Chromosome-Wide Characterization of Intragenic Crossover in Shiitake Mushroom, Lentinula edodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Haploid Progeny Population
2.2. Identification of Crossovers and Hotspots
2.3. Quantitative Trait Loci (QTLs) Mapping of Crossover Variation
3. Results and Discussion
3.1. Distribution of Crossovers in Haploid Progenies
3.2. Crossover Hotspots and Mating Type
3.3. Regulation of Meiotic Crossovers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peñalba, J.V.; Wolf, J.B.W. From molecules to populations: Appreciating and estimating recombination rate variation. Nat. Rev. Genet. 2020, 21, 476–492. [Google Scholar] [CrossRef]
- Lambing, C.; Tock, A.J.; Topp, S.D.; Choi, K.; Kuo, P.C.; Zhao, X.; Osman, K.; Higgins, J.D.; Franklin, F.C.H.; Henderson, I.R. Interacting Genomic Landscapes of REC8-Cohesin, Chromatin, and Meiotic Recombination in Arabidopsis. Plant Cell 2020, 32, 1218–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kianian, P.M.A.; Wang, M.; Simons, K.; Ghavami, F.; He, Y.; Dukowic-Schulze, S.; Sundararajan, A.; Sun, Q.; Pillardy, J.; Mudge, J.; et al. High-resolution crossover mapping reveals similarities and differences of male and female recombination in maize. Nat. Commun. 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Mieulet, D.; Aubert, G.; Bres, C.; Klein, A.; Droc, G.; Vieille, E.; Rond-Coissieux, C.; Sanchez, M.; Dalmais, M.; Mauxion, J.-P.; et al. Unleashing meiotic crossovers in crops. Nat. Plants 2018, 4, 1010–1016. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.; Henderson, I. Meiotic recombination hotspots—A comparative view. Plant J. 2015, 83, 52–61. [Google Scholar] [CrossRef]
- Wang, Y.; Copenhaver, G.P. Meiotic Recombination: Mixing It Up in Plants. Annu. Rev. Plant Biol. 2018, 69, 577–609. [Google Scholar] [CrossRef] [PubMed]
- Gray, S.; Cohen, P.E. Control of Meiotic Crossovers: From Double-Strand Break Formation to Designation. Annu. Rev. Genet. 2016, 50, 175–210. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, L.; Yan, J. Dissecting meiotic recombination based on tetrad analysis by single-microspore sequencing in maize. Nat. Commun. 2015, 6, 6648. [Google Scholar] [CrossRef] [Green Version]
- Pan, Q.; Deng, M.; Yan, J.; Li, L. Complexity of genetic mechanisms conferring nonuniformity of recombination in maize. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dreissig, S.; Maurer, A.; Sharma, R.; Milne, L.; Flavell, A.J.; Schmutzer, T.; Pillen, K. Natural variation in meiotic recombination rate shapes introgression patterns in intraspecific hybrids between wild and domesticated barley. New Phytol. 2020, 228, 1852–1863. [Google Scholar] [CrossRef]
- Seplyarskiy, V.B.; Logacheva, M.D.; Penin, A.A.; Baranova, M.A.; Leushkin, E.V.; Demidenko, N.V.; Klepikova, A.V.; Kondrashov, F.A.; Kondrashov, A.S.; James, T.Y. Crossing-Over in a Hypervariable Species Preferentially Occurs in Regions of High Local Similarity. Mol. Biol. Evol. 2014, 31, 3016–3025. [Google Scholar] [CrossRef] [Green Version]
- Sonnenberg, A.S.; Gao, W.; Lavrijssen, B.; Hendrickx, P.; Sedaghat-Tellgerd, N.; Foulongne-Oriol, M.; Kong, W.-S.; Schijlen, E.G.; Baars, J.; Visser, R.G. A detailed analysis of the recombination landscape of the button mushroom Agaricus bisporus var. bisporus. Fungal Genet. Biol. 2016, 93, 35–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheng, K.; Wang, C.; Chen, B.; Kang, M.; Wang, M.; Liu, K.; Wang, M. Recent advances in polysaccharides from Lentinus edodes (Berk.): Isolation, structures and bioactivities. Food Chem. 2021, 358, 129883. [Google Scholar] [CrossRef] [PubMed]
- Royse, D.J.; Baars, J.; Tan, Q. Current Overview of Mushroom Production in the World. In Edible and Medicinal Mushrooms; Wiley-Blackwell: Oxford, UK, 2017; pp. 5–13. [Google Scholar]
- Zhang, L.; Gong, W.; Li, C.; Shen, N.; Gui, Y.; Bian, Y.; Kwan, H.S.; Cheung, M.K.; Xiao, Y. RNA-Seq-based high-resolution linkage map reveals the genetic architecture of fruiting body development in shiitake mushroom, Lentinula edodes. Comput. Struct. Biotechnol. J. 2021, 19, 1641–1653. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.-B.; Liu, W.; Lu, Y.-Y.; Bian, Y.-B.; Zhou, Y.; Kwan, H.S.; Cheung, M.K.; Xiao, Y. Constructing a new integrated genetic linkage map and mapping quantitative trait loci for vegetative mycelium growth rate in Lentinula edodes. Fungal Biol. 2014, 118, 295–308. [Google Scholar] [CrossRef]
- Gong, W.-B.; Li, L.; Zhou, Y.; Bian, Y.-B.; Kwan, H.-S.; Cheung, M.-K.; Xiao, Y. Genetic dissection of fruiting body-related traits using quantitative trait loci mapping in Lentinula edodes. Appl. Microbiol. Biotechnol. 2016, 100, 5437–5452. [Google Scholar] [CrossRef]
- Jordan, K.W.; Wang, S.; He, F.; Chao, S.; Lun, Y.; Paux, E.; Sourdille, P.; Sherman, J.; Akhunova, A.; Blake, N.K.; et al. The genetic architecture of genome-wide recombination rate variation in allo-polyploid wheat revealed by nested association mapping. Plant J. 2018, 95, 1039–1054. [Google Scholar] [CrossRef] [Green Version]
- Gong, W.; Song, X.; Xie, C.; Zhou, Y.; Zhu, Z.; Xu, C.; Peng, Y. Landscape of meiotic crossovers in Hericium erinaceus. Microbiol. Res. 2021, 245, 126692. [Google Scholar] [CrossRef]
- Si, W.; Yuan, Y.; Huang, J.; Zhang, X.; Zhang, Y.; Zhang, Y.; Tian, D.; Wang, C.; Yang, Y.; Yang, S. Widely distributed hot and cold spots in meiotic recombination as shown by the sequencing of rice F2 plants. New Phytol. 2015, 206, 1491–1502. [Google Scholar] [CrossRef]
- Davis, T.M.; Yang, Y.; Mahoney, L.L.; Frailey, D.C. A pentaploid-based linkage map of the ancestral octoploid strawberry Fragaria virginiana reveals instances of sporadic hyper-recombination. Hortic. Res. 2020, 7, 1–15. [Google Scholar] [CrossRef]
- Heinz, S.; Benner, C.; Spann, N.; Bertolino, E.; Lin, Y.; Laslo, P.; Cheng, J.X.; Murre, C.; Singh, H.; Glass, C.K. Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities. Mol. Cell 2010, 38, 576–589. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Bastern, C.J.; Zeng, Z.B. Windows QTL Cartographer 2; Department of Statistics, North Carolina State University: Raleigh, NC, USA, 2007; Available online: https://brcwebportal.cos.ncsu.edu/qtlcart/WQTLCart.htm (accessed on 28 May 2021).
- Lu, S.; Zong, C.; Fan, W.; Yang, M.; Li, J.; Chapman, A.R.; Zhu, P.; Hu, X.; Xu, L.; Yan, L.; et al. Probing Meiotic Recombination and Aneuploidy of Single Sperm Cells by Whole-Genome Sequencing. Science 2012, 338, 1627–1630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludlow, C.L.; Scott, A.C.; Cromie, G.A.; Jeffery, E.W.; Sirr, A.; May, P.; Lin, J.; Gilbert, T.L.; Hays, M.; Dudley, A.M. High-throughput tetrad analysis. Nat. Chem. Biol. 2013, 10, 671–675. [Google Scholar] [CrossRef] [Green Version]
- Wijnker, E.; James, G.V.; Ding, J.; Becker, F.; Klasen, J.R.; Rawat, V.; Rowan, B.; De Jong, D.F.; De Snoo, C.B.; Zapata, L.; et al. The genomic landscape of meiotic crossovers and gene conversions in Arabidopsis thaliana. eLife 2013, 2, e01426. [Google Scholar] [CrossRef] [PubMed]
- Hunter, N. Meiotic Recombination: The Essence of Heredity. Cold Spring Harb. Perspect. Biol. 2015, 7, a016618. [Google Scholar] [CrossRef] [Green Version]
- Croll, D.; Lendenmann, M.H.; Stewart, E.L.; McDonald, B. The Impact of Recombination Hotspots on Genome Evolution of a Fungal Plant Pathogen. Genetics 2015, 201, 1213–1228. [Google Scholar] [CrossRef] [Green Version]
- Pérez, G.; Lopez-Moya, F.; Chuina, E.; Ibañez-Vea, M.; Garde, E.; López-Llorca, L.V.; Pisabarro, A.G.; Ramírez, L. Strain Degeneration in Pleurotus ostreatus: A Genotype Dependent Oxidative Stress Process Which Triggers Oxidative Stress, Cellular Detoxifying and Cell Wall Reshaping Genes. J. Fungi 2021, 7, 862. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Sasaki, M.; Kniewel, R.; Murakami, H.; Blitzblau, H.G.; Tischfield, S.E.; Zhu, X.; Neale, M.J.; Jasin, M.; Socci, N.D.; et al. A Hierarchical Combination of Factors Shapes the Genome-wide Topography of Yeast Meiotic Recombination Initiation. Cell 2011, 144, 719–731. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Fan, W.; Yan, L.; Li, R.; Lian, Y.; Huang, J.; Li, J.; Xu, L.; Tang, F.; Xie, X.S.; et al. Genome Analyses of Single Human Oocytes. Cell 2013, 155, 1492–1506. [Google Scholar] [CrossRef] [Green Version]
- Marand, A.P.; Zhao, H.; Zhang, W.; Zeng, Z.; Fang, C.; Jiang, J. Historical Meiotic Crossover Hotspots Fueled Patterns of Evolutionary Divergence in Rice. Plant Cell 2019, 31, 645–662. [Google Scholar] [CrossRef]
- Foulongne-Oriol, M.; Taskent, O.; Kües, U.; Sonnenberg, A.; van Peer, A.; Giraud, T. Mating-Type Locus Organization and Mating-Type Chromosome Differentiation in the Bipolar Edible Button Mushroom Agaricus bisporus. Genes 2021, 12, 1079. [Google Scholar] [CrossRef]
- Andrews, B.J.; Moore, L.A. Interaction of the yeast Swi4 and Swi6 cell cycle regulatory proteins in vitro. Proc. Natl. Acad. Sci. USA 1992, 89, 11852–11856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giraut, L.; Falque, M.; Drouaud, J.; Pereira, L.; Martin, O.; Mézard, C. Genome-Wide Crossover Distribution in Arabidopsis thaliana Meiosis Reveals Sex-Specific Patterns along Chromosomes. PLoS Genet. 2011, 7, e1002354. [Google Scholar] [CrossRef] [Green Version]
- Kong, A.; Thorleifsson, G.; Gudbjartsson, D.; Masson, G.; Sigurdsson, A.; Jonasdottir, A.; Walters, G.B.; Jonasdottir, A.; Gylfason, A.; Kristinsson, K.T.; et al. Fine-scale recombination rate differences between sexes, populations and individuals. Nat. Cell Biol. 2010, 467, 1099–1103. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Li, X.; Zhang, Q.; Yan, J. Single gametophyte sequencing reveals that crossover events differ between sexes in maize. Nat. Commun. 2019, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Heitman, J. 1 Running Hot and Cold: Recombination Around and Within Mating-Type Loci of Fungi and Other Eukaryotes. In Environmental and Microbial Relationships; Springer: Singapore, 2016; pp. 3–13. [Google Scholar]
- Larraya, L.M.; Pérez, G.; Iribarren, I.; Blanco, J.A.; Alfonso, M.; Pisabarro, A.G.; Ramírez, L. Relationship between Monokaryotic Growth Rate and Mating Type in the Edible Basidiomycete Pleurotus ostreatus. Appl. Environ. Microbiol. 2001, 67, 3385–3390. [Google Scholar] [CrossRef] [Green Version]
- Idnurm, A.; Hood, M.E.; Johannesson, H.; Giraud, T. Contrasted patterns in mating-type chromosomes in fungi: Hotspots versus coldspots of recombination. Fungal Biol. Rev. 2015, 29, 220–229. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Payseur, B.A. Genetics of Genome-Wide Recombination Rate Evolution in Mice from an Isolated Island. Genetics 2017, 206, 1841–1852. [Google Scholar] [CrossRef]
- Esch, E.; Szymaniak, J.M.; Yates, H.; Pawlowski, W.P.; Buckler, E. Using Crossover Breakpoints in Recombinant Inbred Lines to Identify Quantitative Trait Loci Controlling the Global Recombination Frequency. Genetics 2007, 177, 1851–1858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, Q.; Li, L.; Yang, X.; Tong, H.; Xu, S.; Li, Z.; Li, W.; Muehlbauer, G.J.; Li, J.; Yan, J. Genome-wide recombination dynamics are associated with phenotypic variation in maize. New Phytol. 2016, 210, 1083–1094. [Google Scholar] [CrossRef]
- Bonilla, B.; Hengel, S.R.; Grundy, M.K.; Bernstein, K.A. RAD51 Gene Family Structure and Function. Annu. Rev. Genet. 2020, 54, 25–46. [Google Scholar] [CrossRef] [PubMed]
- Mazloum, N.; Zhou, Q.; Holloman, W.K. D-loop formation by Brh2 protein of Ustilago maydis. Proc. Natl. Acad. Sci. USA 2008, 105, 524–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Locus | Trait | Chr | Type | Position (cM) | LOD | Additive | R2 (%) | a CI (cM) | b No. of Genes | c Association with Hotspots | Length of CI (kb) |
---|---|---|---|---|---|---|---|---|---|---|---|
cochr1.1 | COchr1 | 1 | cis-prone | 83.7 | 3.07 | 0.61 | 11.0 | 81.9–90.2 | 6 | hotspot8 | 29.4 |
cochr2.1 | COchr2 | 1 | trans | 155.5 | 2.95 | −0.33 | 8.5 | 152.5–158.2 | 5 | hotspot13 | 9.5 |
cochr2.2 | COchr2 | 1 | trans | 162.8 | 3.81 | −0.41 | 10.8 | 160.6–164.3 | 2 | hotspot14 | 2.0 |
cochr2.3 | COchr2 | 8 | trans | 1.9 | 3.64 | 0.31 | 10.6 | 0–6.8 | 46 | hotspot54 | 203.0 |
cochr3.1 | COchr3 | 2 | trans | 53.4 | 2.88 | 0.46 | 9.5 | 50.5–56.2 | 2 | near to hotspot18 | 5.2 |
cochr3.2 | COchr3 | 2 | trans | 80.0 | 3.33 | −0.33 | 11.0 | 74.7–81.0 | 5 | hotspot20 | 5.6 |
cochr3.3 | COchr3 | 2 | trans | 85.5 | 3.04 | −0.30 | 10.0 | 81.9–87.6 | 290 | near to hotspot20 | 721.9 |
cochr4.1 | COchr4 | 4 | cis-prone | 45.0 | 8.32 | −0.96 | 29.1 | 44.5–45.1 | 112 | / | 396.4 |
cochr4.2 | COchr4 | 4 | cis-prone | 56.0 | 8.46 | 0.85 | 24.1 | 55.0–58.0 | 3 | hotspot38 | 6.2 |
cochr6.1 | COchr6 | 6 | cis-prone | 10.1 | 4.59 | −0.72 | 15.1 | 9.9–14.4 | 4 | hotspot46 | 23.5 |
cochr7.1 | COchr7 | 7 | cis-prone | 2.8 | 5.82 | −0.25 | 21.4 | 1.6–4.1 | 247 | / | 836.5 |
cochr8.1 | COchr8 | 1 | trans | 97.3 | 3.35 | −0.34 | 9.3 | 94.2–99.9 | 44 | near to hotspot10 | 117.3 |
cochr8.2 | COchr8 | 1 | trans | 105.5 | 3.40 | −0.34 | 8.7 | 103.6–113.2 | 11 | hotspot10 | 37.5 |
hco.1 | HCO | 1 | / | 5.8 | 3.26 | −0.63 | 9.9 | 0–9.2 | 4 | hotspot1 | 9.3 |
hco.2 | HCO | 2 | / | 75.6 | 3.73 | −0.66 | 11.0 | 69.8–80.5 | 4 | hotspot20 | 5.8 |
tco.1 | TCO | 2 | / | 81.9 | 3.10 | −0.84 | 10.6 | 80.5–85.0 | 197 | near to hotspot20 | 467.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, W.; Shen, N.; Zhang, L.; Bian, Y.; Xiao, Y. Chromosome-Wide Characterization of Intragenic Crossover in Shiitake Mushroom, Lentinula edodes. J. Fungi 2021, 7, 1076. https://doi.org/10.3390/jof7121076
Gong W, Shen N, Zhang L, Bian Y, Xiao Y. Chromosome-Wide Characterization of Intragenic Crossover in Shiitake Mushroom, Lentinula edodes. Journal of Fungi. 2021; 7(12):1076. https://doi.org/10.3390/jof7121076
Chicago/Turabian StyleGong, Wenbing, Nan Shen, Lin Zhang, Yinbing Bian, and Yang Xiao. 2021. "Chromosome-Wide Characterization of Intragenic Crossover in Shiitake Mushroom, Lentinula edodes" Journal of Fungi 7, no. 12: 1076. https://doi.org/10.3390/jof7121076
APA StyleGong, W., Shen, N., Zhang, L., Bian, Y., & Xiao, Y. (2021). Chromosome-Wide Characterization of Intragenic Crossover in Shiitake Mushroom, Lentinula edodes. Journal of Fungi, 7(12), 1076. https://doi.org/10.3390/jof7121076