Beta-D-Glucan in Patients with Haematological Malignancies
Abstract
:1. Introduction
2. Description of BDG Assays
3. Recent Data on Optimized Thresholds
4. False Positive and False Negative Results of BDG Assay
5. BDG in Screening in Patients with Haematological Malignancies
6. BDG in Diagnosis of Invasive Candidiasis and Invasive Aspergillosis
7. BDG in Diagnosis of Pneumocystosis
8. BDG in Other Invasive Fungal Diseases
9. BDG in Samples Other Than Serum
10. BDG in Children with Haematological Malignancies Undergoing Antineoplastic Chemotherapy or Stem Cell Transplantation
11. BDG for Monitoring of Response in Invasive Fungal Diseases
12. Serum BDG in the Diagnostic Criteria of Invasive Fungal Diseases
13. Summary of Strengths and Limitations of BDG Assay
14. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Donnelly, J.P.; Chen, S.C.; Kauffman, C.A.; Steinbach, W.J.; Baddley, J.W.; Verweij, P.E.; Clancy, C.J.; Wingard, J.R.; Lockhart, S.R.; Groll, A.H.; et al. Revision and Update of the Consensus Definitions of Invasive Fungal Disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin. Infect. Dis. 2020, 71, 1367–1376. [Google Scholar] [CrossRef] [Green Version]
- Giacobbe, D.R.; Del Bono, V.; Viscoli, C.; Mikulska, M. Use of 1,3-β-D-glucan in invasive fungal diseases in hematology patients. Expert Rev. Anti-Infect. Ther. 2017, 15, 1101–1112. [Google Scholar] [CrossRef] [PubMed]
- Lanternier, F.; Seidel, D.; Pagano, L.; Styczynski, J.; Mikulska, M.; Pulcini, C.; Maertens, J.; Munoz, P.; Garcia-Vidal, C.; Rijnders, B.; et al. Invasive pulmonary aspergillosis treatment duration in haematology patients in Europe: An EFISG, IDWP-EBMT, EORTC-IDG and SEIFEM survey. Mycoses 2020, 63, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Odabasi, Z.; Paetznick, V.L.; Rodriguez, J.R.; Chen, E.; McGinnis, M.R.; Ostrosky-Zeichner, L. Differences in beta-glucan levels in culture supernatants of a variety of fungi. Med. Mycol. 2006, 44, 267–272. [Google Scholar] [CrossRef] [Green Version]
- Obayashi, T.; Yoshida, M.; Mori, T.; Goto, H.; Yasuoka, A.; Iwasaki, H.; Teshima, H.; Kohno, S.; Horiuchi, A.; Ito, A.; et al. Plasma (1-->3)-beta-D-glucan measurement in diagnosis of invasive deep mycosis and fungal febrile episodes. Lancet 1995, 345, 17–20. [Google Scholar] [CrossRef]
- White, S.K.; Schmidt, R.L.; Walker, B.S.; Hanson, K.E. (1→3)-β-D-glucan testing for the detection of invasive fungal infections in immunocompromised or critically ill people. Cochrane Database Syst. Rev. 2020, 7, Cd009833. [Google Scholar] [CrossRef] [PubMed]
- Lass-Flörl, C.; Samardzic, E.; Knoll, M. Serology anno 2021-fungal infections: From invasive to chronic. Clin. Microbiol. Infect. 2021, 27, 1230–1241. [Google Scholar] [CrossRef]
- Lamoth, F.; Akan, H.; Andes, D.; Cruciani, M.; Marchetti, O.; Ostrosky-Zeichner, L.; Racil, Z.; Clancy, C.J. Assessment of the Role of 1,3-β-d-Glucan Testing for the Diagnosis of Invasive Fungal Infections in Adults. Clin. Infect. Dis. 2021, 72, S102–S108. [Google Scholar] [CrossRef]
- White, S.K.; Walker, B.S.; Hanson, K.E.; Schmidt, R.L. Diagnostic Accuracy of β-d-Glucan (Fungitell) Testing Among Patients with Hematologic Malignancies or Solid Organ Tumors: A Systematic Review and Meta-Analysis. Am. J. Clin. Pathol. 2019, 151, 275–285. [Google Scholar] [CrossRef]
- Bamba, Y.; Nagano, K.; Moro, H.; Ogata, H.; Hakamata, M.; Shibata, S.; Koizumi, T.; Aoki, N.; Ohshima, Y.; Watanabe, S.; et al. Efficacy of the new β-D-glucan measurement kit for diagnosing invasive fungal infections, as compared with that of four conventional kits. PLoS ONE 2021, 16, e0255172. [Google Scholar] [CrossRef]
- D’Ordine, R.L.; Garcia, K.A.; Roy, J.; Zhang, Y.; Markley, B.; Finkelman, M.A. Performance characteristics of Fungitell STAT™, a rapid (1→3)-β-D-glucan single patient sample in vitro diagnostic assay. Med. Mycol. 2021, 59, 41–49. [Google Scholar] [CrossRef]
- Alanio, A.; Gits-Muselli, M.; Guigue, N.; Denis, B.; Bergeron, A.; Touratier, S.; Hamane, S.; Bretagne, S. Prospective comparison of (1,3)-beta-D-glucan detection using colorimetric and turbidimetric assays for diagnosing invasive fungal disease. Med. Mycol. 2021, 59, 882–889. [Google Scholar] [CrossRef]
- Mercier, T.; Guldentops, E.; Patteet, S.; Beuselinck, K.; Lagrou, K.; Maertens, J. Beta-d-Glucan for Diagnosing Pneumocystis Pneumonia: A Direct Comparison between the Wako β-Glucan Assay and the Fungitell Assay. J. Clin. Microbiol. 2019, 57, e00322-19. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Hang, J.P.; Zhang, L.; Wang, F.; Zhang, D.C.; Gong, F.H. A systematic review and meta-analysis of diagnostic accuracy of serum 1,3-beta-D-glucan for invasive fungal infection: Focus on cutoff levels. J. Microbiol. Immunol. Infect. 2015, 48, 351–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finkelman, M.A. Specificity Influences in (1→3)-β-d-Glucan-Supported Diagnosis of Invasive Fungal Disease. J. Fungi 2020, 7, 14. [Google Scholar] [CrossRef]
- Abe, M.; Kimura, M.; Araoka, H.; Taniguchi, S.; Yoneyama, A. Serum (1,3)-beta-D-glucan is an inefficient marker of breakthrough candidemia. Med. Mycol. 2014, 52, 835–840. [Google Scholar] [CrossRef]
- Bougnoux, M.E.; Angebault, C.; Paccoud, O.; Coignard, H.; Lanternier, F.; Lortholary, O. Impact of intravenous and subcutaneous immunoglobulins on false positivity of galactomannan and beta-D-glucan antigenaemia and detection of circulating Aspergillus fumigatus DNA. Clin. Microbiol. Infect. 2020, 26, 1101–1102. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.; Kim, T.S.; Kang, C.K.; Jun, K.I.; Shin, D.; Koh, Y.; Hong, J.; Choe, P.G.; Park, W.B.; Kim, N.J.; et al. Limited Positive Predictive Value of beta-d-Glucan in Hematologic Patients Receiving Antimold Prophylaxis. Open Forum Infect. Dis. 2020, 7, ofaa048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farooqi, J.; Niamatullah, H.; Irfan, S.; Zafar, A.; Malik, F.; Jabeen, K. Comparison of beta-D-Glucan levels between Candida auris and other Candida species at the time of candidaemia: A retrospective study. Clin. Microbiol. Infect. 2021, 27, 1519.e1–1519.e5. [Google Scholar] [CrossRef]
- Finkelman, M.A. Comment on: 1,3-beta-d-Glucan contamination of common antimicrobials. J. Antimicrob. Chemother. 2016, 71, 2996–2997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furfaro, E.; Mikulska, M.; Del Bono, V.; Guolo, F.; Minetto, P.; Gobbi, M.; Ghiso, A.; Bacigalupo, A.; Viscoli, C. Bloodstream infections are an improbable cause of positive serum (1,3)-beta-D-glucan in hematology patients. Clin. Vaccine Immunol. 2014, 21, 1357–1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickering, J.W.; Sant, H.W.; Bowles, C.A.; Roberts, W.L.; Woods, G.L. Evaluation of a (1->3)-beta-D-glucan assay for diagnosis of invasive fungal infections. J. Clin. Microbiol. 2005, 43, 5957–5962. [Google Scholar] [CrossRef] [Green Version]
- Holstein, M.; Jang, D.; Urrea, C.; Botta, L.S.; Grimm, W.; Ghose, S.; Li, Z.J. Control of leached beta-glucan levels from depth filters by an improved depth filtration flush strategy. Biotechnol. Prog. 2021, 37, e3086. [Google Scholar] [CrossRef] [PubMed]
- Kaita, Y.; Tarui, T.; Otsu, A.; Tanaka, Y.; Suzuki, J.; Yoshikawa, K.; Yamaguchi, Y. The Clinical Significance of Serum 1,3-beta-D-Glucan for the Diagnosis of Candidemia in Severe Burn Patients. J. Burn Care Res. 2019, 40, 104–106. [Google Scholar] [CrossRef] [PubMed]
- Kanamori, H.; Kanemitsu, K.; Miyasaka, T.; Ameku, K.; Endo, S.; Aoyagi, T.; Inden, K.; Hatta, M.; Yamamoto, N.; Kunishima, H.; et al. Measurement of (1-3)-beta-D-glucan derived from different gauze types. Tohoku J. Exp. Med. 2009, 217, 117–121. [Google Scholar] [CrossRef] [Green Version]
- Mikulska, M.; Giacobbe, D.R.; Furfaro, E.; Mesini, A.; Marchese, A.; Del Bono, V.; Viscoli, C. Lower sensitivity of serum (1,3)-beta-d-glucan for the diagnosis of candidaemia due to Candida parapsilosis. Clin. Microbiol. Infect. 2016, 22, 646.e5–646.e8. [Google Scholar] [CrossRef] [Green Version]
- Prattes, J.; Schneditz, D.; Pruller, F.; Jaindl, E.; Sauseng, N.; Hoenigl, M.; Schilcher, G.; Krause, R. 1,3-ss-d-Glucan testing is highly specific in patients undergoing dialysis treatment. J. Infect. 2017, 74, 72–80. [Google Scholar] [CrossRef]
- Hashimoto, N.; Mori, T.; Hashida, R.; Sakurai, M.; Koda, Y.; Toyama, T.; Kato, J.; Okamoto, S. False-positive serum (1, 3)-β-D-glucan elevation due to intake of seaweed in a hematopoietic stem cell transplant recipient. Transpl. Infect. Dis. 2017, 19, e12653. [Google Scholar] [CrossRef]
- Ito, S.; Ashizawa, M.; Sasaki, R.; Ikeda, T.; Toda, Y.; Mashima, K.; Umino, K.; Minakata, D.; Nakano, H.; Yamasaki, R.; et al. False-positive elevation of 1,3-beta-D-glucan caused by continuous administration of penicillin G. J. Infect. Chemother. 2018, 24, 812–814. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, Z.; Xie, S.; Zhou, J.; Chen, G.; Feng, J.; Huang, Y. The performance of galactomannan in combination with 1,3-β-D-glucan or aspergillus-lateral flow device for the diagnosis of invasive aspergillosis: Evidences from 13 studies. Diagn. Microbiol. Infect. Dis. 2019, 93, 44–53. [Google Scholar] [CrossRef]
- Lamoth, F.; Cruciani, M.; Mengoli, C.; Castagnola, E.; Lortholary, O.; Richardson, M.; Marchetti, O. β-Glucan antigenemia assay for the diagnosis of invasive fungal infections in patients with hematological malignancies: A systematic review and meta-analysis of cohort studies from the Third European Conference on Infections in Leukemia (ECIL-3). Clin. Infect. Dis 2012, 54, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Furfaro, E.; Giacobbe, D.R.; Del Bono, V.; Signori, A.; Guolo, F.; Minetto, P.; Clavio, M.; Ballerini, F.; Gobbi, M.; Viscoli, C.; et al. Performance of serum (1,3)-ß-d-glucan screening for the diagnosis of invasive aspergillosis in neutropenic patients with haematological malignancies. Mycoses 2018, 61, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Hammarström, H.; Stjärne Aspelund, A.; Christensson, B.; Heußel, C.P.; Isaksson, J.; Kondori, N.; Larsson, L.; Markowicz, P.; Richter, J.; Wennerås, C.; et al. Prospective evaluation of a combination of fungal biomarkers for the diagnosis of invasive fungal disease in high-risk haematology patients. Mycoses 2018, 61, 623–632. [Google Scholar] [CrossRef]
- Guitard, J.; Isnard, F.; Tabone, M.D.; Antignac, M.; Brissot, E.; Senghor, Y.; Petit, A.; Leverger, G.; Hennequin, C. Usefulness of ß-D-glucan for diagnosis and follow-up of invasive candidiasis in onco-haematological patients. J. Infect. 2018, 76, 483–488. [Google Scholar] [CrossRef]
- Angebault, C.; Lanternier, F.; Dalle, F.; Schrimpf, C.; Roupie, A.L.; Dupuis, A.; Agathine, A.; Scemla, A.; Paubelle, E.; Caillot, D.; et al. Prospective Evaluation of Serum β-Glucan Testing in Patients with Probable or Proven Fungal Diseases. Open Forum Infect. Dis. 2016, 3, ofw128. [Google Scholar] [CrossRef]
- Garnham, K.; Halliday, C.L.; Joshi Rai, N.; Jayawadena, M.; Hasan, T.; Kok, J.; Nayyar, V.; Gottlieb, D.J.; Gilroy, N.M.; Chen, S.C. Introducing 1,3-Beta-D-glucan for screening and diagnosis of invasive fungal diseases in Australian high risk haematology patients: Is there a clinical benefit? Intern. Med. J. 2020. [Google Scholar] [CrossRef]
- Schmidt, J.J.; Lueck, C.; Ziesing, S.; Stoll, M.; Haller, H.; Gottlieb, J.; Eder, M.; Welte, T.; Hoeper, M.M.; Scherag, A.; et al. Clinical course, treatment and outcome of Pneumocystis pneumonia in immunocompromised adults: A retrospective analysis over 17 years. Crit. Care 2018, 22, 307. [Google Scholar] [CrossRef] [Green Version]
- Maini, R.; Henderson, K.L.; Sheridan, E.A.; Lamagni, T.; Nichols, G.; Delpech, V.; Phin, N. Increasing Pneumocystis pneumonia, England, UK, 2000–2010. Emerg. Infect. Dis. 2013, 19, 386–392. [Google Scholar] [CrossRef] [Green Version]
- Bienvenu, A.L.; Traore, K.; Plekhanova, I.; Bouchrik, M.; Bossard, C.; Picot, S. Pneumocystis pneumonia suspected cases in 604 non-HIV and HIV patients. Int. J. Infect. Dis. 2016, 46, 11–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salzer, H.J.F.; Schäfer, G.; Hoenigl, M.; Günther, G.; Hoffmann, C.; Kalsdorf, B.; Alanio, A.; Lange, C. Clinical, Diagnostic, and Treatment Disparities between HIV-Infected and Non-HIV-Infected Immunocompromised Patients with Pneumocystis jirovecii Pneumonia. Respiration 2018, 96, 52–65. [Google Scholar] [CrossRef]
- Lagrou, K.; Chen, S.; Masur, H.; Viscoli, C.; Decker, C.F.; Pagano, L.; Groll, A.H. Pneumocystis jirovecii Disease: Basis for the Revised EORTC/MSGERC Invasive Fungal Disease Definitions in Individuals Without Human Immunodeficiency Virus. Clin. Infect. Dis. 2021, 72, S114–S120. [Google Scholar] [CrossRef]
- Morjaria, S.; Frame, J.; Franco-Garcia, A.; Geyer, A.; Kamboj, M.; Babady, N.E. Clinical Performance of (1,3) Beta-D Glucan for the Diagnosis of Pneumocystis Pneumonia (PCP) in Cancer Patients Tested with PCP Polymerase Chain Reaction. Clin. Infect. Dis. 2019, 69, 1303–1309. [Google Scholar] [CrossRef]
- Alanio, A.; Hauser, P.M.; Lagrou, K.; Melchers, W.J.; Helweg-Larsen, J.; Matos, O.; Cesaro, S.; Maschmeyer, G.; Einsele, H.; Donnelly, J.P.; et al. ECIL guidelines for the diagnosis of Pneumocystis jirovecii pneumonia in patients with haematological malignancies and stem cell transplant recipients. J. Antimicrob. Chemother. 2016, 71, 2386–2396. [Google Scholar] [CrossRef]
- Salerno, D.; Mushatt, D.; Myers, L.; Zhuang, Y.; de la Rua, N.; Calderon, E.J.; Welsh, D.A. Serum and bal beta-D-glucan for the diagnosis of Pneumocystis pneumonia in HIV positive patients. Respir. Med. 2014, 108, 1688–1695. [Google Scholar] [CrossRef] [Green Version]
- Hammarström, H.; Grankvist, A.; Broman, I.; Kondori, N.; Wennerås, C.; Gisslen, M.; Friman, V. Serum-based diagnosis of Pneumocystis pneumonia by detection of Pneumocystis jirovecii DNA and 1,3-β-D-glucan in HIV-infected patients: A retrospective case control study. BMC Infect. Dis. 2019, 19, 658. [Google Scholar] [CrossRef] [Green Version]
- Esteves, F.; Lee, C.H.; de Sousa, B.; Badura, R.; Seringa, M.; Fernandes, C.; Gaspar, J.F.; Antunes, F.; Matos, O. (1-3)-beta-D-glucan in association with lactate dehydrogenase as biomarkers of Pneumocystis pneumonia (PcP) in HIV-infected patients. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1173–1180. [Google Scholar] [CrossRef] [PubMed]
- Engsbro, A.L.; Najat, S.; Jørgensen, K.M.; Kurtzhals, J.A.L.; Arendrup, M.C. Diagnostic accuracy of the 1,3-β-D-glucan test for pneumocystis pneumonia in a tertiary university hospital in Denmark: A retrospective study. Med. Mycol. 2019, 57, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Del Bono, V.; Mularoni, A.; Furfaro, E.; Delfino, E.; Rosasco, L.; Miletich, F.; Viscoli, C. Clinical evaluation of a (1,3)-beta-D-glucan assay for presumptive diagnosis of Pneumocystis jiroveci pneumonia in immunocompromised patients. Clin. Vaccine Immunol. 2009, 16, 1524–1526. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, Y.; Ito, Y.; Yamamoto, M.; Matsushima, A.; Nagao, M.; Takakura, S.; Iinuma, Y.; Ichiyama, S. Pneumocystis polymerase chain reaction and blood (1→3)-β-D-glucan assays to predict survival with suspected Pneumocystis jirovecii pneumonia. J. Infect. Chemother. 2014, 20, 109–114. [Google Scholar] [CrossRef]
- Li, W.J.; Guo, Y.L.; Liu, T.J.; Wang, K.; Kong, J.L. Diagnosis of pneumocystis pneumonia using serum (1-3)-β-D-Glucan: A bivariate meta-analysis and systematic review. J. Thorac. Dis. 2015, 7, 2214–2225. [Google Scholar] [CrossRef] [PubMed]
- Karageorgopoulos, D.E.; Qu, J.M.; Korbila, I.P.; Zhu, Y.G.; Vasileiou, V.A.; Falagas, M.E. Accuracy of β-D-glucan for the diagnosis of Pneumocystis jirovecii pneumonia: A meta-analysis. Clin. Microbiol. Infect. 2013, 19, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Del Corpo, O.; Butler-Laporte, G.; Sheppard, D.C.; Cheng, M.P.; McDonald, E.G.; Lee, T.C. Diagnostic accuracy of serum (1-3)-β-D-glucan for Pneumocystis jirovecii pneumonia: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2020, 26, 1137–1143. [Google Scholar] [CrossRef]
- Damiani, C.; Demey, B.; Pauc, C.; Le Govic, Y.; Totet, A. A Negative (1,3)-β-D-Glucan Result Alone Is Not Sufficient to Rule Out a Diagnosis of Pneumocystis Pneumonia in Patients with Hematological Malignancies. Front. Microbiol. 2021, 12, 713265. [Google Scholar] [CrossRef] [PubMed]
- Kato, H.; Samukawa, S.; Takahashi, H.; Nakajima, H. Diagnosis and treatment of Pneumocystis jirovecii pneumonia in HIV-infected or non-HIV-infected patients-difficulties in diagnosis and adverse effects of trimethoprim-sulfamethoxazole. J. Infect. Chemother. 2019, 25, 920–924. [Google Scholar] [CrossRef]
- Desmet, S.; Van Wijngaerden, E.; Maertens, J.; Verhaegen, J.; Verbeken, E.; De Munter, P.; Meersseman, W.; Van Meensel, B.; Van Eldere, J.; Lagrou, K. Serum (1-3)-beta-D-glucan as a tool for diagnosis of Pneumocystis jirovecii pneumonia in patients with human immunodeficiency virus infection or hematological malignancy. J. Clin. Microbiol. 2009, 47, 3871–3874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szvalb, A.D.; Malek, A.E.; Jiang, Y.; Bhatti, M.M.; Wurster, S.; Kontoyiannis, D.P. Serum (1,3)-Beta-d-Glucan has suboptimal performance for the diagnosis of Pneumocystis jirovecii pneumonia in cancer patients and correlates poorly with respiratory burden as measured by quantitative PCR. J. Infect. 2020, 81, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Tasaka, S.; Kobayashi, S.; Yagi, K.; Asami, T.; Namkoong, H.; Yamasawa, W.; Ishii, M.; Hasegawa, N.; Betsuyaku, T. Serum (1 → 3) β-D-glucan assay for discrimination between Pneumocystis jirovecii pneumonia and colonization. J. Infect. Chemother. 2014, 20, 678–681. [Google Scholar] [CrossRef] [PubMed]
- Mercier, T.; Aissaoui, N.; Gits-Muselli, M.; Hamane, S.; Prattes, J.; Kessler, H.H.; Mareković, I.; Pleško, S.; Steinmann, J.; Scharmann, U.; et al. Variable Correlation between Bronchoalveolar Lavage Fluid Fungal Load and Serum-(1,3)-β-d-Glucan in Patients with Pneumocystosis-A Multicenter ECMM Excellence Center Study. J. Fungi 2020, 6, 327. [Google Scholar] [CrossRef]
- Urabe, N.; Sakamoto, S.; Sano, G.; Ito, A.; Sekiguchi, R.; Homma, S. Serial change in serum biomarkers during treatment of Non-HIV Pneumocystis pneumonia. J. Infect. Chemother. 2019, 25, 936–942. [Google Scholar] [CrossRef]
- Litvintseva, A.P.; Lindsley, M.D.; Gade, L.; Smith, R.; Chiller, T.; Lyons, J.L.; Thakur, K.T.; Zhang, S.X.; Grgurich, D.E.; Kerkering, T.M.; et al. Utility of (1–3)-β-d-Glucan Testing for Diagnostics and Monitoring Response to Treatment During the Multistate Outbreak of Fungal Meningitis and Other Infections. Clin. Infect. Dis. 2013, 58, 622–630. [Google Scholar] [CrossRef] [Green Version]
- Nucci, M.; Barreiros, G.; Reis, H.; Paixão, M.; Akiti, T.; Nouér, S.A. Performance of 1,3-beta-D-glucan in the diagnosis and monitoring of invasive fusariosis. Mycoses 2019, 62, 570–575. [Google Scholar] [CrossRef]
- Fernández-Cruz, A.; Semiglia, M.A.; Guinea, J.; Martínez-Jiménez, M.D.C.; Escribano, P.; Kwon, M.; Rodríguez-Macías, G.; Chamorro-de-Vega, E.; Rodríguez-González, C.; Navarro, R.; et al. A retrospective cohort of invasive fusariosis in the era of antimould prophylaxis. Med. Mycol. 2020, 58, 300–309. [Google Scholar] [CrossRef]
- Lo Cascio, G.; Vincenzi, M.; Soldani, F.; De Carolis, E.; Maccacaro, L.; Sorrentino, A.; Nadali, G.; Cesaro, S.; Sommavilla, M.; Niero, V.; et al. Outbreak of Saprochaete clavata Sepsis in Hematology Patients: Combined Use of MALDI-TOF and Sequencing Strategy to Identify and Correlate the Episodes. Front. Microbiol. 2020, 11, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, C.; Wheat, L.J.; Myint, T.; Boulware, D.R.; Bahr, N.C. Efficacy of Cerebrospinal Fluid Beta-d-Glucan Diagnostic Testing for Fungal Meningitis: A Systematic Review. J. Clin. Microbiol. 2020, 58, e02094-19. [Google Scholar] [CrossRef]
- Rhein, J.; Bahr, N.C.; Morawski, B.M.; Schutz, C.; Zhang, Y.; Finkelman, M.; Meya, D.B.; Meintjes, G.; Boulware, D.R. Detection of High Cerebrospinal Fluid Levels of (1→3)-β-d-Glucan in Cryptococcal Meningitis. Open Forum Infect. Dis. 2014, 1, ofu105. [Google Scholar] [CrossRef] [Green Version]
- Boch, T.; Reinwald, M.; Spiess, B.; Liebregts, T.; Schellongowski, P.; Meybohm, P.; Rath, P.M.; Steinmann, J.; Trinkmann, F.; Britsch, S.; et al. Detection of invasive pulmonary aspergillosis in critically ill patients by combined use of conventional culture, galactomannan, 1-3-beta-D-glucan and Aspergillus specific nested polymerase chain reaction in a prospective pilot study. J. Crit. Care 2018, 47, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Bhaskaran, A.; Kabbani, D.; Singer, L.G.; Prochnow, T.; Bhimji, A.; Rotstein, C.; Finkelman, M.A.; Keshavjee, S.; Husain, S. (1,3) β-D-Glucan in Bronchoalveolar Lavage of Lung Transplant Recipients for the Diagnosis of Invasive Pulmonary Aspergillosis. Med. Mycol. 2017, 55, 173–179. [Google Scholar] [CrossRef]
- Saffioti, C.; Mesini, A.; Bandettini, R.; Castagnola, E. Diagnosis of invasive fungal disease in children: A narrative review. Expert Rev. Anti-Infect. Ther. 2019, 17, 895–909. [Google Scholar] [CrossRef]
- Lehrnbecher, T.; Robinson, P.D.; Fisher, B.T.; Castagnola, E.; Groll, A.H.; Steinbach, W.J.; Zaoutis, T.E.; Negeri, Z.F.; Beyene, J.; Phillips, B.; et al. Galactomannan, β-D-Glucan, and Polymerase Chain Reaction–Based Assays for the Diagnosis of Invasive Fungal Disease in Pediatric Cancer and Hematopoietic Stem Cell Transplantation: A Systematic Review and Meta-Analysis. Clin. Infect. Dis. 2016, 63, 1340–1348. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, M.; Verma, N.; Sharma, M.; Pradhan, P.; Chauhan, A.; Jaiswal, N.; Chakrabarti, A.; Singh, M. Comparative accuracy of 1,3 beta-D glucan and galactomannan for diagnosis of invasive fungal infections in pediatric patients: A systematic review with meta-analysis. Med. Mycol. 2021, 59, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Groll, A.H.; Pana, D.; Lanternier, F.; Mesini, A.; Amman, R.; Averbuch, D.; Castagnola, E.; Cesaro, S.; Engelhard, D.; Garcia-Vidal, C.; et al. 8th European Conference on Infections in Leukaemia: 2020 guidelines for the diagnosis, prevention, and treatment of invasive fungal diseases in paediatric patients with cancer or post-haematopoietic cell transplantation. Lancet Oncol. 2021, 22, e254–e269. [Google Scholar] [CrossRef]
- Springer, J.; Held, J.; Mengoli, C.; Schlegel, P.G.; Gamon, F.; Traeger, J.; Kurzai, O.; Einsele, H.; Loeffler, J.; Eyrich, M. Diagnostic Performance of (1→3)-β-D-Glucan Alone and in Combination with Aspergillus PCR and Galactomannan in Serum of Pediatric Patients after Allogeneic Hematopoietic Stem Cell Transplantation. J. Fungi 2021, 7, 238. [Google Scholar] [CrossRef]
- Jaijakul, S.; Vazquez, J.A.; Swanson, R.N.; Ostrosky-Zeichner, L. (1,3)-β-D-Glucan as a Prognostic Marker of Treatment Response in Invasive Candidiasis. Clin. Infect. Dis. 2012, 55, 521–526. [Google Scholar] [CrossRef] [Green Version]
- Koo, S.; Baden, L.R.; Marty, F.M. Post-diagnostic kinetics of the (1 → 3)-β-D-glucan assay in invasive aspergillosis, invasive candidiasis and Pneumocystis jirovecii pneumonia. Clin. Microbiol Infect. 2012, 18, E122–E127. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.K.; Groncy, P.K.; Javahery, R.; Chai, R.Y.; Nagpala, P.; Finkelman, M.; Petraitiene, R.; Walsh, T.J. Successful treatment of Aspergillus ventriculitis through voriconazole adaptive pharmacotherapy, immunomodulation, and therapeutic monitoring of cerebrospinal fluid (1→3)-β-D-glucan. Med. Mycol. 2017, 55, 109–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Della Pepa, R.; Cerchione, C.; Pugliese, N.; Colicchio, R.; Salvatore, P.; Sirignano, C.; Soscia, E.; Pagano, L.; Sanguinetti, M.; Pane, F.; et al. Diagnostic-driven antifungal approach in neutropenic patients at high risk for chronic disseminated candidiasis: Preliminary observations on the role of 1,3-β-D-glucan antigenemia and multiphasic contrast-enhanced computed tomography. Support. Care Cancer 2018, 26, 1691–1694. [Google Scholar] [CrossRef] [PubMed]
- Mikulska, M.; Furfaro, E.; Del Bono, V.; Gualandi, F.; Van Lint, M.T.; Miletich, F.; Bacigalupo, A.; Viscoli, C. Persistence of a positive (1,3)-beta-D-glucan test after clearance of candidemia in hematopoietic stem cell transplant recipients. Clin. Vaccine Immunol. 2011, 18, 518–519. [Google Scholar] [CrossRef] [Green Version]
- Naselli, A.; Faraci, M.; Lanino, E.; Morreale, G.; Cangemi, G.; Bandettini, R.; Castagnola, E. Persistence of high-level (1,3)-β-D-glucan after candidemia following autologous peripheral SCT in a pediatric patient. Bone Marrow Transplant. 2015, 50, 137–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullmann, A.J.; Aguado, J.M.; Arikan-Akdagli, S.; Denning, D.W.; Groll, A.H.; Lagrou, K.; Lass-Flörl, C.; Lewis, R.E.; Munoz, P.; Verweij, P.E.; et al. Diagnosis and management of Aspergillus diseases: Executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin. Microbiol. Infect. 2018, 24 (Suppl. S1), e1–e38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Pauw, B.; Walsh, T.J.; Donnelly, J.P.; Stevens, D.A.; Edwards, J.E.; Calandra, T.; Pappas, P.G.; Maertens, J.; Lortholary, O.; Kauffman, C.A.; et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin. Infect. Dis. 2008, 46, 1813–1821. [Google Scholar] [CrossRef] [PubMed]
Test Assay | Availability | Producer | Method | Cut-Off Value | Overall Sensitivity | Overall Specificity | Comments | Reference |
---|---|---|---|---|---|---|---|---|
Fungitell | Europe, US | Associates of Cape Cod, Falmouth, MA, USA | Colorimetric | Intermediate 60–79 pg/mL Positive > 80 pg/mL | 27–100% | 0–100% | BDG detection by Fungitell is part of EORTC/MSG criteria (positive serum BDG in combination with host factor and clinical criterion) for probable invasive candidiasis or PJP. | [7,8,9] |
Fungitell STAT | Europe, US | Associates of Cape Cod, Falmouth, MA, USA | Indeterminate 0.75–1.1 Positive ≥ 1.2 | ND | ND | New rapid test that can be run on one or more patient specimens (single sample testing), but initial clinical validation reported 98–99% concordance with indeterminate results excluded and 74–91% if included. | [11] | |
Glucatell | Europe, US | Associates of Cape Cod, Falmouth, MA, USA | Colorimetric | 80 pg/mL | 50–92% | 41–94% | The Glucatell test differs from the Fungitell test in that the Glucatell reagent is processed to eliminate Factor C. This makes the Glucatell test more specific for BDG linkages. The Glucatell reagent does not react to other polysaccharides, including beta-glucans with other glycosidic linkages. | [7,9] |
Wako Wako-EU | Asia, Europe | Wako Pure Chemical Industries, Osaka, Japan | Turbidimetric method | 11 pg/mL | 50–86% | 89–100% | [7,8,9,10] | |
Fungitec G test ES Fungitec G test MKII | Europe, US | Seikagaku Kogyo Corporation, Tokyo, Japan Subsidiary Associates of Cape Cod, Falmouth, MA, USA | Colorimetric method | 20 pg/mL | 67–88% | 60–85% | [7,9] | |
Dynamiker Fungus | Some European countries and North Africa | Dynamiker Biotechnology Ltd., Tianjin, China | Turbidimetric method | 95 pg/mL | 64–81% | 78–80% | [7,9] |
FALSE POSITIVES | Mechanism | Comments |
---|---|---|
Iatrogenic contamination | ||
Haemodialysis | Use of regenerated cellulose dialysis membrane | Modern dialysis membranes (non-BDG-leaching synthetic membranes) no longer release BDG, and BDG was highly specific for the diagnosis of IFD in the serum of patients receiving haemodialysis in a recent study [27]. |
Blood and blood derivates such as immunoglobulins and albumin | Cellulosic depth filters are generally mixtures of cellulose and diatomaceous earth and are used to provide initial clarification of blood plasma. Process solutions may also contain BDG and introduce contamination. | The risk of false positivity after receiving blood or blood components seems dependent on the product’s concentrations of BDG and is not constant (for example, never observed in our hospital), while immunoglobulin preparations almost invariably contain BDG [17]. These high titres usually decline rather quickly, and such responses support suspicion of iatrogenic contamination. The depth filters flush strategy was developed to control beta-glucan leaching into the product pool [23]. |
Cellulose containing gauzes/surgical sponges | The release of BDG from surgery gauzes is temporary and depends on the type of gauze used [25]. | |
Non-glucan-free laboratory equipment | Currently unlikely, since glucan-free laboratory equipment is available. | |
Beta-lactam antibiotics (e.g., ampicillin-sulbactam, amoxicillin-clavulanate) | BDG may be present in the original source material itself, such as products made by fungal fermentation, in excipients added to the formulation, from media used in microbial or cell culture, or from process equipment, materials, and solutions. | Possible; however, the high level of dilution generated upon injection of relatively low volumes of antibiotic make this unlikely. Further, the high negative predictive value for IFD observed for patients receiving a vast array of antibiotics suggests that this is not a significant problem [20]. |
Intestinal translocation | ||
Bacteriemia | Translocation as a consequence of ischemic damage to the intestinal barrier due to septic shock | Some experiences suggest that bacteraemia is a very rare source of false positivity [21]. |
Severe mucositis | Possible translocation of fungal antigens through the intestinal mucosa damaged by chemotherapy | Whether or not this might truly affect specificity of BDG in adult hematologic patients remains controversial, but should be considered in patients with intestinal GvHD or severe mucositis [2]. |
Major abdominal surgery | Translocation as a consequence of loss of integrity of the intestinal wall | Rare in haematology. |
Gut ischemia | Translocation as a consequence of ischemic damage | |
Burns | Large surface area burns | Validation of alternative cut-offs in specific clinical contexts known to contribute to elevated BDG titre may provide the solution to specificity issues [24]. Unknown if applicable also to severe skin acute GvHD. |
Chronic kidney disease | Uremia’s metabolic toxicity | |
Enterococcus spp. bacteremia | Protease-producing intestinal enterococci | |
Hepatic function | ||
End-stage liver disease | Reduced clearance | |
Bacterial infections | ||
Nocardia spp. infection | Although rare, needs to be considered in differential diagnosis in case of compatible clinical presentation (pulmonary, cerebral) [15]. | |
Streptococcus pneumoniae Type 37 | Producing a BDG with a (1→3)-β-backbone [15] | |
Pseudomonas spp. | Producing (1→2)-β-linked glucan sequences [15] | |
Interference | ||
Pegylated asparaginase | Drug-related alterations in heme metabolism, which in turn interfere with measurement of BDG in serum [2] | |
Haemolysis | Interference with test procedure. | Possible interference, particularly for colorimetric assays [22]. |
FALSE NEGATIVES | ||
Antifungal prophylaxis and therapy | Low pre-test probability of IFI | Lower median BDG values were reported in breakthrough IFI episodes [16]. BDG should be used to exclude rather than for diagnosis in these patients [18]. |
Sanctuary sites or poorly vascularized sites of infection | BDG not released into blood | |
Candida parapsilosis or Candida auris | Lower content of BDG component in fungal wall | Lower levels of BDG reported [19,26]. |
Hyperbilirubinemia | Interference with test procedure | Possible interference, particularly for colorimetric assays [22]. |
Study | Patients | Comparison | Cut-Off, pg/mL | Sensitivity % (95% CI) | Specificity % (95% CI) | PPV (95% CI) | NPV (95% CI) |
---|---|---|---|---|---|---|---|
Engsbro et al., 2019 [47] | N = 45, HIV, SOT, HSCT, HM, solid cancer | BDG compared to immunofluorescence microscopy | |||||
All patients | 60 | 89 (52–100) | 48 (23–72) | ||||
80 | 89 (52–100) | 65 (38–86) | |||||
PCR-positive patients | 60 | 100 (16–100) | 71 (29–96) | ||||
80 | 100 (16–100) | 74 (54–89) | |||||
BDG compared to clinical categorization | |||||||
All patients | 60 | 89 (65–99) | 64 (42–81) | ||||
80 | 83 (59–96) | 74 (54–89) | |||||
PCR-positive patients | 60 | 87 (59–98) | 100 (16–100) | ||||
80 | 80 (52–96) | 100 (16–100) | |||||
Morjaria et al., 2019 [42] | N = 53 HM, HSCT, solid cancer | BDG performance vs. PCR in PCR-positive cases | |||||
Definite/Probable PJP | 80 | 87% | 84.6% | 94.6 | 68.8 | ||
Definite/Probable PJP | 200 | 70% | 100% | 100 | 52 | ||
Szvalb et al., 2020 [56] | N = 101 HM, Solid cancer | BDG performance in PCR-positive cases | |||||
80 | 53.5 (43.8–62.9) | 78.4 (67.7–86.2) | 7.8 (4.4–11.2) | 98.0 (97.6–98.5) | |||
200 | 41.6 (32.5–51.3) | 87.8 (78.5–93.5) | 10.4 (4.3–16.5) | 97.8 (97.4–98.2) | |||
400 | 35.6 (27.0–45.4) | 93.2 (85.1–97.1) | 15.2 (3.8–26.5) | 97.7 (97.3–98.1) | |||
Damiani et al., 2021 [53] | N = 39 Systemic autoimmune or inflammatory disorder, SOT, HM, solid cancer | Proven PJP, defined as a positive microscopic detection of P. jirovecii in BAL | |||||
All patients | 80 | 87 (73–94) | 97 (87–99) | 97 (85–99) | 88 (75–95) | ||
Only HM population | 80 | 64 (35–85) | 100 (74–100) | 100 (64–100) | 73 (48–89) |
Strengths | Limitations |
---|---|
Almost panfungal assay [4,5] | Not applicable to Mucorales, Blastomyces, and most cryptococci [4,5] |
Rapid turnaround time (approx. 1 h) [7,8,9,10,11] | Batch testing required with most assays [7,8,9,10,11] |
Several assays available, including a single sample format [7,8,9,10,11] | Not specific for any fungus and thus needs to be used in combination with other diagnostic methods for identification of species (GM, PCR, radiology, etc.) [1] |
Used both for screening and targeted testing [1] | Cut-off provided by manufacturers might need optimizing for better performance [12,13] |
In haematological patients, high specificity of two consecutive positive tests [31,32,33] | The need to use glucan-free laboratory materials [15] |
More sensitive than blood cultures for deep-seated candidiasis [1] | Possibility of false positive results (see Table 2) [2,15,16,17,18,19,20,21,22,23,24,25,26,27] |
High sensitivity for PJP [53,54,55] | Lower sensitivity in patients with haematologic malignancies and IFD compared to other patient groups [16,18] |
The only non-invasive test to support the diagnosis of PJP, especially in situations where critical illness precludes invasive diagnostic procedures such as BAL [42] | Of limited use in paediatric population [68,69,70] |
Possibility of use in other sterile fluids such as cerebrospinal fluid for fungal central nervous system infections [64,65] | In case of invasive candidiasis, lower sensitivity in case of certain species, such as C. parapsilosis or C. auris [19,26] |
Not applicable for use in BAL due to high rate of false positive results [66,67] | |
Unpredictable rate of decline, unsuitable for rapid evaluation of treatment response [73,74,75,76,77,78] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikulska, M.; Balletto, E.; Castagnola, E.; Mularoni, A. Beta-D-Glucan in Patients with Haematological Malignancies. J. Fungi 2021, 7, 1046. https://doi.org/10.3390/jof7121046
Mikulska M, Balletto E, Castagnola E, Mularoni A. Beta-D-Glucan in Patients with Haematological Malignancies. Journal of Fungi. 2021; 7(12):1046. https://doi.org/10.3390/jof7121046
Chicago/Turabian StyleMikulska, Malgorzata, Elisa Balletto, Elio Castagnola, and Alessandra Mularoni. 2021. "Beta-D-Glucan in Patients with Haematological Malignancies" Journal of Fungi 7, no. 12: 1046. https://doi.org/10.3390/jof7121046