal, P.; Reed, A.; Strong, P. PC945, a Novel Inhaled Antifungal Agent, for the Treatment of Respiratory Fungal Infections. J. Fungi 2020, 6, 373. https://doi.org/10.3390/jof6040373
Murray A, Cass L, Ito K, Pagani N, Armstrong-James D, Dalal P, Reed A, Strong P. PC945, a Novel Inhaled Antifungal Agent, for the Treatment of Respiratory Fungal Infections. Journal of Fungi. 2020; 6(4):373. https://doi.org/10.3390/jof6040373
Chicago/Turabian StyleMurray, Alison, Lindsey Cass, Kazuhiro Ito, Nicole Pagani, Darius Armstrong-James, Paras Dalal, Anna Reed, and Pete Strong. 2020. "PC945, a Novel Inhaled Antifungal Agent, for the Treatment of Respiratory Fungal Infections" Journal of Fungi 6, no. 4: 373. https://doi.org/10.3390/jof6040373
APA StyleMurray, A., Cass, L., Ito, K., Pagani, N., Armstrong-James, D., Dalal, P., Reed, A., & Strong, P. (2020). PC945, a Novel Inhaled Antifungal Agent, for the Treatment of Respiratory Fungal Infections. Journal of Fungi, 6(4), 373. https://doi.org/10.3390/jof6040373