Characterization of the Highly Efficient Acid-Stable Xylanase and β-Xylosidase System from the Fungus Byssochlamys spectabilis ATHUM 8891 (Paecilomyces variotii ATHUM 8891)
Abstract
1. Introduction
2. Materials and Methods
2.1. Strain and Growth Conditions
2.2. Enzyme Purification
2.3. Enzyme Assays and Protein Concentration
2.4. Biochemical Characterization
2.5. Hydrolysis Experiments
2.6. Nano LC ESI-MS/MS Analysis and Protein Identification
2.7. Statistical Analysis
3. Results
3.1. Enzyme Production and Purification
3.2. Activity and Stability Properties
3.3. Substrate Specificity and Action on Xylan
3.4. Sequence Determination: Taxonomic Distribution and CAZy Classification
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guerriero, G.; Hausman, J.-F.; Strauss, J.; Ertan, H.; Siddiqui, K.S. Destructuring plant biomass: Focus on fungal and extremophilic cell wall hydrolases. Plant Sci. 2015, 234, 180–193. [Google Scholar] [CrossRef]
- Saha, B.C. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 2003, 30, 279–291. [Google Scholar] [CrossRef]
- Subramaniyan, S.; Prema, P. Biotechnology of microbial xylanases: Enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 2002, 22, 33–64. [Google Scholar] [CrossRef]
- Juturu, V.; Wu, J.C. Microbial xylanases: Engineering, production and industrial applications. Biotechnol. Adv. 2012, 30, 1219–1227. [Google Scholar] [CrossRef]
- Bhattacharya, A.S.; Bhattacharya, A.; Pletschke, B.I. Synergism of fungal and bacterial cellulases and hemicellulases: A novel perspective for enhanced bio-ethanol production. Biotechnol. Lett. 2015, 37, 1117–1129. [Google Scholar] [CrossRef] [PubMed]
- Shallom, D.; Shoham, Y. Microbial hemicellulases. Curr. Opin. Microbiol. 2003, 6, 219–228. [Google Scholar] [CrossRef]
- Olson, D.G.; McBride, J.E.; Shaw, A.J.; Lynd, L.R. Recent progress in consolidated bioprocessing. Curr. Opin. Biotechnol. 2012, 23, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.S.; Nugent, B.; Mullins, E.; Doohan, F.M. Fungal-mediated consolidated bioprocessing: The potential of Fusarium oxysporum for the lignocellulosic ethanol industry. AMB Express 2016, 6, 13. [Google Scholar] [CrossRef] [PubMed]
- Galanopoulou, A.P.; Hatzinikolaou, D.G. Fungi in consolidated bioprocessing of lignocellulosic materials. In Fungal Applications in Sustainable Environmental Biotechnology; Purchase, D., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 275–305. [Google Scholar] [CrossRef]
- Amore, A.; Faraco, V. Potential of fungi as category I Consolidated BioProcessing organisms for cellulosic ethanol production. Renew. Sustain. Energy Rev. 2012, 16, 3286–3301. [Google Scholar] [CrossRef]
- Kotzekidou, P. Byssochlamys. In Encyclopedia of Food Microbiology, 2nd ed.; Batt, C.A., Tortorello, M.L., Eds.; Academic Press: Oxford, UK, 2014; pp. 344–350. [Google Scholar] [CrossRef]
- Moreira, D.C.; Oliveira, M.M.E.; Borba, C.M. Human pathogenic Paecilomyces from food. Microorganisms 2018, 6, 64. [Google Scholar] [CrossRef]
- Herrera Bravo de Laguna, I.; Toledo Marante, F.J.; Mioso, R. Enzymes and bioproducts produced by the ascomycete fungus Paecilomyces variotii. J. Appl. Microbiol. 2015, 119, 1455–1466. [Google Scholar] [CrossRef]
- Mioso, R.; Marante, F.J.T.; de Laguna, I.H.B. The chemical diversity of the Ascomycete Fungus Paecilomyces variotii. Appl. Biochem. Biotechnol. 2015, 177, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Giannoutsou, E.P.; Katsifas, E.A.; Geli, A.; Karagouni, A.D. Protein increase and lysine production by a Paecilomyces variotii strain grown on two-phase olive mill waste. World J. Microbiol. Biotechnol. 2012, 28, 849–856. [Google Scholar] [CrossRef]
- de Morais, T.P.; Barbosa, P.M.G.; Garcia, N.F.L.; da Rosa-Garzon, N.G.; Fonseca, G.G.; da Paz, M.F.; Cabral, H.; Leite, R.S.R. Catalytic and thermodynamic properties of β-glucosidases produced by Lichtheimia corymbifera and Byssochlamys spectabilis. Prep. Biochem. Biotechnol. 2018, 48, 777–786. [Google Scholar] [CrossRef]
- Zerva, A.; Savvides, A.L.; Katsifas, E.A.; Karagouni, A.D.; Hatzinikolaou, D.G. Evaluation of Paecilomyces variotii potential in bioethanol production from lignocellulose through consolidated bioprocessing. Bioresour. Technol. 2014, 162, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.T.; O’Mahony, M.R.; Fogarty, W.M. Extracellular xylanolytic enzymes of Paecilomyces variotii. Biotechnol. Lett. 1989, 11, 885–890. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Vithayathil, P.J. Purification and characterization of endo-1,4-β-xylanase from Paecilomyces varioti Bainier. J. Ferment. Bioeng. 1989, 67, 77–82. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Wiegmann, K.; Hensler, M.; Wöhlbrand, L.; Ulbrich, M.; Schomburg, D.; Rabus, R. Carbohydrate catabolism in Phaeobacter inhibens DSM 17395, a member of the marine roseobacter clade. Appl. Environ. Microbiol. 2014, 80, 4725–4737. [Google Scholar] [CrossRef][Green Version]
- Kitts, P.A.; Church, D.M.; Thibaud-Nissen, F.; Choi, J.; Hem, V.; Sapojnikov, V.; Smith, R.G.; Tatusova, T.; Xiang, C.; Zherikov, A.; et al. Assembly: A resource for assembled genomes at NCBI. Nucleic Acids Res. 2016, 44, D73–D80. [Google Scholar] [CrossRef]
- Yin, Y.; Mao, X.; Yang, J.; Chen, X.; Mao, F.; Xu, Y. dbCAN: A web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012, 40, W445–W451. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Tian, H.; Cheng, Y.; Jiang, Z.; Yang, S. Purification and characterization of a thermostable cellulase-free xylanase from the newly isolated Paecilomyces themophila. Enzyme Microb. Technol. 2006, 38, 780–787. [Google Scholar] [CrossRef]
- Zhang, M.; Jiang, Z.; Yang, S.; Hua, C.; Li, L. Cloning and expression of a Paecilomyces thermophila xylanase gene in E. coli and characterization of the recombinant xylanase. Bioresour. Technol. 2010, 101, 688–695. [Google Scholar] [CrossRef]
- Fan, G.; Katrolia, P.; Jia, H.; Yang, S.; Yan, Q.; Jiang, Z. High-level expression of a xylanase gene from the thermophilic fungus Paecilomyces thermophila in Pichia pastoris. Biotechnol. Lett. 2012, 34, 2043–2048. [Google Scholar] [CrossRef]
- Li, X.; Tu, T.; Yao, B.; Xie, X.; Luo, H. A novel bifunctional xylanase/cellulase TcXyn10A from Thermoascus crustaceus JCM12803. Sheng Wu Gong Cheng Xue Bao 2018, 34, 1996–2006. [Google Scholar] [CrossRef]
- Tan, L.U.L.; Mayers, P.; Saddler, J.N. Purification and characterization of a thermostable xylanase from a thermophilic fungus Thermoascus aurantiacus. Can. J. Microbiol. 1987, 33, 689–692. [Google Scholar] [CrossRef]
- Kumar, P.R.; Eswaramoorthy, S.; Vithayathil, P.J.; Viswamitra, A.M.A. The Tertiary Structure at 1.59 A Resolution and the Proposed Amino Acid Sequence of a Family-11 Xylanase from the Thermophilic Fungus Paecilomyces varioti Bainier. J. Mol. Biol. 2000, 295, 581–593. [Google Scholar] [CrossRef]
- Yan, Q.J.; Wang, L.; Jiang, Z.Q.; Yang, S.Q.; Zhu, H.F.; Li, L.T. A xylose-tolerant β-xylosidase from Paecilomyces thermophila: Characterization and its co-action with the endogenous xylanase. Bioresour. Technol. 2008, 99, 5402–5410. [Google Scholar] [CrossRef] [PubMed]
- Teng, C.; Jia, H.; Yan, Q.; Zhou, P.; Jiang, Z. High-level expression of extracellular secretion of a β-xylosidase gene from Paecilomyces thermophila in Escherichia coli. Bioresour. Technol. 2011, 102, 1822–1830. [Google Scholar] [CrossRef] [PubMed]
- Juturu, V.; Wu, J.C. Heterologous expression of β-xylosidase gene from Paecilomyces thermophila in Pichia pastoris. World J. Microbiol. Biotechnol. 2013, 29, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, M.; Endou, A.; Okada, T.; Yamaoka, Y. Purification and characterization of β-xylosidase from Thermoascus sp. J. Ferment. Bioeng. 1998, 86, 403–405. [Google Scholar] [CrossRef]
- Wu, J.F.; Lastick, S.M.; Updegraff, D.M. Ethanol production from sugars derived from plant biomass by a novel fungus. Nature 1986, 321, 887–888. [Google Scholar] [CrossRef]
- Mustafa, G.; Kousar, S.; Rajoka, M.I.; Jamil, A. Molecular cloning and comparative sequence analysis of fungal β-xylosidases. AMB Express 2016, 6, 30. [Google Scholar] [CrossRef] [PubMed]
- Amaro-Reyes, A.; García-Almendárez, B.E.; Vázquez-Mandujano, D.G.; Amaya-Llano, S.; Castaño-Tostado, E.; Guevara-González, R.G.; Loera, O.; Regalado, C. Homologue expression of a β-xylosidase from native Aspergillus niger. J. Ind. Microbiol. Biotechnol. 2011, 38, 1311–1319. [Google Scholar] [CrossRef]
- Terrasan, C.R.F.; Guisan, J.M.; Carmona, E.C. Xylanase and β-xylosidase from Penicillium janczewskii: Purification, characterization and hydrolysis of substrates. Elecron. J. Biotechnol. 2016, 23, 54–62. [Google Scholar] [CrossRef]
- Wakiyama, M.; Yoshihara, K.; Hayashi, S.; Ohta, K. Purification and properties of an extracellular β-xylosidase from Aspergillus japonicus and sequence analysis of the encoding gene. J. Biosci. Bioeng. 2008, 106, 398–404. [Google Scholar] [CrossRef]
- Michelin, M.; Peixoto-Nogueira, S.C.; Silva, T.M.; Jorge, J.A.; Terenzi, H.F.; Teixeira, J.A.; Polizeli, M. de L.T.M. A novel xylan degrading β-D-xylosidase: Purification and biochemical characterization. World J. Microbiol. Biotechnol. 2012, 28, 3179–3186. [Google Scholar] [CrossRef]
- Knob, A.; Carmona, E.C. Purification and characterization of two extracellular xylanases from Penicillium sclerotiorum: A novel acidophilic xylanase. Appl. Biochem. Biotechnol. 2010, 162, 429–443. [Google Scholar] [CrossRef]
- Lee, J.-W.; Park, J.-Y.; Kwon, M.; Choi, I.-G. Purification and characterization of a thermostable xylanase from the brown-rot fungus Laetiporus sulphureus. J. Biosci. Bioeng. 2009, 107, 33–37. [Google Scholar] [CrossRef]
- Luo, H.; Li, J.; Yang, J.; Wang, H.; Yang, Y.; Huang, H.; Shi, P.; Yuan, T.; Fan, Y.; Yao, B. A thermophilic and acid stable family-10 xylanase from the acidophilic fungus Bispora sp. MEY-1. Extremophiles 2009, 13, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Sulistyo, J.; Kamiyama, Y.; Yasui, T. Purification and some properties of Aspergillus pulverulentus β-xylosidase with transxylosylation capacity. J. Ferment. Bioeng. 1995, 79, 17–22. [Google Scholar] [CrossRef]
- Iembo, T.; da Silva, R.; Pagnocca, F.C.; Gomes, E. Production, characterization, and properties of β-glucosidase and β-xylosidase from a strain of Aureobasidium sp. Appl. Biochem. Microbiol. 2002, 38, 549–552. [Google Scholar] [CrossRef]
- Ohta, K.; Fujimoto, H.; Fujii, S.; Wakiyama, M. Cell-associated β-xylosidase from Aureobasidium pullulans ATCC 20524: Purification, properties, and characterization of the encoding gene. J. Biosci. Bioeng. 2010, 110, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Knob, A.; Carmona, E.C. Purification and properties of an acid β-xylosidase from Penicillium sclerotiorum. Ann. Microbiol. 2011, 62, 501–508. [Google Scholar] [CrossRef]
Purification Step | Xylanase | β-Xylosidase | ||||
---|---|---|---|---|---|---|
Specific Activity (nkat mg−1) | Enrichment | Recovery (%) | Specific Activity (nkat mg−1) | Enrichment | Recovery (%) | |
Extracellular medium | 1259 | 1.0 | 100 | 67 | 1 | 100 |
(NH4)2SO4 precipitation | 1418 | 1.1 | 92 | 89 | 1.3 | 88 |
Q-Sepharose anion exchange | 3957 | 3.1 | 76 | 504 | 7.5 | 84 |
SP-Sepharose cation exchange | 29,781 | 23.7 | 72 | 3359 | 50.1 | 62 |
Sephacryl S-200 gel filtration | 75,847 | 60.2 | 62 | 5200 | 77.6 | 51 |
Compound | PvXyn11A | PvXyd3A | ||
---|---|---|---|---|
1 mM | 10 mM | 1 mM | 10 mM | |
Control | 100 | 100 | 100 | 100 |
CuCl2 | 60 ± 5 | 39 ± 4 | 95 ± 3 | 92 ± 3 |
CoCl2 | 90 ± 6 | 78 ± 5 | 105 ± 7 | 97 ± 6 |
NaCl | 102 ± 4 | 109 ± 8 | 95 ± 6 | 95 ± 9 |
BaCl2 | 98 ± 5 | 103 ± 2 | 88 ± 3 | 86 ± 5 |
CaCl2 | 107 ± 4 | 110 ± 7 | 95 ± 7 | 92 ± 5 |
HgCl2 | 86 ± 6 | 7 ± 3 | 95 ± 3 | 66 ± 7 |
MgSO4 | 90 ± 7 | 93 ± 8 | 103 ± 6 | 99 ± 3 |
Pb(CH3COO)2 | 106 ± 7 | 95 ± 5 | 106 ± 3 | 99 ± 4 |
MnSO4 | 94 ± 5 | 88 ± 6 | 104 ± 5 | 138 ± 5 |
ZnSO4 | 88 ± 10 | 85 ± 7 | 106 ± 9 | 122 ± 6 |
SDS | 84 ± 5 | 80 ± 2 | 81 ± 3 | 72 ± 5 |
EDTA | 94 ± 5 | 90 ± 4 | 99 ± 2 | 95 ± 3 |
DDT | 98 ± 6 | 103 ± 7 | 81 ± 4 | 50 ± 7 |
P. thermophila J18 | P. thermophila J18 | P. thermophila J18 | Thermoascus crustaceus JCM12803 | Thermoascus auranticus | P. variotii | P. variotii IMD RK 032 | B. spectabilis ATHUM8891 | |
---|---|---|---|---|---|---|---|---|
Production Source | WT | E. coli | P. Pastoris | P. Pastoris | WT | WT | WT | WT |
MW | 26 kDa | 28 kDa | 29 kDa | ND | 32 | 25 kDa | 20 kDa | 23 kDa |
pI | ND | 4.43 | ND | ND | 7.1 | 3.9 | 5.2 | >3 & <4 |
C(H2O) content | 21% | ND | ND | ND | ND | 4.5% | No glycosylation | 7.1% |
Specific activity | 20,500 nkat/mg (BiX) | 11,800 nkat/mg (BiX) | 108,950 nkat/mg (BiX) | 24,716 nkat/mg (BeX) | 1064 nkat/mg (OAX) | 8200 (LX) | 816 nkat/mg (xylan) | 75,800 nkat/mg (BeX) |
T optimum | 75 °C | 75 °C | 75 °C | 65–70 °C | 80 °C | 65 °C | 50 °C | 60 °C |
T stability | Stable up to 75 °C for 30 min | t1/2 174.8, 137.9, 107.4 and 68.2 min at 70, 75, 80 and 85 °C, resp. | Stable up to 70 °C for 30 min. 75% residual act. at 75 °C and 65% at 80 °C (30 min) | Stable for 60 min at least at 60 °C | 60 min at 80 °C. Stable up to 70 °C for days | Stable up to 60 °C. 65% residual activity after 60 min at 70 °C, inactivation after 40 min at 80 °C | ND | t1/2 of 17 and 60 min at 65 and 60 °C. Stable up to 55 °C for 2 days at least |
pH optimum | 6.5 | 7 | 7 | 5 | 5 | 5.5–7 | 4 | 3.5 |
pH stability | Stable for 30 min at least at pH 6.0–11.0 | Stable for 30 min at least at pH 6.5–10.5 | Stable for 30 min at least at pH 4.5–11 | Stable at pH 3–11 | ND | Stable at pH 3–10 | ND | Stable for 2 days at least at pH 2.5–8 |
KM | ND | 4.4 (BiX), 3.6 mg/mL (BeX), 9.7 mg/mL (OAX) | ND | ND | 1.7 mg/mL (OAX) | 2.5 mg/mL (LX) | 49.5 mg/mL (xylan) | 2.52 ± 0.45 mg/mL (BeX) |
GH family | ND | 11 | ND | ND | ND | ND | ND | 11 |
Ref. | [26] | [27] | [28] | [29] | [30] | [19,31] | [18] | Present work |
P. thermophila J18 | P. thermophila J18 | P. thermophila J18 | Thermosascus sp. | P. variotii IMD RK 032 | B. spectabilis ATHUM 8891 | |
---|---|---|---|---|---|---|
Production source | WT | E. coli | P. pastoris | WT | WT | WT |
MW | 53.5 kDa | 52. kDa | 52.3 kDa | 100 kDa | 67 kDa | 78 kDa |
pI | ND | ND | ND | ND | 4 | >3 & <4 |
Specific activity | 724 nkat/mg (pNPX) | 765 nkat/mg (pNPX) | 4.4 nkat/mg (pNPX) | 116.7 nkat/mg (pNPX) | ND | 5200 nkat/mg (pNPX) |
T optimum | 55 °C | 55 °C | 60 °C | 55 °C | 60 °C | 70 °C |
T stability | Stable up to 55 °C for 30 min | t1/2 of 1160, 605 and 15 min at 50, 55 and 60 °C | ND | Stable up to 60 °C for 1 h. | ND | t1/2 of 25 min at 70. Stable up to 60 °C for 2 days at least |
pH optimum | 6.5 | 7 | 7 | 4.5 | 4 | 3.5 |
pH stability | Stable 30 min from 6 to 9 at 50 °C | Stable 30 min from 6 to 9 at 50 °C | ND | ND | ND | Stable for 2 days at least at pH 2.5–8 |
KM (pnpX) | 4.3 mM | 4.5 mM | 8 mM | ND | 5.4 mM | 0.45 ± 0.06 mM |
KI (xylose) | 139 mM | ND | ND | ND | ND | 10.2 mM |
GH | ND | GH43 | ND | ND | ND | 3 |
Ref. | [32] | [33] | [34] | [35] | [18] | Present work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galanopoulou, A.P.; Haimala, I.; Georgiadou, D.N.; Mamma, D.; Hatzinikolaou, D.G. Characterization of the Highly Efficient Acid-Stable Xylanase and β-Xylosidase System from the Fungus Byssochlamys spectabilis ATHUM 8891 (Paecilomyces variotii ATHUM 8891). J. Fungi 2021, 7, 430. https://doi.org/10.3390/jof7060430
Galanopoulou AP, Haimala I, Georgiadou DN, Mamma D, Hatzinikolaou DG. Characterization of the Highly Efficient Acid-Stable Xylanase and β-Xylosidase System from the Fungus Byssochlamys spectabilis ATHUM 8891 (Paecilomyces variotii ATHUM 8891). Journal of Fungi. 2021; 7(6):430. https://doi.org/10.3390/jof7060430
Chicago/Turabian StyleGalanopoulou, Anastasia P., Irini Haimala, Daphne N. Georgiadou, Diomi Mamma, and Dimitris G. Hatzinikolaou. 2021. "Characterization of the Highly Efficient Acid-Stable Xylanase and β-Xylosidase System from the Fungus Byssochlamys spectabilis ATHUM 8891 (Paecilomyces variotii ATHUM 8891)" Journal of Fungi 7, no. 6: 430. https://doi.org/10.3390/jof7060430
APA StyleGalanopoulou, A. P., Haimala, I., Georgiadou, D. N., Mamma, D., & Hatzinikolaou, D. G. (2021). Characterization of the Highly Efficient Acid-Stable Xylanase and β-Xylosidase System from the Fungus Byssochlamys spectabilis ATHUM 8891 (Paecilomyces variotii ATHUM 8891). Journal of Fungi, 7(6), 430. https://doi.org/10.3390/jof7060430