Using Ex Situ Seedling Baiting to Capture Seedling-Associated Mycorrhizal Fungi in Medicinal Orchid Dendrobium officinale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Species
2.2. Sample Collection and Ex Situ Seedling Baiting Experiments
2.3. Fungal Isolation and Identification
2.4. Phylogenetic Analysis
3. Results
3.1. Fungal Isolation and Identification
3.2. Phylogenetic Analysis
4. Discussion
4.1. Using Ex Situ Seedling Baiting to Obtain OMFs Associated with Seedlings
4.2. In Situ vs. Ex Situ Seedling Baiting
4.3. Fungi Associated with Dendrobium Officinale
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brundrett, M.C.; Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 2018, 220, 1108–1115. [Google Scholar] [CrossRef]
- Brundrett, M.C. Global diversity and importance of mycorrhizal and nonmycorrhizal plants. In Biogeography of Mycorrhizal Symbiosis; Tedersoo, L., Ed.; Springer: Cham, Switzerland, 2017; pp. 533–556. [Google Scholar]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis; Academic Press: Cambridge, UK, 2008. [Google Scholar]
- Tedersoo, L.; Bahram, M.; Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 2020, 367, eaba1223. [Google Scholar] [CrossRef] [PubMed]
- Dearnaley, J.; Perotto, S.; Selosse, M.A. Structure and development of orchid mycorrhizas. In Molecular Mycorrhizal Symbiosis; Martin, F., Ed.; John Wiley and Sons: Hoboken, NJ, USA, 2016; pp. 63–86. [Google Scholar]
- Cameron, D.D.; Leake, J.R.; Read, D.J. Mutualistic mycorrhiza in orchids: Evidence from plant-fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. New Phytol. 2006, 171, 405–416. [Google Scholar] [CrossRef]
- McCormick, M.K.; Whigham, D.F.; O’Neill, J. Mycorrhizal diversity in photosynthetic terrestrial orchids. New Phytol. 2004, 163, 425–438. [Google Scholar] [CrossRef] [PubMed]
- Rafter, M.; Yokoya, K.; Schofield, E.J.; Zettler, L.W.; Sarasan, V. Non-specific symbiotic germination of Cynorkis purpurea (Thouars) Kraezl., a habitat-specific terrestrial orchid from the central highlands of Madagascar. Mycorrhiza 2016, 26, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Těšitelová, T.; Těšitel, J.; Jersáková, J.; Říhová, G.; Selosse, M.A. Symbiotic germination capability of four Epipactis species (Orchidaceae) is broader than expected from adult ecology. Am. J. Bot. 2012, 99, 1020–1032. [Google Scholar] [CrossRef]
- McCormick, M.K.; Jacquemyn, H. What constrains the distribution of orchid populations? New Phytol. 2014, 202, 392–400. [Google Scholar] [CrossRef]
- Swarts, N.D.; Dixon, K.W. Terrestrial orchid conservation in the age of extinction. Ann. Bot. 2009, 104, 543–556. [Google Scholar] [CrossRef]
- Fay, M.F. Orchid conservation: How can we meet the challenges in the twenty-first century? Bot. Stud. 2018, 59, 16. [Google Scholar] [CrossRef]
- Batty, A.L.; Brundrett, M.C.; Dixon, K.W.; Sivasithamparam, K. In situ symbiotic seed germination and propagation of terrestrial orchid seedlings for establishment at field sites. Aust. J. Bot. 2006, 54, 375–381. [Google Scholar] [CrossRef]
- Otero, J.T.; Mosquera, A.T.; Flanagan, N.S. Tropical orchid mycorrhizae: Potential applications in orchid conservation, commercialization, and beyond. Lankesteriana 2013, 13, 57–63. [Google Scholar]
- Yang, W.K.; Li, T.Q.; Wu, S.M.; Finnegan, P.M.; Gao, J.Y. Ex situ seed baiting to isolate germination-enhancing fungi for assisted colonization in Paphiopedilum spicerianum, a critically endangered orchid in China. Glob. Ecol. Conserv. 2020, 23, e01147. [Google Scholar] [CrossRef]
- Zettler, L.W.; Hofer, C.J. Propagation of the little club-spur orchid (Platanthera clavellata) by symbiotic seed germination and its ecological implications. Environ. Exp. Bot. 1998, 39, 189–195. [Google Scholar] [CrossRef]
- Nontachaiyapoom, S.; Sasirat, S.; Manoch, L. Symbiotic seed germination of Grammatophyllum speciosum Blume and Dendrobium draconis Rchb. f., native orchids of Thailand. Sci. Hortic. 2011, 130, 303–308. [Google Scholar] [CrossRef]
- Fracchia, S.; Aranda-Rickert, A.; Flachsland, E.; Terada, G.; Sede, S. Mycorrhizal compatibility and symbiotic reproduction of Gavilea australis, an endangered terrestrial orchid from south Patagonia. Mycorrhiza 2014, 24, 627–634. [Google Scholar] [CrossRef]
- Chen, D.Y.; Wang, X.J.; Li, T.Q.; Li, N.Q.; Gao, J.Y. In situ seedling baiting to isolate plant growth-promoting fungi from Dendrobium officinale, an over-collected medicinal orchid in China. Glob. Ecol. Conserv. 2021, 28, e01659. [Google Scholar] [CrossRef]
- Bidartondo, M.I.; Read, D.J. Fungal specificity bottlenecks during orchid germination and development. Mol. Ecol. 2008, 17, 3707–3716. [Google Scholar] [CrossRef]
- De Long, J.R.; Swarts, N.D.; Dixon, K.W.; Egerton-Warburton, L.M. Mycorrhizal preference promotes habitat invasion by a native Australian orchid: Microtis media. Ann. Bot. 2013, 111, 409–418. [Google Scholar] [CrossRef]
- Rasmussen, H.N.; Whigham, D.F. Seed ecology of dust seeds in situ: A new study technique and its application in terrestrial orchids. Am. J. Bot. 1993, 80, 1374–1378. [Google Scholar] [CrossRef]
- Brundrett, M.C.; Scade, A.; Batty, A.L.; Dixon, K.W.; Sivasithamparam, K. Development of in situ and ex situ seed baiting techniques to detect mycorrhizal fungi from terrestrial orchid habitats. Mycol. Res. 2003, 107, 1210–1220. [Google Scholar] [CrossRef]
- Zi, X.M.; Sheng, C.L.; Goodale, U.M.; Shao, S.C.; Gao, J.Y. In situ seed baiting to isolate germination-enhancing fungi for an epiphytic orchid, Dendrobium aphyllum (Orchidaceae). Mycorrhiza 2014, 24, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zi, X.M.; Lin, H.; Gao, J.Y. Host-specificity of symbiotic mycorrhizal fungi for enhancing seed germination, protocorm formation and seedling development of over-collected medicinal orchid, Dendrobium devonianum. J. Microbiol. 2018, 56, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.Y.; Zhang, W.L.; Selosse, M.A.; Gao, J.Y. Are fungi from adult orchid roots the best symbionts at germination? A case study. Mycorrhiza 2019, 29, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.Y.; Fan, X.L.; Zhou, L.R.; Shao, S.C.; Liu, Q.; Selosse, M.A.; Gao, J.Y. Symbiotic fungi undergo a taxonomic and functional bottleneck during orchid seeds germination: A case study on Dendrobium moniliforme. Symbiosis 2019, 79, 205–212. [Google Scholar] [CrossRef]
- Meng, Y.Y.; Shao, S.C.; Liu, S.J.; Gao, J.Y. Do the fungi associated with roots of adult plants support seed germination? A case study on Dendrobium exile (Orchidaceae). Glob. Ecol. Conserv. 2019, 17, e00582. [Google Scholar] [CrossRef]
- Wang, X.J.; Wu, Y.H.; Ming, X.J.; Wang, G.; Gao, J.Y. Isolating ecological-specifc fungi and creating fungus-seed bags for epiphytic orchid conservation. Glob. Ecol. Conserv. 2021, 28, e01714. [Google Scholar] [CrossRef]
- Shao, S.C.; Burgess, K.S.; Cruse-Sanders, J.M.; Liu, Q.; Fan, X.L.; Huang, H.; Gao, J.Y. Using in situ symbiotic seed germination to restore over-collected medicinal orchids in Southwest China. Front. Plant Sci. 2017, 8, 888. [Google Scholar] [CrossRef]
- Liu, H.; Luo, Y.B.; Heinen, J.; Bhat, M.; Liu, Z.J. Eat your orchid and have it too: A potentially new conservation formula for Chinese epiphytic medicinal orchids. Biodivers. Conserv. 2014, 3, 1215–1228. [Google Scholar] [CrossRef]
- China Plant Specialist Group. Dendrobium officinale. In The IUCN Red List of Threatened Species; International Union for Conservation of Nature and Natural Resources: Gland, Switzerland, 2004. [Google Scholar] [CrossRef]
- Teixeira da Silva, J.A.; Tsavkelova, E.A.; Zeng, S.J.; Ng, T.B.; Parthibhan, S.; Dobranszki, J.; Cardoso, J.C.; Rao, M.V. Symbiotic in vitro seed propagation of Dendrobium: Fungal and bacterial partners and their influence on plant growth and development. Planta 2015, 242, 1–22. [Google Scholar] [CrossRef]
- Chen, X.Q.; Liu, Z.J.; Zhu, G.H.; Lang, K.Y.; Ji, Z.H.; Luo, Y.B.; Jin, X.H.; Cribb, P.J.; Wood, J.J.; Gale, S.W.; et al. Orchidaceae. In Flora of China, 25; Wu, Z.Y., Raven, P.H., Hong, D.Y., Eds.; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2009; pp. 367–397. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Prakash, P.Y.; Bhargava, K. A modified micro chamber agar spot slide culture technique for microscopic examination of filamentous fungi. J. Microbiol. Methods 2016, 123, 126–129. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.D.; Lee, S.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Sanchez, M.S.; Bills, G.F.; Zabalgogeazcoa, I. Diversity and structure of the fungal endophytic assemblages from two sympatric coastal grasses. Fungal Divers. 2008, 33, 87–100. [Google Scholar]
- Katoch, M.; Phull, S.; Vaid, S.; Singh, S. Diversity, phylogeny, anticancer and antimicrobial potential of fungal endophytes associated with Monarda citriodora L. BMC Microbiol. 2017, 17, 44–57. [Google Scholar] [CrossRef]
- Stamatakis, A.; Hoover, P.; Rougemont, J. A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 2008, 57, 758–771. [Google Scholar] [CrossRef]
- Dearnaley, J.D.W.; Martos, F.; Selosse, M.A. Orchid mycorrhizas: Molecular ecology, physiology, evolution and conservation aspects. In Fungal Associations, 2nd ed.; Hock, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 207–230. [Google Scholar]
- Selosse, M.A.; Petrolli, R.; Mujica, M.I.; Laurent, L.; Perez-Lamarque, B.; Figura, T.; Bourceret, A.; Jacquemyn, H.; Li, T.Q.; Gao, J.Y.; et al. The Waiting Room Hypothesis revisited by orchids: Were orchid mycorrhizal fungi recruited among root endophytes? Ann. Bot. 2021, 129, 259–270. [Google Scholar] [CrossRef]
- Petrolli, R.; Augusto Vieira, C.; Jakalski, M.; Bocayuva, M.F.; Vallé, C.; Cruz, E.D.S.; Selosse, M.; Martos, F.; Kasuya, M.C.M. A fine-scale spatial analysis of fungal communities on tropical tree bark unveils the epiphytic rhizosphere in orchids. New Phytol. 2021, 231, 2002–2014. [Google Scholar] [CrossRef] [PubMed]
- Shefferson, R.P.; Bunch, W.; Cowden, C.C.; Lee, Y.I.; Kartzinel, T.R.; Yukawa, T.; Downing, J.; Jiang, H. Does evolutionary history determine specificity in broad ecological interactions? J. Ecol. 2019, 107, 1582–1593. [Google Scholar] [CrossRef]
- Cevallos, S.; Declerck, S.; Suárez, J.P. In situ orchid seedling-trap experiment shows few keystone and many randomly-associated mycorrhizal fungal species during early plant colonization. Front. Plant Sci. 2018, 9, 1664. [Google Scholar] [CrossRef]
- Li, T.Q.; Yang, W.K.; Wu, S.M.; Selosse, M.A.; Gao, J.Y. Progress and prospects of mycorrhizal fungal diversity in orchids. Front. Plant Sci. 2021, 12, 646325. [Google Scholar] [CrossRef]
- Zhang, W.J.; Li, B.F. The biological relationship of Gastrodia elata and Armillaria mellea. J. Integr. Plant Biol. 1980, 22, 57–62. [Google Scholar]
- Yuan, Y.; Jin, X.H.; Liu, J.; Zhao, X.; Zhou, J.H.; Wang, X.; Wang, D.Y.; Lai, C.J.S.; Xu, W.; Huang, J.W.; et al. The Gastrodia elata genome provides insights into plant adaptation to heterotrophy. Nat. Commun. 2018, 9, 1615. [Google Scholar] [CrossRef]
- Moore, R.T. The genera of Rhizoctonia-like fungi: Ascorhizoctonia, Ceratorhiza gen. nov., Epulorhiza gen. nov., Moniliopsis, and Rhizoctonia. Mycotaxon 1987, 29, 91–99. [Google Scholar]
- Bayman, P.; Otero, J.T. Microbial endophytes of orchid roots. In Microbial Root Endophytes; Schulz, B.J.E., Boyle, C.J.C., Sieber, T.N., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 153–177. [Google Scholar]
- Yuan, Z.L.; Chen, Y.C.; Yang, Y. Diverse non-mycorrhizal fungal endophytes inhabiting an epiphytic, medicinal orchid (Dendrobium nobile): Estimation and characterization. World J. Microbiol. Biotechnol. 2009, 25, 295–303. [Google Scholar] [CrossRef]
- Chutima, R.; Dell, B.; Vessabutr, S.; Bussaban, B.; Lumyong, S. Endophytic fungi from Pecteilis susannae (L.) Rafifin (Orchidaceae), a threatened terrestrial orchid in Thailand. Mycorrhiza 2011, 21, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Kadooka, C.; Uchida, J.Y. Fusarium species as pathogen on orchids. Microbiol. Res. 2018, 207, 188–195. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Lin, B.Y.; Zou, M.Y.; Liang, J.X.; Hu, H.Q. First report of Fusarium wilt of Dendrobium officinale caused by Fusarium oxysporum in China. Plant Dis. 2017, 101, 1039. [Google Scholar] [CrossRef]
- Chen, X.M.; Dong, H.L.; Hu, K.X.; Sun, Z.R.; Chen, J.; Guo, S.X. Diversity and antimicrobial and plant-growth-promoting activities of endophytic fungi in Dendrobium loddigesii Rolfe. J. Plant Growth Regul. 2010, 29, 328–337. [Google Scholar] [CrossRef]
- Xing, Y.M.; Chen, J.; Cui, J.L.; Chen, X.M.; Guo, S.X. Antimicrobial activity and biodiversity of endophytic fungi in Dendrobium devonianum and Dendrobium thyrsiflorum from Vietman. Curr. Microbiol. 2011, 62, 1218–1224. [Google Scholar] [CrossRef]
- Francis, R.; Read, D.J. Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Can. J. Bot. 1995, 73, 1301–1309. [Google Scholar] [CrossRef]
- Bender, S.F.; da Silva Valadares, R.B.; Taudiere, A. Mycorrhizas: Dynamic and complex networks of power and influence. New Phytol. 2014, 204, 15–18. [Google Scholar] [CrossRef]
- Selosse, M.A.; Schneider-Maunoury, L.; Martos, F. Time to rethink fungal ecology? Fungal ecological niches are often prejudged. New Phytol. 2018, 217, 968–972. [Google Scholar] [CrossRef]
- Chen, J.; Wang, H.; Guo, S.X. Isolation and identification of endophytic and mycorrhizal fungi from seeds and roots of Dendrobium (Orchidaceae). Mycorrhiza 2012, 22, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.W.; Guo, S.X. Effect of three endophytic fungi on growth of Dendrobium candidum and Anoectochilus roxburghii. Chin. Trad. Herb. Drug. 2002, 6, 543–545, (In Chinese with English abstract). [Google Scholar]
- Guo, S.X.; Cao, W.Q.; Gao, W.W. Isolation and biological activity of mycorrhizal fungi from Dendrobium candidum and D. nobile. China J. Chin. Mater. Med. 2000, 25, 338–341, (In Chinese with English abstract). [Google Scholar]
- Shao, S.C.; Luo, Y.; Jacquemyn, H. Co-cultures of mycorrhizal fungi do not increase germination and seedling development in the epiphytic orchid Dendrobium nobile. Front. Plant Sci. 2020, 11, 571426. [Google Scholar] [CrossRef]
- Shao, S.C.; Wang, Q.X.; Beng, K.C.; Zhao, D.K.; Jacquemyn, H. Fungi isolated from host protocorms accelerate symbiotic seed germination in an endangered orchid species (Dendrobium chrysotoxum) from southern China. Mycorrhiza 2020, 30, 529–539. [Google Scholar] [CrossRef]
- Shao, S.C.; Xi, H.P.; Mohandass, D. Symbiotic mycorrhizal fungi isolated via ex situ seed baiting induce seed germination of Dendrobium catenatum Lindl. (Orchidaceae). Appl. Ecol. Environ. Res. 2019, 17, 9753–9771. [Google Scholar] [CrossRef]
- Tan, X.M.; Wang, C.L.; Chen, X.M.; Zhou, Y.Q.; Wang, Y.Q.; Luo, A.X.; Liu, Z.H.; Guo, S.X. In vitro seed germination and seedling growth of an endangered epiphytic orchid, Dendrobium officinale, endemic to China using mycorrhizal fungi (Tulasnella sp.). Sci. Hortic. 2014, 165, 62–68. [Google Scholar] [CrossRef]
- Wang, H.; Fang, H.; Wang, Y.; Duan, L.; Guo, S.X. In situ seed baiting techniques in Dendrobium officinale Kimuraet Migo and Dendrobium nobile Lindl: The endangered Chinese endemic Dendrobium (Orchidaceae). World J. Microbiol. Biotechnol. 2011, 27, 2051–2059. [Google Scholar] [CrossRef]
- Wu, H.F.; Song, X.Q.; Hu, M.J. Screening and identification of endophytic and probiotic fungi of Dendrobium catenatum. J. Southwest Forest. Univer. 2011, 31, 47–52, (In Chinese with English abstract). [Google Scholar]
- Wu, L.S.; Dong, W.G.; Si, J.P.; Liu, J.J.; Zhu, Y.Q. Endophytic fungi, host genotype, and their interaction influence the growth and production of key chemical components of Dendrobium catenatum. Fungal Biol. 2020, 124, 864–876. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.C.; Chen, J.; Lv, Y.L.; Gao, C.; Guo, S.X. Mycena sp., a mycorrhizal fungus of the orchid Dendrobium officinale. Mycol. Progress 2012, 11, 395–401. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.Y.; Chen, X.M.; Guo, S.X.; Lee, Y.I. Effect of different mycobionts on symbiotic germination and seedling growth of Dendrobium officinale, an important medicinal orchid. Bot. Stud. 2020, 61, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sampling Sites | Locations | Growing Habitats | Collected Materials | Sampling Date |
---|---|---|---|---|
GN, Guangnan County, Yunnan | 23°58′ N, 105°11′ E; 1428 m alt. | On trees | Barks and mosses | 3 August 2018 |
DXLM, Langshan Mountain, Hunan | 26°20′ N, 110°46′ E; 455 m alt. | On sandy conglomerate of Danxia landform | Sandy conglomerate and mosses | 11 August 2018 |
KSLM, Langshan Mountain, Hunan | 26°30′ N, 111°10′ E; 340 m alt. | On rocks of karst landform | Mosses and litters | 12 August 2018 |
LD, Luding County, Sichuan | 29°23′ N, 102°21′ E; 1382 m alt. | On rocks | Mosses and litters | 23 August 2018 |
SM, Shimian County, Sichuan | 29°22′ N, 105°11′ E; 3596 m alt. | On rocks | Mosses and litters | 24 August 2018 |
LT, Luotian Town, Chongqing | 30°31′ N, 108°33′ E; 1200 m alt. | On rocks | Mosses and litters | 25 August 2018 |
Fungus Codes | Fungal Species | GenBank Accession Number | Sequence Ident. (%) | Closest Relative | Isolation Frequencies from Six Original Sources | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
GN | DXLM | KSLM | LD | SM | LT | Total | |||||
TP-1 | Tulasnella sp. | MN918475 | 99 | KM226996.1 | 3 | 1 | 1 | 5 | |||
TP-2 | Tulasnella sp. | MN918476 | 99 | GQ241863.1 | 4 | 3 | 2 | 2 | 3 | 14 | |
TP-3 | Tulasnella sp. | MN918477 | 99 | KM211335.1 | 2 | 4 | 2 | 8 | |||
TP-4 | Tulasnella sp. | MN918478 | 97 | KX587480.1 | 1 | 1 | 2 | ||||
TP-5 | Tulasnella sp. | MN918479 | 99 | GQ241817.1 | 5 | 2 | 7 | ||||
TP-6 | Tulasnella sp. | MN918480 | 99 | KC291619.1 | 4 | 4 | |||||
TP-7 | Tulasnella sp. | MN918481 | 100 | AB506862.1 | 2 | 2 | 1 | 1 | 6 | ||
TP-8 | Tulasnella sp. | MN918482 | 98 | KX587486.1 | 1 | 4 | 7 | 3 | 15 | ||
TP-9 | Tulasnella sp. | MN918483 | 99 | JX545220.1 | 1 | 1 | 6 | 3 | 8 | 19 | |
TP-10 | Tulasnella sp. | MN918484 | 99 | FJ594913.1 | 2 | 1 | 5 | 8 | |||
TP-11 | Tulasnella sp. | MN918485 | 99 | HM214462.1 | 5 | 2 | 2 | 1 | 1 | 11 | |
TP-12 | Tulasnella sp. | MN918486 | 99 | FJ594926.1 | 4 | 1 | 5 | ||||
TP-13 | Tulasnella sp. | MN918487 | 97 | JX546238.1 | 3 | 3 | 4 | 4 | 4 | 2 | 20 |
TP-14 | Species of Serendipitaceae | MN918488 | 99 | EU668272.1 | 4 | 1 | 5 | ||||
TP-15 | Species of Serendipitaceae | MN918489 | 97 | FJ788824.1 | 3 | 1 | 1 | 2 | 2 | 9 | |
TP-16 | Species of Serendipitaceae | MN918490 | 97 | JX317218.1 | 1 | 1 | 2 | ||||
The total number of OMFs/isolation times | 8/26 | 10/26 | 8/22 | 8/13 | 7/22 | 13/31 | |||||
TP-17 | Thanatephorus sp. | MN918491 | 84 | MH348617.1 | 2 | 4 | 1 | 7 | |||
TP-18 | Fusarium oxysporum | MN918492 | 99 | KU527806.1 | 2 | 7 | 17 | 1 | 27 | ||
TP-19 | Clitopilus sp. | MN918493 | 96 | KC176292.1 | 3 | 1 | 4 | ||||
TP-20 | Plectosphaerella niemeijerarum | MN918494 | 99 | MG386080.1 | 1 | 1 | 2 | 6 | 10 | ||
TP-21 | Plectosphaerella cucumerina | MN918495 | 99 | MH673607.1 | 2 | 1 | 6 | 4 | 13 | ||
TP-22 | Species of Ascomycota | MN918496 | 97 | KT581843.1 | 2 | 2 | |||||
TP-23 | Trichoderma sp. | MN918497 | 100 | MN602858.1 | 2 | 2 | 1 | 5 | |||
TP-24 | Trichoderma sp. | MN918498 | 100 | MN602619.1 | 1 | 2 | 1 | 1 | 5 | ||
TP-25 | Muscodor sp. | MN918499 | 99 | MK757898.1 | 6 | 6 | |||||
TP-26 | Muscodor sp. | MN918500 | 100 | JN426991.1 | 2 | 2 | 7 | 7 | 3 | 3 | 24 |
TP-27 | Muscodor sp. | MN918501 | 99 | KM514680.1 | 1 | 1 | 4 | 1 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.-H.; Chen, D.-Y.; Wang, X.-J.; Li, N.-Q.; Gao, J.-Y. Using Ex Situ Seedling Baiting to Capture Seedling-Associated Mycorrhizal Fungi in Medicinal Orchid Dendrobium officinale. J. Fungi 2022, 8, 1036. https://doi.org/10.3390/jof8101036
Wu Y-H, Chen D-Y, Wang X-J, Li N-Q, Gao J-Y. Using Ex Situ Seedling Baiting to Capture Seedling-Associated Mycorrhizal Fungi in Medicinal Orchid Dendrobium officinale. Journal of Fungi. 2022; 8(10):1036. https://doi.org/10.3390/jof8101036
Chicago/Turabian StyleWu, Yi-Hua, De-Yun Chen, Xin-Ju Wang, Neng-Qi Li, and Jiang-Yun Gao. 2022. "Using Ex Situ Seedling Baiting to Capture Seedling-Associated Mycorrhizal Fungi in Medicinal Orchid Dendrobium officinale" Journal of Fungi 8, no. 10: 1036. https://doi.org/10.3390/jof8101036
APA StyleWu, Y.-H., Chen, D.-Y., Wang, X.-J., Li, N.-Q., & Gao, J.-Y. (2022). Using Ex Situ Seedling Baiting to Capture Seedling-Associated Mycorrhizal Fungi in Medicinal Orchid Dendrobium officinale. Journal of Fungi, 8(10), 1036. https://doi.org/10.3390/jof8101036