Comparison of Polysaccharides Extracted from Cultivated Mycelium of Inonotus obliquus with Polysaccharide Fractions Obtained from Sterile Conk (Chaga) and Birch Heart Rot
Abstract
:1. Introduction
2. Materials and Methods
2.1. Starting Material
2.1.1. Chaga and Infected Birch Stem
2.1.2. Mycelium Cultivation
2.2. Polysaccharide Extraction and Purification
2.3. Analytical Methods
2.3.1. Total Sugar and Phenolic Contents
2.3.2. Monomer Composition Analysis
2.3.3. Molecular Weight Analysis
2.3.4. Spectroscopical Analysis
3. Results and Discussion
3.1. Yield, Sugar, and Phenolic Content of Polysaccharides
3.2. Monomer Composition of Polysaccharides
3.2.1. Birch Heart Rot Polysaccharides
3.2.2. Sterile Conk Polysaccharides
3.2.3. Mycelium Polysaccharides
3.2.4. Comparison of the Different Fractions
3.3. Molecular Weight Distribution of Polysaccharides
3.4. FT-IR Spectroscopy
3.5. Nuclear Magnetic Resonance Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balandaykin, M.E.; Zmitrovich, I.V. Review on Chaga Medicinal Mushroom, Inonotus obliquus (Higher Basidiomycetes): Realm of Medicinal Applications and Approaches on Estimating its Resource Potential. Int. J. Med. Mushrooms 2015, 17, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Saar, M. Fungi in khanty folk medicine. J. Ethnopharmacol. 1991, 31, 175–179. [Google Scholar] [CrossRef]
- Lau, B.F.; Abdullah, N. Sclerotium-forming mushrooms as an emerging source of medicinals. In Mushroom Biotechnology: Developments and Applications; Petre, M., Ed.; Academic Press: Cambridge, MI, USA, 2016; pp. 111–136. ISBN 9780128027943. [Google Scholar]
- Zhao, Y.; Zheng, W. Deciphering the antitumoral potential of the bioactive metabolites from medicinal mushroom Inonotus obliquus. J. Ethnopharmacol. 2021, 265, 113321. [Google Scholar] [CrossRef]
- Giavasis, I. Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals. Curr. Opin. Biotechnol. 2014, 26, 162–173. [Google Scholar] [CrossRef]
- Thomas, P.W.; Elkhateeb, W.A.; Daba, G.M. Chaga (Inonotus obliquus): A medical marvel but a conservation dilemma? Sydowia 2020, 72, 123–130. [Google Scholar] [CrossRef]
- Elisashvili, V. Submerged cultivation of medicinal mushrooms: Bioprocesses and products (review). Int. J. Med. Mushrooms 2012, 14, 211–239. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.-J.; Zhu, L.-W.; Li, H.-M.; Li, D.-S. Submerged culture of mushrooms in bioreactors – Challenges, current state-of-the-art, and future prospects. Food Technol. Biotechnol. 2007, 45, 221–229. [Google Scholar]
- Rathore, H.; Prasad, S.; Kapri, M.; Tiwari, A.; Sharma, S. Medicinal importance of mushroom mycelium: Mechanisms and applications. J. Funct. Foods 2019, 56, 182–193. [Google Scholar] [CrossRef]
- Xu, X.; Li, J.; Hu, Y. Polysaccharides from Inonotus obliquus sclerotia and cultured mycelia stimulate cytokine production of human peripheral blood mononuclear cells in vitro and their chemical characterization. Int. Immunopharmacol. 2014, 21, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Ka, K.-H.; Jeon, S.-M.; Park, H.; Lee, B.-H.; Ryu, S.-R. Growth of Chaga Mushroom (Inonotus obliquus) on Betula platyphylla var. japonica. Korean J. Mycol. 2017, 45, 241–245. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Zhang, J.; Liu, J.; Dai, X.; Kong, X.; Ma, Q.; Zhang, Z. Artificial Cultivation of Inonotus obliquus. ACTA Edulis Fungi 2010, 17, 32–38. [Google Scholar]
- Liu, Y.; Zhang, B.; Ibrahim, S.A.; Gao, S.S.; Yang, H.; Huang, W. Purification, characterization and antioxidant activity of polysaccharides from Flammulina velutipes residue. Carbohydr. Polym. 2016, 145, 71–77. [Google Scholar] [CrossRef]
- Xu, X.; Xu, Z.; Shi, S.; Lin, M. Lignocellulose degradation patterns, structural changes, and enzyme secretion by Inonotus obliquus on straw biomass under submerged fermentation. Bioresour. Technol. 2017, 241, 415–423. [Google Scholar] [CrossRef]
- Beltrame, G.; Hemming, J.; Yang, H.; Han, Z.; Yang, B. Effects of supplementation of sea buckthorn press cake on mycelium growth and polysaccharides of Inonotus obliquus in submerged cultivation. J. Appl. Microbiol. 2021. [Google Scholar] [CrossRef]
- Shi, L. Bioactivities, isolation and purification methods of polysaccharides from natural products. Int. J. Biol. Macromol. 2016, 92, 37–48. [Google Scholar] [CrossRef]
- Gorin, P.A.J.; Iacomini, M. Polysaccharides of the lichens Cetraria islandica and Ramalina usnea. Carbohydr. Res. 1984, 128, 119–132. [Google Scholar] [CrossRef]
- Masuko, T.; Minami, A.; Iwasaki, N.; Majima, T.; Nishimura, S.-I.; Lee, Y.C. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal. Biochem. 2005, 339, 69–72. [Google Scholar] [CrossRef]
- Magalhães, L.M.; Santos, F.; Segundo, M.A.; Reis, S.; Lima, J.L. Rapid microplate high-throughput methodology for assessment of Folin-Ciocalteu reducing capacity. Talanta 2010, 83, 441–447. [Google Scholar] [CrossRef]
- Beltrame, G.; Trygg, J.; Rahkila, J.; Leino, R.; Yang, B. Structural investigation of cell wall polysaccharides extracted from wild Finnish mushroom Craterellus tubaeformis (Funnel Chanterelle). Food Chem. 2019, 301, 125255. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-X.; Lu, Z.-M.; Geng, Y.; Zhang, X.-M.; Xu, G.-H.; Shi, J.-S.; Xu, Z.-H. Stimulated production of steroids in Inonotus obliquus by host factors from birch. J. Biosci. Bioeng. 2014, 118, 728–731. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Abad, A.; Giummarella, N.; Lawoko, M.; Vilaplana, F. Differences in extractability under subcritical water reveal interconnected hemicellulose and lignin recalcitrance in birch hardwoods. Green Chem. 2018, 20, 2534–2546. [Google Scholar] [CrossRef] [Green Version]
- Švagelj, M.; Berovič, M.; Boh, B.; Menard, A.; Simčič, S.; Wraber, B. Solid-state cultivation of Grifola frondosa (Dicks: Fr) S.F. Gray biomass and immunostimulatory effects of fungal intra- and extracellular β-polysaccharides. New Biotechnol. 2008, 25, 150–156. [Google Scholar] [CrossRef]
- Habijanič, J.; Berovič, M. The Relevance of Solid-state Substrate Moisturing on Ganoderma lucidum Biomass Cultivation. Food Technol. Biotechnol. 2000, 38, 225–228. [Google Scholar]
- Sánchez, Ó.J.; Montoya, S. Assessment of Polysaccharide and Biomass Production from Three White-Rot Fungi by Solid-State Fermentation Using Wood and Agro-Industrial Residues: A Kinetic Approach. Forests 2020, 11, 1055. [Google Scholar] [CrossRef]
- Koutrotsios, G.; Mountzouris, K.C.; Chatzipavlidis, I.; Zervakis, G.I. Bioconversion of lignocellulosic residues by Agrocybe cylindracea and Pleurotus ostreatus mushroom fungi-Assessment of their effect on the final product and spent substrate properties. Food Chem. 2014, 161, 127–135. [Google Scholar] [CrossRef]
- Xu, X.; Quan, L.; Shen, M. Effect of chemicals on production, composition and antioxidant activity of polysaccharides of Inonotus obliquus. Int. J. Biol. Macromol. 2015, 77, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Shih, I.L.; Pan, K.; Hsieh, C. Influence of nutritional components and oxygen supply on the mycelial growth and bioactive metabolites production in submerged culture of Antrodia cinnamomea. Process Biochem. 2006, 41, 1129–1135. [Google Scholar] [CrossRef]
- Rahman, M.M.; Ishiguri, F.; Takashima, Y.; Azad, M.A.K.; Iizuka, K.; Yoshizawa, N.; Yokota, S. Anatomical and histochemical characteristics of Japanese birch (Tohoku) plantlets infected with the Inonotus obliquus IO-U1 strain. Plant Biotechnol. 2008, 25, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Takashima, Y.; Suzuki, M.; Ishiguri, F.; Iizuka, K.; Yoshizawa, N.; Yokota, S. Cationic peroxidase related to basal resistance of Betula platyphylla var. japonica plantlet no. 8 against canker-rot fungus Inonotus obliquus strain IO-U1. Plant Biotechnol. 2013, 30, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Niu, H.; Song, D.; Mu, H.; Zhang, W.; Sun, F.; Duan, J. Investigation of three lignin complexes with antioxidant and immunological capacities from Inonotus obliquus. Int. J. Biol. Macromol. 2016, 86, 587–593. [Google Scholar] [CrossRef]
- Wold, C.W.; Gerwick, W.H.; Wangensteen, H.; Inngjerdingen, K.T. Bioactive triterpenoids and water-soluble melanin from Inonotus obliquus (Chaga) with immunomodulatory activity. J. Funct. Foods 2020, 71, 104025. [Google Scholar] [CrossRef]
- Xiao, L.; Shi, Z.; Bai, Y.; Wei, W.; Zhang, X.-M.; Run-Cang, S. Biodegradation of Lignocellulose by White-Rot Fungi: Structural Characterization of Water-Soluble Hemicelluloses. Bioenerg. Res. 2013, 6, 1154–1164. [Google Scholar] [CrossRef]
- Forest Products Biotechnology; Bruce, A.; Palfreyman, J. (Eds.) CRC Press: London, UK, 1997; Volume 74, ISBN 9780429079450. [Google Scholar]
- Wold, C.W.; Kjeldsen, C.; Corthay, A.; Rise, F.; Christensen, B.E.; Duus, J.Ø.; Inngjerdingen, K.T. Structural characterization of bioactive heteropolysaccharides from the medicinal fungus Inonotus obliquus (Chaga). Carbohydr. Polym. 2018, 185, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Hu, Y.; Quan, L. Production of bioactive polysaccharides by Inonotus obliquus under submerged fermentation supplemented with lignocellulosic biomass and their antioxidant activity. Bioprocess Biosyst. Eng. 2014, 37, 2483–2492. [Google Scholar] [CrossRef]
- Kim, Y.O.; Han, S.B.; Lee, H.W.; Ahnb, H.J.; Yoonb, Y.D.; Jungb, J.K.; Kimb, H.M.; Shin, C.S. Immuno-stimulating effect of the endo-polysaccharide produced by submerged culture of Inonotus obliquus. Life Sci. 2005, 77, 2438–2456. [Google Scholar] [CrossRef]
- Li, T.; Chen, L.; Wu, D.; Dong, G.; Chen, W.; Zhang, H.; Yang, Y.; Wu, W. The Structural Characteristics and Biological Activities of Intracellular Polysaccharide Derived from Mutagenic Sanghuangporous sanghuang Strain. Molecules 2020, 25, 3693. [Google Scholar] [CrossRef] [PubMed]
- Smiderle, F.R.; Olsen, L.M.; Carbonero, E.R.; Marcon, R.; Baggio, C.H.; Freitas, C.S.; Santos, A.R.S.; Torri, G.; Gorin, P.A.J.; Iacomini, M. A 3-O-methylated mannogalactan from Pleurotus pulmonarius: Structure and antinociceptive effect. Phytochemistry 2008, 69, 2731–2736. [Google Scholar] [CrossRef]
- Yan, J.; Meng, Y.; Zhang, M.; Zhou, X.; Cheng, H.; Sun, L.; Zhou, Y. A 3-O-methylated heterogalactan from Pleurotus eryngii activates macrophages. Carbohydr. Polym. 2019, 206, 706–715. [Google Scholar] [CrossRef]
- Komura, D.L.; Carbonero, E.R.; Gracher, A.H.P.; Baggio, C.H.; Freitas, C.S.; Marcon, R.; Santos, A.R.S.; Gorin, P.A.J.; Iacomini, M. Structure of Agaricus spp. fucogalactans and their anti-inflammatory and antinociceptive properties. Bioresour. Technol. 2010, 101, 6192–6199. [Google Scholar] [CrossRef]
- Sun, R.C.; Tomkinson, J. Physicochemical Characterization of Hemicelluloses from Steamed Aspen and Birchwood. Int. J. Polym. Anal. Charact. 1999, 5, 181–193. [Google Scholar] [CrossRef]
- Berglund, J.; Azhar, S.; Lawoko, M.; Lindström, M.; Vilaplana, F.; Wohlert, J.; Henriksson, G. The structure of galactoglucomannan impacts the degradation under alkaline conditions. Cellulose 2019, 26, 2155–2175. [Google Scholar] [CrossRef]
- Kacuráková, M.; Capek, P.; Sasinková, V.; Wellner, N.; Ebringerová, A. FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohydr. Polym. 2000, 43, 195–203. [Google Scholar] [CrossRef]
- Singh, R.; Singh, S.; Trimukhe, K.D.; Pandare, K.V.; Bastawade, K.B.; Gokhale, D.V.; Varma, A.J. Lignin-carbohydrate complexes from sugarcane bagasse: Preparation, purification, and characterization. Carbohydr. Polym. 2005, 62, 57–66. [Google Scholar] [CrossRef]
- Zhou, X.; McCallum, N.C.; Hu, Z.; Cao, W.; Gnanasekaran, K.; Feng, Y.; Stoddart, J.F.; Wang, Z.; Gianneschi, N.C. Artificial Allomelanin Nanoparticles. ACS Nano 2019, 13, 10980–10990. [Google Scholar] [CrossRef] [PubMed]
- Mohaček-Grošev, V.; Božac, R.; Puppels, G.J. Vibrational spectroscopic characterization of wild growing mushrooms and toadstools. Spectrochim. ACTA Part A Mol. Biomol. Spectrosc. 2001, 57, 2815–2829. [Google Scholar] [CrossRef]
- Dais, P.; Perlin, A.S. High-field, 13C-N.M.R. spectroscopy of β-d-glucans, amylopectin, and glycogen. Carbohydr. Res. 1982, 100, 103–116. [Google Scholar] [CrossRef]
- Giummarella, N.; Lawoko, M. Structural Basis for the Formation and Regulation of Lignin-Xylan Bonds in Birch. ACS Sustain. Chem. Eng. 2016, 4, 5319–5326. [Google Scholar] [CrossRef]
- Willför, S.; Sjöholm, R.; Laine, C.; Roslund, M.; Hemming, J.; Holmbom, B. Characterisation of water-soluble galactoglucomannans from Norway spruce wood and thermomechanical pulp. Carbohydr. Polym. 2003, 52, 175–187. [Google Scholar] [CrossRef]
- Teleman, A.; Nordström, M.; Tenkanen, M.; Jacobs, A.; Dahlman, O. Isolation and characterization of O-acetylated glucomannans from aspen and birch wood. Carbohydr. Res. 2003, 338, 525–534. [Google Scholar] [CrossRef]
- Teleman, A.; Lundqvist, J.; Tjerneld, F.; Stålbrand, H.; Dahlman, O. Characterization of acetylated 4-O-methylglucuronoxylan isolated from aspen employing 1 H and 13 C NMR spectroscopy. Carbohydr. Res. 2000, 329, 807–815. [Google Scholar] [CrossRef]
- Wong, K.-H.; Cheung, P.C.K. Sclerotia: Emerging functional food derived from mushrooms. In Mushrooms as Functional Foods; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 111–146. ISBN 9780470367285. [Google Scholar]
- Azarpira, A.; Ralph, J.; Lu, F. Catalytic Alkaline Oxidation of Lignin and its Model Compounds: A Pathway to Aromatic Biochemicals. Bioenergy Res. 2014, 7, 78–86. [Google Scholar] [CrossRef] [Green Version]
Fraction | Extraction Yield | Sugar Content | Phenolic Content | Xyl | Gal | Rha | Glc | Man | Ara | Fuc | GalA | GlcA | 3-O-Me-Gal | 4-O-Me-GlcA | Gal/3-O-Me-Gal | Molecular Weight (Mp) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
w/w % | w/w % | w/w % | relative molar % | mol/mol | Population 1 (kDa) | Population 2 (kDa) | Area † % | |||||||||||
Heart Rot HW | 2.20 | 19.49 ± 1.05 | 9.34 ± 1.14 | 26.76 ± 0.21 | 12.15 ± 0.26 | 3.87 ± 0.05 | 18.18 ± 0.13 | 11.84 ± 0.69 | 7.78 ± 0.13 | 4.16 ± 0.35 | 5.39 ± 0.56 | 0.17 ± 0.07 | 3.42 ± 0.04 | 2.96 ± 0.30 | 4 ± 0 | 1.2 × 102 | 8.3 | 18:82 |
Heart Rot 2% | 3.51 | 44.23 ± 5.00 | 6.28 ± 1.67 | 77.45 ± 1.57 | 3.63 ± 0.07 | n.d. * | 7.01 ± 0.06 | 1.88 ± 0.05 | 4.50 ± 0.10 | n.d. * | 2.02 ± 0.02 | n.d. * | 0.47 ± 0.03 | 6.28 ± 0.10 | 8 ± 1 | 3.6 × 102 | 8.3 | 4:96 |
F-Chaga HW | 1.09 | 27.64 ± 0.19 | 4.04 ± 0.74 | 14.58 ± 0.18 | 15.76 ± 0.2 | 3.60 ± 0.11 | 34.68 ± 0.04 | 11.84 ± 0.19 | 8.55 ± 0.01 | 2.64 ± 0.25 | 6.75 ± 0.27 | 0.50 ± 0.01 | 1.11 ± 0.10 | n.d. * | 14 ± 1 | 7.6 | 100 | |
F-Chaga 2% | 3.66 (9.20) | 31.90 ± 2.70 | 18.76 ± 2.51 | 5.11 ± 0.15 | 5.60 ± 0.11 | 1.20 ± 0.18 | 62.27 ± 1.42 | 11.72 ± 0.17 | 7.26 ± 0.18 | 1.5 ± 0.16 | 4.43 ± 1.98 | 0.52 ± 0.13 | 0.40 ± 0.10 | n.d. * | 15 ± 3 | 6.3 # | 100 # | |
C-Chaga HW | 0.85 | 26.11 ± 1.73 | 5.34 ± 0.67 | 10.91 ± 0.69 | 16.88 ± 0.24 | 2.33 ± 0.10 | 38.33 ± 0.85 | 5.61 ± 0.07 | 12.51 ± 0.20 | 5.49 ± 0.25 | 3.44 ± 0.25 | 0.29 ± 0.08 | 4.2 ± 0.23 | n.d. * | 4 ± 0 | 10.7 | 100 | |
IPSsb0–2.5 HW | 2.15 | 80.02 ± 2.19 | n.d. * | 1.44 ± 0.02 | 12.78 ± 0.40 | 0.17 ± 0.00 | 62.9 ± 0.46 | 20.2 ± 0.18 | 0.45 ± 0.05 | 1.16 ± 0.08 | 0.44 ± 0.02 | n.d. * | 1.3 ± 0.01 | n.d. * | 10 ± 0 | 3.6 × 102 | 10.1 # | 55:45 # |
IPSsb0–2.5 2% | 4.05 | 76.04 ± 1.38 | n.d. * | 1.68 ± 0.03 | 15.47 ± 0.21 | 0.22 ± 0.01 | 55.09 ± 0.36 | 23.42 ± 0.16 | 0.76 ± 0.04 | 1.27 ± 0.03 | 0.20 ± 0.02 | n.d. * | 1.85 ± 0.04 | n.d. * | 8 ± 0 | 2.2 × 102 | 16.9 | 26:74 |
Type of linkage | C1/H1 | C2/H2 | C3/H3 | C4/H4 | C5/H5 | C6/H6 | O-CH3 |
---|---|---|---|---|---|---|---|
→6)-β-Glc-(1→6) | 102.9 4.56 | 73.1 3.35 | 75.8 3.53 | 68.3 3.62 | 73.2 3.71 | 69.7 4.25/3.89 | |
→3)-β-Glc-(1→6) | 102.7 4.57 | 72.9 3.55 | 85.0 3.77 | 68.2 3.54 | 71.3 3.67 | 60.6 3.94/3.76 | |
→6)-β-Glc-(1→3) | 103.0 4.76 | 73.6 3.40 | 75.8 3.53 | 68.3 3.62 | 73.2 3.71 | 69.7 4.25/3.89 | |
→3)-β-Glc-(1→3) | 102.7 4.81 | 73.2 3.59 | 84.5 3.81 | 68.2 3.54 | 71.3 3.67 | 60.6 3.94/3.76 | |
→6)-α-3-OMe-Gal-(1→6) | 97.9 5.02 | 67.3 3.91 | 78.9 3.58 | 65.3 4.33 | 68.4 3.87 | 66.5 3.95/3.72 | 56.2 3.48 |
→6)-α-Gal-(1→6) | 97.9 5.02 | 67.3 3.91 | 69.5 4.05 | n.a. * | 68.4 3.87 | 66.5 3.95/3.72 | |
→4)-α-Glc-(1→4) | 99.8 5.42 | 69.7 3.45 | 73.2 3.99 | 77.1 3.67 | 71.5 3.87 | 60.6 3.94/3.76 |
Fraction | Type of linkage * | C1/H1 | C2/H2 | C3/H3 | C4/H4 | C5/H5 | C6/H6 | O-CH3 |
---|---|---|---|---|---|---|---|---|
HW (2%) | →6)-α-3-OMe-Gal-(1→6) | 97.9 5.02 | 67.3 3.91 | 78.9 3.58 | 65.3 4.33 | 68.4 3.87 | 66.5 3.95/3.72 | 56.2 3.48 |
HW | →4)-β-Glc-(1→4) | 102.6 4.53 | 72.8 3.23 | n.a. $ | 76.4 3.82 | n.a. $ | 60.6 3.94/3.76 | |
HW | →4)-β-Man-(1→4) | 104.1 4.66 | 70.1 4.13 | n.a. $ | 76.4 3.82 | n.a. $ | 60.6 3.94/3.76 | |
HW | →4)-3-OR-β-Man-(1→4) | 100.1 4.79 | 69.1 4.22 | 75.9 5.02 | n.a. $ | n.a. $ | 60.6 3.94/3.76 | |
HW | →4)-2-OR-β-Man-(1→4) | 99.7 4.87 | 72.6 5.56 | n.a. $ | n.a. $ | n.a. $ | 60.6 3.94/3.76 | |
HW, 2% | →4)-β-Xyl-(1→4) | 101.7 4.50 | 72.8 3.33 | 73.7 3.59 | 76.5 3.81 | 62.8 4.13/3.40 | ||
2% | →4)-2-OR-β-Xyl-(1→4) | 101.4 4.65 | 72.8 4.50 | n.a. $ | 76.1 3.83 | 62.8 4.13/3.40 | ||
2% | →4)-3-OR-β-Xyl-(1→4) # | 103.3 4.65 | n.a. $ | 79.2 4.61 | n.a. $ | 62.8 4.13/3.40 | ||
2% | →4)-α-Xyl | 99.0 5.11 | n.a. $ | n.a. $ | 76.5 3.81 | 62.8 4.13/3.40 | ||
2% | 4-O-Me-α-GlcA-(1→ | 97.6 5.30 | 71.5 3.60 | 72.3 3.79 | 82.5 3.26 | 72.3 4.35 | 56.1 3.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beltrame, G.; Trygg, J.; Hemming, J.; Han, Z.; Yang, B. Comparison of Polysaccharides Extracted from Cultivated Mycelium of Inonotus obliquus with Polysaccharide Fractions Obtained from Sterile Conk (Chaga) and Birch Heart Rot. J. Fungi 2021, 7, 189. https://doi.org/10.3390/jof7030189
Beltrame G, Trygg J, Hemming J, Han Z, Yang B. Comparison of Polysaccharides Extracted from Cultivated Mycelium of Inonotus obliquus with Polysaccharide Fractions Obtained from Sterile Conk (Chaga) and Birch Heart Rot. Journal of Fungi. 2021; 7(3):189. https://doi.org/10.3390/jof7030189
Chicago/Turabian StyleBeltrame, Gabriele, Jani Trygg, Jarl Hemming, Zenghua Han, and Baoru Yang. 2021. "Comparison of Polysaccharides Extracted from Cultivated Mycelium of Inonotus obliquus with Polysaccharide Fractions Obtained from Sterile Conk (Chaga) and Birch Heart Rot" Journal of Fungi 7, no. 3: 189. https://doi.org/10.3390/jof7030189
APA StyleBeltrame, G., Trygg, J., Hemming, J., Han, Z., & Yang, B. (2021). Comparison of Polysaccharides Extracted from Cultivated Mycelium of Inonotus obliquus with Polysaccharide Fractions Obtained from Sterile Conk (Chaga) and Birch Heart Rot. Journal of Fungi, 7(3), 189. https://doi.org/10.3390/jof7030189