Pathogenesis, Immunology and Management of Dermatophytosis
Abstract
:1. Introduction
2. Changing Trends in Epidemiology
3. Predisposing Factors
4. Immunopathogenesis of Dermatophytoses
4.1. Innate Immune Response
4.2. Acquired Immune Response
5. Management
Laboratory Diagnosis
6. Treatment
6.1. General Measures
6.2. Medical Management
- Tinea capitis
- Tinea unguium
- Dermatophytic infection involving more than one region simultaneously—tinea corporis and cruris, tinea cruris and pedis
- Extensive tinea corporis. However, there is no standardized definition of extensive infectiond
- Extensive tinea pedis involving the sole, heel and dorsum of the foot
- Resistant or recalcitrant or chronic dermatophytosis or patients who fail with topical therapy.
6.2.1. Tinea Corporis/Cruris
6.2.2. Tinea Incognito
6.2.3. Tinea Pedis
6.2.4. Tinea Capitis
6.2.5. Tinea Unguium
7. Special Situations
7.1. Majocchi Granuloma
7.2. Immunosuppression and Pregnancy
7.3. Elderly
7.4. Children
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, A.K.; Ryder, J.E.; Chow, M.; Cooper, E.A. Dermatophytosis: The management of fungal infections. Skinmed 2005, 4, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Weitzman, I.; Summerbell, R.C. The dermatophytes. Clin. Microbiol. Rev. 1995, 8, 240–259. [Google Scholar] [CrossRef]
- Mahajan, R.; Sahoo, A.K. Management of tinea corporis, tinea cruris, and tinea pedis: A comprehensive review. Indian Dermatol. Online J. 2016, 7, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Jerajani, H.; Janaki, C.; Kumar, S.; Phiske, M. Comparative assessment of the efficacy and safety of sertaconazole (2%) cream versus terbinafine cream (1%) versus luliconazole (1%) cream in patients with dermatophytoses: A pilot study. Indian J. Dermatol. 2013, 58, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Havlickova, B.; Czaika, V.A.; Friedrich, M. Epidemiological trends in skin mycoses worldwide. Mycoses 2008, 51 (Suppl. 4), 2–15. [Google Scholar] [CrossRef]
- Lakshmanan, A.; Ganeshkumar, P.; Mohan, S.R.; Hemamalini, M.; Madhavan, R. Epidemiological and clinical pattern of dermatomycoses in rural India. Indian J. Med. Microbiol. 2015, 33, 134–136. [Google Scholar] [CrossRef] [PubMed]
- Sharma, Y.; Jain, S.; Chandra, K.; Khurana, V.K.; Kudesia, M. Clinico-mycological evaluation of dermatophytes and non-dermatophytes isolated from various clinical samples: A study from north India. J. Res. Med. Sci. 2012, 17, 817–818. [Google Scholar]
- Agarwal, U.; Saran, J.; Agarwal, P. Clinico-mycological study of dermatophytes in a tertiary care centre in northwest India. Indian J. Dermatol. Venereol. Leprol. 2014, 80, 194. [Google Scholar] [CrossRef]
- Sahai, S.; Mishra, D. Change in spectrum of dermatophytes isolated from superficial mycoses cases: First report from Central India. Indian J. Dermatol. Venereol. Leprol. 2011, 77, 335–336. [Google Scholar] [CrossRef]
- Poojary, S.; Miskeen, A.; Bagadia, J.; Jaiswal, S.; Uppuluri, P. A study of In vitro antifungal susceptibility patterns of dermatophytic fungi at a tertiary care center in Western India. Indian J. Dermatol. 2019, 64, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Masih, A.; Khurana, A.; Singh, P.K.; Gupta, M.; Hagen, F.; Meis, J.F.; Chowdhary, A. High terbinafine resistance in Trichophyton interdigitale isolates in Delhi, India harbouring mutations in the squalene epoxidase gene. Mycoses 2018, 61, 477–484. [Google Scholar] [CrossRef]
- Rudramurthy, S.M.; Shankarnarayan, S.A.; Dogra, S.; Shaw, D.; Mushtaq, K.; Paul, R.A.; Narang, T.; Chakrabarti, A. Mutation in the Squalene Epoxidase Gene of Trichophyton interdigitale and Trichophyton rubrum Associated with Allylamine Resistance. Antimicrob. Agents Chemother. 2018, 62, e02522-17. [Google Scholar] [CrossRef] [Green Version]
- Dabas, Y.; Xess, I.; Singh, G.; Pandey, M.; Meena, S. Molecular identification and antifungal susceptibility patterns of clinical dermatophytes following CLSI and EUCAST guidelines. J. Fungi 2017, 3, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrillo-Meléndrez, H.; Ortega-Hernández, E.; Granados, J.; Arroyo, S.; Barquera, R.; Arenas, R. Role of HLA-DR Alleles to Increase Genetic Susceptibility to Onychomycosis in Nail Psoriasis. Ski. Appendage Disord. 2016, 2, 22–25. [Google Scholar] [CrossRef] [Green Version]
- García-Romero, M.T.; Arenas, R. New Insights into Genes, Immunity, and the Occurrence of Dermatophytosis. J. Investig. Dermatol. 2015, 135, 655–657. [Google Scholar] [CrossRef] [Green Version]
- Sardana, K.; Gupta, A.; Mathachan, S.R. Immunopathogenesis of dermatophytoses and factors leading to recalcitrant infections. Indian Dermatol. Online J. 2021, 12, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Sugita, K.; Kabashima, K.; Atarashi, K.; Shimauchi, T.; Kobayashi, M.; Tokura, Y. Innate immunity mediated by epidermal keratinocytes promotes acquired immunity involving Langerhans cells and T cells in the skin. Clin. Exp. Immunol. 2006, 147, 176–183. [Google Scholar] [CrossRef]
- Calderon, R.A. Immunoregulation in dermatophytosis. Crit. Rev. Microbiol. 1989, 16, 339–368. [Google Scholar] [CrossRef]
- Reis, A.P.C.; Correia, F.F.; Jesus, T.M.; Pagliari, C.; Sakai-Valente, N.Y.; Belda Júnior, W.; Criado, P.R.; Benard, G.; Sousa, M.G.T. In situ immune response in human dermatophytosis: Possible role of Langerhans cells (CD1a+) as a risk factor for dermatophyte infection. Rev. Inst. Med. Trop. Sao Paulo 2019, 61, e56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tainwala, R.; Sharma, Y.K. Pathogenesis of dermatophytoses. Indian J. Dermatol. 2011, 56, 259–261. [Google Scholar] [CrossRef]
- Dahl, M.V. Dermatophytosis and the immune response. J. Am. Acad. Dermatol. 1994, 3 Pt 2, S34–S41. [Google Scholar] [CrossRef]
- Bressani, V.O.; Santi, T.N.; Domingues-Ferreira MAlmeida, A.; Duarte, A.J.; Moraes-Vasconcelos, D. Characterization of the cellular immunity in patients presenting extensive dermatophytoses due to Trichophyton rubrum. Mycoses 2013, 56, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Brasch, J. Current knowledge of host response in human tinea. Mycoses 2009, 52, 304–312. [Google Scholar] [CrossRef]
- Verma, A.H.; Gaffen, S.L. Dermatophyte Immune Memory Is Only Skin-Deep. J. Investig. Dermatol. 2019, 139, 517–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koga, T. Immune surveillance against dermatophyte infection. In Fungal Immunology: From an Organ Perspective, 1st ed.; Fidel, P.L., Huffnagle, G.B., Eds.; Springer: New York, NY, USA, 2005; pp. 443–452. [Google Scholar]
- Waldman, A.; Segal, R.; Berdicevsky, I.; Gilhar, A. CD4+ and CD8+T cells mediated direct cytotoxic effect against Trichophyton rubrum and Trichophyton mentagrophytes. Int. J. Dermatol. 2010, 49, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Traynor, T.R.; Huffnagle, G.B. Role of chemokines in fungal infections. Med. Mycol. 2001, 39, 41–50. [Google Scholar] [CrossRef]
- Al, H.M.; Fitzgerald, S.M.; Saoudian, M.; Krishnaswamy, G. Dermatology for the practicing allergist, Tinea pedis and its complications. Clin. Mol. Allergy 2004, 2, 5. [Google Scholar]
- Saraiva, M.; O’garra, A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 2010, 10, 170. [Google Scholar] [CrossRef] [Green Version]
- Gaffen, S.L.; Hernandez-Santos, N.; Peterson, A.C. IL-17 signaling in host defense against Candida albicans. Immunol. Res. 2011, 50, 181–187. [Google Scholar] [CrossRef] [Green Version]
- Huppler, A.R.; Conti, H.R.; Hernandez-Santos, N.; Darville, T.; Biswas, P.S.; Gaffen, S.L. Role of neutrophils in IL-17 dependent immunity to mucosal candidiasis. J. Immunol. 2014, 192, 1745–1752. [Google Scholar] [CrossRef]
- Woodfolk, J.A.; Sung, S.S.; Benjamin, D.C.; Lee, J.K.; Platts-Mills, T.A. Distinct human T cell repertoires mediate immediate and delayed-type hypersensitivity to the Trichophyton antigen, Tri r 2. J. Immunol. 2000, 165, 4379–4387. [Google Scholar] [CrossRef] [Green Version]
- Woodfolk, J.A.; Wheatley, L.M.; Piyasena, R.V.; Benjamin, D.C.; Platts-Mills, T.A.E. Trichophyton Antigens Associated with IgE Antibodies and Delayed Type Hypersensitivity. J. Biol. Chem. 1998, 273, 29489–29496. [Google Scholar] [CrossRef] [Green Version]
- Rajagopalan, M.; Inamadar, A.; Mittal, A.; Miskeen, A.K.; Srinivas, C.R.; Sardana, K.; Godse, K.; Patel, K.; Rengasamy, M.; Rudramurthy, S.; et al. Expert Consensus on The Management of Dermatophytosis in India (ECTODERM India). BMC Dermatol. 2018, 18, 6. [Google Scholar] [CrossRef]
- Pihet, M.; Le Govic, Y. Reappraisal of Conventional Diagnosis for Dermatophytes. Mycopathologia 2017, 182, 169–180. [Google Scholar] [CrossRef]
- Kurade, S.; Amladi, S.; Miskeen, A. Skin scraping and a potassium hydroxide mount. Indian J. Dermatol. Venereol. Leprol. 2006, 72, 238–241. [Google Scholar] [CrossRef] [PubMed]
- McKay, M. Office techniques for dermatologic diagnosis. In Clinical Methods, the History, Physical, and Laboratory Examinations; Walker, H.K., Hall, W.D., Hurst, J.W., Eds.; Butterworths: Boston, MA, USA, 1990; pp. 540–543. [Google Scholar]
- Ahmad, M.R.; Javed, I.; Mushtaq, S. Evaluation of Chicago sky blue stain against Potassium Hydroxide-Dimethyl Sulfoxide wet mount in the identification of dermatophytes. J. Fatima Jinnah Med. Univ. 2020, 14, 83–86. [Google Scholar] [CrossRef]
- Lasseter, G.; Palmer, M.; Morgan, J.; Watts, J.; Yoxall, H.; Kibbler, C.; McNulty, C.; Members of the HPA GP Microbiology Laboratory Use Group. Developing best practice for fungal specimen management: Audit of UK microbiology laboratories. Br. J. Biomed. Sci. 2011, 68, 197–202. [Google Scholar] [CrossRef]
- Ovrén, E.; Berglund, L.; Nordlind, K.; Rollman, O. Dermatophytosis: Fluorostaining enhances speed and sensitivity in direct microscopy of skin, nail and hair specimens from dermatology outpatients. Mycoses 2016, 59, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Sumathi, S.; Pandit, V.S.; Patil, S.; Adavi, V. A cross sectional clinicomycological study of dermatophytosis in a tertiary care hospital, North Karnataka, India. IP Int. J. Med. Microbiol. Trop. Dis. 2018, 4, 166–170. [Google Scholar]
- Thomas, P.A.; Kaliamurthy, J.; Jesudasan, C.A.N.; Geraldine, P. Use of Chlorazol Black E Mounts of Corneal Scrapes for Diagnosis of Filamentous Fungal Keratitis. Am. J. Ophthalmol. 2008, 145, 971–976. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Zaman, M.; Gupta, A. Evaluation of microdilution and disk diffusion methods for antifungal susceptibility testing of dermatophytes. Med. Mycol. 2007, 45, 595–602. [Google Scholar] [CrossRef]
- Slowinska, M.; Rudnicka, L.; Schwartz, R.A. Comma hairs—A dermoscopic marker for tinea capitis. A rapid diagnostic method. J. Am. Acad. Dermatol. 2008, 59, S77–S79. [Google Scholar] [CrossRef]
- Piraccini, B.; Balestri, R.; Starace, M.; Rech, G. Nail digital dermoscopy (Onychoscopy) in the diagnosis of onychomycosis. J. Eur. Acad. Dermatol. Venereol. 2013, 27, 509–513. [Google Scholar] [CrossRef]
- Carney, C.; Tosti, A.; Daniel, R.; Scher, R.; Rich, P.; DeCoster, J.; Elewski, B. A New Classification System for Grading the Severity of Onychomycosis. Arch. Dermatol. 2011, 147, 1277–1282. [Google Scholar] [CrossRef]
- Li, H.C.; Bouchara, J.-P.; Hsu, M.M.-L.; Barton, R.; Su, S.; Chang, T.C. Identification of dermatophytes by sequence analysis of the rRNA gene internal transcribed spacer regions. J. Med. Microbiol. 2008, 57, 592–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.Y.; Lin, T.L.; Tzung, T.Y.; Cheng, L.C.; Wang, J.T.; Jee, S.H. Direct identification of dermatophyte DNA from clinical specimens by a nested polymerase chain reaction assay. Arch. Dermatol. 2007, 143, 799–800. [Google Scholar] [CrossRef]
- Friedman, D.; Friedman, P.C.; Gill, M. Reflectance confocal microscopy: An effective diagnostic tool for dermatophytic infections. Cutis 2015, 5, 93–97. [Google Scholar]
- Grillot, R.; Lebeau, B. Systemic antifungal agents. In Antimicrobial Agents; Bryskier, M.D., Ed.; ASM Press: Washington, DC, USA, 2005; pp. 1260–1287. [Google Scholar]
- High, W.A.; Fitzpatrick, J.E. Topical antifungal agents. In Fitzpatrick’s Dermatology in General Medicine, 8th ed.; Tata McGraw Hill: New Delhi, India, 2012; pp. 2116–2121. [Google Scholar]
- Rotta, I.; Ziegelmann, P.K.; Otuki, M.F.; Riveros, B.S.; Bernardo, N.L.; Correr, C.J. Efficacy of topical antifungals in the treatment of dermatophytosis: A mixed-treatment comparison meta-analysis involving 14 treatments. JAMA Dermatol. 2013, 149, 341–349. [Google Scholar] [CrossRef] [PubMed]
- El-Gohary, M.; van Zuuren, E.J.; Fedorowicz, Z.; Burgess, H.; Doney, L.; Stuart, B.; Moore, M.; Little, P. Topical antifungal treatments for tinea cruris and tinea corporis. Cochrane Database Syst. Rev. 2014, 8, CD009992. [Google Scholar] [CrossRef] [PubMed]
- Haedersdal, M.; Svejgaard, E.L. Systematic treatment of tinea pedis—Evidence for treatment? A result of a Cochrane review. Ugeskr. Laeger 2003, 165, 1436–1438. [Google Scholar]
- Stein Gold, L.F.; Vlahovic, T.; Verma, A.; Olayinka, B.; Fleischer, A.B., Jr. Naftifine hydrochloride gel 2%: An effective topical treatment for moccasin-type tinea pedis. J. Drugs Dermatol. 2015, 14, 1138–1144. [Google Scholar]
- Van Zuuren, E.J.; Fedorowicz, Z.; El-Gohary, M. Evidence-based topical treatments for tinea cruris and tinea corporis: A summary of a Cochrane systematic review. Br. J. Dermatol. 2015, 172, 616–641. [Google Scholar] [CrossRef]
- Dutta, B.; Rasul, E.; Boro, B. Clinico-epidemiological study of tinea incognito with microbiological correlation. Indian J. Dermatol. Venereol. Leprol. 2017, 83, 326–331. [Google Scholar] [CrossRef]
- Lesher, J.L., Jr. Oral therapy of common superficial fungal infections of the skin. J. Am. Acad. Dermatol. 1999, 40, S31–S34. [Google Scholar] [CrossRef]
- Bourlond, A.; Lachapelle, J.M.; Aussems, J.; Boyden, B.; Campaert, H.; Conincx, S.; Decroix, J.; Geeraerts, C.; Ghekiere, L.; Morias, J.; et al. Double-blind comparison of itraconazole with griseofulvin in the treatment of tinea corporis and tinea cruris. Int. J. Dermatol. 1989, 28, 410–412. [Google Scholar] [CrossRef] [PubMed]
- Panagiotidou, D.; Kousidou, T.; Chaidemenos, G.; Karakatsanis, G.; Kalogeropoulou, A.; Teknetzis, A.; Chatzopoulou, E.; Michailidis, D. A comparison of itraconazole and griseofulvin in the treatment of tinea corporis and tinea cruris: A double-blind study. J. Int. Med. Res. 1992, 20, 392–400. [Google Scholar] [CrossRef]
- Bell-Syer, S.E.; Khan, S.M.; Torgerson, D.J. Oral treatments for fungal infections of the skin of the foot. Cochrane Database Syst. Rev. 2012, 10, CD003584. [Google Scholar] [CrossRef] [PubMed]
- Ilkit, M.; Durdu, M. Tinea pedis: The etiology and globalepidemiology of a common fungal infection. Crit. Rev. Microbiol. 2014, 41, 374–388. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Cooper, E.A. Update in antifungal therapy of dermatophytosis. Mycopathologia 2008, 166, 353–367. [Google Scholar] [CrossRef]
- Tausch, I.; Decroix, J.; Gwiezdzinski, Z.; Urbanowski, S.; Baran, E.; Ziarkiewicz, M.; Levy, G.; del Palacio, A. Short-term itraconazole versus terbinafine in the treatment of tinea pedis or manus. Int. J. Dermatol. 1998, 37, 140–142. [Google Scholar] [CrossRef]
- Novartis Pharmaceuticals Canada Inc. Pr LAMISIL*. (Terbinafine Hydrochloride) 250 mg Tablets (Expressed as Base) Topical Cream 1% w/w (10 mg/g) Topical Spray Solution 1% w/w (10 mg/g); Antifungal Agent; Novartis Pharmaceuticals Canada Inc.: Dorval, QC, Canada, 2016. [Google Scholar]
- Gupta, A.K.; Foley, K.A.; Versteeg, S.G. New Antifungal Agents and New Formulations Against Dermatophytes. Mycopathologia 2016, 182, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Skinner, A.R.; Cooper, E.A. Evaluation of the efficacy of ciclopirox 0.77% gel in the treatment of tinea pedis interdigitalis (dermatophytosis complex) in a randomized, double-blind, placebo-controlled trial. Int. J. Dermatol. 2005, 44, 590–593. [Google Scholar] [CrossRef]
- Elewski, B.E.; Vlahovic, T.C. Econazole nitrate foam 1% for the treatment of tinea pedis: Results from two double-blind, vehicle-controlled, phase 3 clinical trials. J. Drugs Dermatol. 2014, 13, 803–808. [Google Scholar] [PubMed]
- Evans, E.G.; James, I.G.; Seaman, R.A.; Richardson, M.D. Does naftifine have anti-inflammatory properties? A doubleblind comparative study with 1% clotrimazole/1% hydrocortisone in clinically diagnosed fungal infection of the skin. Br. J. Dermatol. 1993, 129, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Lamisil. Package Insert: LAMISIL (Terbinafine Hydrochloride) Tablets, 250 mg Drugs@FDA: FDA Approved Drug Products 2012. Available online: http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/020539s021lbl.pdf (accessed on 12 October 2012).
- Abdel-Rahman, S.M.; Herron, J.; Fallon-Friedlander, S.; Hauffe, S.; Horowitz, A.; Rivière, G.-J. Pharmacokinetics of Terbinafine in Young Children Treated for Tinea Capitis. Pediatr. Infect. Dis. J. 2005, 24, 886–891. [Google Scholar] [CrossRef]
- Gupta, A.; Alexis, M.; Raboobee, N.; Hofstader, S.; Lynde, C.; Adam, P.; Summerbell, R.; DE Doncker, P. Itraconazole pulse therapy is effective in the treatment of tinea capitis in children: An open multicentre study. Br. J. Dermatol. 1997, 137, 251–254. [Google Scholar] [CrossRef]
- Gupta, A.K.; Daigle, D.; Foley, K.A. Topical Therapy for Toenail Onychomycosis: An Evidence-Based Review. Am. J. Clin. Dermatol. 2014, 15, 489–502. [Google Scholar] [CrossRef] [PubMed]
- Hammer, T.R.; Mucha, H.; Hoefer, D. Infection risk by dermatophytes during storage and after domestic laundry and their temperature-dependent inactivation. Mycopathologia 2011, 171, 43–49. [Google Scholar] [CrossRef]
- Gupta, A.K.; Elewski, B.E.; Rosen, T.; Caldwell, B.; Pariser, D.M.; Kircik, L.H.; Bhatia, N.; Tosti, A. Onychomycosis: Strategies to Minimize Recurrence. J. Drugs Dermatol. 2016, 15, 279–282. [Google Scholar]
- Gupta, A.K.; Daigle, D.; Foley, K.A. Network Meta-Analysis of Onychomycosis Treatments. Ski. Appendage Disord. 2015, 1, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.K.; Paquet, M.; Simpson, F.; Tavakkol, A. Terbinafine in the treatment of dermatophyte toenail onychomycosis: A meta-analysis of efficacy for continuous and intermittent regimens. J. Eur. Acad. Dermatol. Venereol. 2013, 27, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Inamadar, A.C.; Shivanna, R. Clinical failure of antifungal therapy of dermatophytoses: Recurrence, resistance, and remedy. Indian J. Drugs Dermatol. 2017, 3, 1–3. [Google Scholar] [CrossRef]
Class | Representative Drugs |
---|---|
Heterocyclic benzofuran | Griseofulvin |
Azoles | |
Imidazoles | Topical clotrimazole, econazole, miconazole, oxiconazole, luliconazole, butoconazole, fenticonazole systemic ketoconazole |
Triazoles | Fluconazole, itraconazole, voriconazole, posaconazole, isavuconazole |
Allylamines | Naftifine, terbinafine, butenafine |
Benzylamines | Butenafine |
Echinocandins | Caspofungin, micafungin |
Piridone derivatives | Ciclopirox olamine |
Antimetabolite | Flucytosine |
Oxaborole | Tavaborole |
Thiocarbamate | Tolfanate |
Morpholine derivatives | Amorolfine HCl |
Others | Undecylenic acid, Whitfield ointment, BPO, zinc pyrithione, selenium sulphide, azelaic acid, nikkomycin, icofungipen, triclosan, eucalyptus oil, dermcidin, macrocarpal C, tetrandrine |
Fluconazole | Griseofulvin | Itraconazole | Terbinafine | |
---|---|---|---|---|
Tinea Capitis | 6 mg/kg/day × 3–6 weeks | 10–15 mg/kg/day (ultramicrosize) 20–25 mg/kg/day (microsize suspension) × 6–8 weeks | 5 mg/kg/day × 4–8 weeks | Adults:250 mg/day × 3–4 weeks. Children:Granules: 125 mg (<25 kg), 187.5 mg (25–35 kg) or250 mg (>35 kg) × 3–4 weeks |
Tinea Corporis/Cruris | 2–4 weeks | 2–4 weeks | 1 week | 1 week |
Tinea Unguium | 3–4 months for fingernails. 5–7 months for toenails | 1–2 g/day (microsize) or 750 mg/day (ultramicrosize) until nails are normal | 200 mg/day × 12 weeks or 200 mg twice a day (BID) × 1 week/month for 2–4 consecutive months | 12 weeks 6 weeks |
Tinea pedis | 4–6 weeks | 4 weeks | 1 week | 2 weeks |
Systemic Antifungal | Per kg Body Weight Dose | Adult Dose |
---|---|---|
Fluconazole | 6 mg/kg/week | 150–450 mg/week |
Griseofulvin | 15–20 mg/kg/day (microsize suspension) 10–15 mg/kg/day (ultramicrosize suspension) | 500 mg/day |
Itraconazole | 3–5 mg/kg/day | 200 mg/day |
Terbinafine | 250 mg/day |
Drug | Mechanism of Action |
---|---|
caspofungin | Fungal cell wall synthesis inhibition |
Amphotericin-B, Nystatin | Binds to fungal cell membrane ergosterol |
Terbinafine | Inhibition of lanosterol and ergosterol synthesis |
Azoles | Inhibition of ergosterol synthesis |
5-Flucytosine | Inhibition of nucleic acid synthesis |
Griseofulvin | Disruption of mitotic spindle and inhibition of fungal mitosis |
Azole | Preparations | Site | Frequency of Application | Duration of Use |
---|---|---|---|---|
Imidazoles (%) | ||||
Clotrimazole (1) | Cream, lotion | T. corporis/cruris/pedis/capitis | BD | 4–6 weeks |
Econazole (1) | Cream | T. corporis/cruris/pedis/capitis | OD-BD | 4–6 weeks |
Miconazole (1) | Cream, lotion | T. corporis/cruris/pedis/capitis | BD | 4–6 weeks |
Oxiconazole (2) | Cream, lotion | T. corporis/cruris/pedis/capitis | OD-BD | 4 weeks |
Sertaconazole (2) | Cream | T. corporis/cruris/pedis/capitis | BD | 4 weeks |
Luliconazole (1) | Cream, lotion | T. corporis/cruris/pedis/capitis | OD | 2 weeks |
Eberconazole (1) | Cream | T. corporis/cruris/pedis/capitis | OD | 2–4 weeks |
Triazoles (%) | ||||
Efinaconazole (10) | Solution | T. pedis | OD | Up to 52 weeks in co-existing tinea unguium |
Allylamines | ||||
Terbinafine | Cream, powder | T. corporis/capitis | BD | 2 weeks |
T. cruris | BD | 2 weeks | ||
T. pedis | BD | 4 weeks | ||
T. manum | BD | 4 weeks | ||
Naftifine 1% | Cream | T. corporis/cruris/pedis/capitis | OD-BD | Use 2 weeks beyond resolution of symptoms |
Butenafine 1% | Cream | T. corporis/cruris/pedis | OD-BD | 2–4 weeks |
Others | ||||
Amolorfine 0.25% | Cream | T. corporis | BD | 4 weeks |
Amphotericin B (1 mg) 0.1% | Lipid-based gel | T. corporis | BD | 2 weeks |
Ciclopiroxolamine 1% | Cream, lotion | T.corporis/cruris/pedis | BD | 2–4 weeks |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jartarkar, S.R.; Patil, A.; Goldust, Y.; Cockerell, C.J.; Schwartz, R.A.; Grabbe, S.; Goldust, M. Pathogenesis, Immunology and Management of Dermatophytosis. J. Fungi 2022, 8, 39. https://doi.org/10.3390/jof8010039
Jartarkar SR, Patil A, Goldust Y, Cockerell CJ, Schwartz RA, Grabbe S, Goldust M. Pathogenesis, Immunology and Management of Dermatophytosis. Journal of Fungi. 2022; 8(1):39. https://doi.org/10.3390/jof8010039
Chicago/Turabian StyleJartarkar, Shishira R., Anant Patil, Yaser Goldust, Clay J. Cockerell, Robert A. Schwartz, Stephan Grabbe, and Mohamad Goldust. 2022. "Pathogenesis, Immunology and Management of Dermatophytosis" Journal of Fungi 8, no. 1: 39. https://doi.org/10.3390/jof8010039
APA StyleJartarkar, S. R., Patil, A., Goldust, Y., Cockerell, C. J., Schwartz, R. A., Grabbe, S., & Goldust, M. (2022). Pathogenesis, Immunology and Management of Dermatophytosis. Journal of Fungi, 8(1), 39. https://doi.org/10.3390/jof8010039