Yeast Probiotic and Yeast Products in Enhancing Livestock Feeds Utilization and Performance: An Overview
Abstract
:1. Introduction
2. Yeast Species
2.1. Saccharomyces cerevisiae
2.1.1. Probiotic Yeast for Pigs
2.1.2. Probiotic Yeast for Poultry
2.1.3. Probiotic Yeast for Ruminants
2.2. Kluyveromyces marxianus
2.3. Candida utilis
2.4. Saccharomyces boulardii
2.4.1. Probiotic Yeast for Pigs
2.4.2. Probiotic Yeast for Poultry
2.4.3. Probiotic Yeast for Ruminants
3. Yeast Products
3.1. Viable Yeast
3.2. Yeast Cell Wall
3.2.1. Mannan Oligosaccharide
3.2.2. β-Glucan
3.3. Yeast Culture
3.4. Other Yeast Products
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on Additives for Use in Animal Nutrition, Pages L 268/29-L268/43 in OJEU of 10/18/2003. Available online: https://www.doc88.com/p-9784146914646.html (accessed on 1 September 2022).
- Dibner, J.J.; Richards, J.D. Antibiotic growth promoters in agriculture: History and mode of action. Poult. Sci. 2005, 84, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Diarra, M.S.; Malouin, F. Antibiotics in Canadian poultry productions and anticipated alternatives. Front. Microbiol. 2014, 5, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krehbiel, C.R.; Rust, S.R.; Zang, G.; Gilliland, S.E. Bacterial direct-fed microbials in ruminant diets: Performance response and mode of action. J. Anim. Sci. 2003, 81, 120–132. [Google Scholar]
- Nami, Y.; Vaseghi Bakhshayesh, R.; Manaf, M.; Hejazi, M.A. Hypocholesterolaemic activity of a novel autochthonous potential probiotic Lactobacillus plantarum YS5 isolated from yogurt. LWT 2019, 111, 876–882. [Google Scholar] [CrossRef]
- Arowolo, M.A.; He, J. Use of probiotics and botanical extracts to improve ruminant production in the tropics: A review. Anim. Nutr. 2018, 4, 241–249. [Google Scholar] [CrossRef]
- Elghandour, M.M.; Abu Hafsa, S.H.; Cone, J.W.; Salem, A.Z.; Anele, U.Y.; Alcala-Canto, Y. Prospect of yeast probiotic inclusion enhances livestock feeds utilization and performance: An overview. Biomass. Convers. Bior. 2022, 1–13. [Google Scholar] [CrossRef]
- Nisbet, D.J.; Martin, S.A. Effect of a Saccharomyces cerevisiae culture on lactate utilization by the ruminal bacterium Selenomonas ruminantium. J. Anim. Sci. 1991, 69, 4628–4633. [Google Scholar] [CrossRef]
- Girard, I.D.; Dawson, K.A. Effect of yeast culture on the growth of representative ruminal bacteria. J. Anim. Sci. 1994, 77 (Suppl. S1), 300. [Google Scholar]
- U.S. Environmental Protection Agency. Saccharomyces Cerevisiae Final Risk Assessment. 1997. Available online: https://www.epa.gov/sites/production/files/2015-09/documents/fra002.pdf (accessed on 1 September 2022).
- Stone, C.W. Yeast Products in the Feed Industry: A Practical Guide for Feed Professionals. 2006. Available online: https://en.engormix.com/feed-machinery/articles/yeast-products-infeed-industry-t33489.htm (accessed on 1 September 2022).
- Ahiwe, E.U.; Dos Santos, T.T.; Graham, H.; Iji, P.A. Can probiotic or prebiotic yeast (Saccharomyces cerevisiae) serve as alternatives to in-feed antibiotics for healthy or disease-challenged broiler chickens?: A review. J. Appl. Poult. Res. 2021, 30, 100164. [Google Scholar] [CrossRef]
- Shurson, G.C. Yeast and yeast derivatives in feed additives and ingredients: Sources, characteristics, animal responses, and quantification methods. Anim. Feed Sci. Technol. 2018, 235, 60–76. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Y.; He, T.; Gifty, Z.B.; Sun, Z.; Sun, W.; Tang, Z. Effects of Yucca Shidigera Extract and Candida utilis on Growth Performance and Intestinal Health of Weaned Piglets; CSIRSpace Animal Research Institute: Accra, Ghana, 2020. [Google Scholar] [CrossRef]
- Pais, P.; Almeida, V.; Yılmaz, M.; Teixeira, M.C. Saccharomyces boulardii: What makes it tick as successful probiotic? J. Fungi 2020, 6, 78. [Google Scholar] [CrossRef] [PubMed]
- Dhama, K.; Singh, S.D. Probiotics improving poultry health and production: An overview. Poult. Punch. 2010, 26, 41. [Google Scholar]
- Hooge, D.M. Meta-analysis of broiler chicken pen trials evaluating dietary mannan oligosaccharide, 1993–2003. Int. J. Poult. Sci. 2004, 3, 163–174. [Google Scholar]
- Bin, D.; Shuang, X.; Lu, L.; Xi, C. Research progress on application of Saccharomyces cerevisiae in animal production. Feed Res. 2019, 7, 114–116. [Google Scholar]
- Wang, B.X.; Wang, S.J.; Guo, C.H.; Huan, H.E.; Gao, Y.H.; Bai, X.; Yang, J.B.; Zhou, L. Effects of Saccharomyces cerevisiae Fermentation Broth on Growth Performance, Small Intestine Development and Immune Function of Small Intestinal Mucosa of Weaned Piglets. Chin. J. Anim. Nutr. 2016, 28, 4014–4022. [Google Scholar]
- Borda-Molina, D.; Seifert, J.; Camarinha-Silva, A. Current perspectives of the chicken gastrointestinal tract and its microbiome. Comp. Struct. Biotechnol. J. 2018, 16, 131–139. [Google Scholar] [CrossRef]
- Feng, Y.; Gong, J.; Yu, H.; Jin, Y.; Zhu, J.; Han, Y. Identification of changes in the composition of ileal bacterial microbiota of broiler chickens infected with Clostridium perfringens. Vet. Microbiol. 2010, 140, 116–121. [Google Scholar] [CrossRef]
- Stanley, D.; Keyburn, A.L.; Denman, S.E.; Moore, R.J. Changes in the caecal microflora of chickens following Clostridium perfringens challenge to induce necrotic enteritis. Vet. Microbiol. 2012, 159, 155–162. [Google Scholar] [CrossRef]
- Skraban, J.; Dzeroski, S.; Zenko, B.; Tusar, L.; Rupnik, M. Changes of poultry faecal microbiota associated with Clostridium difficile colonisation. Vet. Microbiol. 2013, 165, 416–524. [Google Scholar] [CrossRef]
- Perez, V.G.; Waguespack, A.M.; Bidner, T.D.; Southern, L.L.; Fakler, T.M.; Ward, T.L.; Steidinger, M.; Pettigrew, J.E. Additivity of effects from dietary copper and zinc on growth performance and fecal microbiota of pigs after weaning. J. Anim. Sci. 2011, 89, 414–425. [Google Scholar] [CrossRef]
- Stanley, D.; Wu, S.B.; Rodgers, N.; Swick, R.A.; Moore, R.J. Differential responses of cecal microbiota to fishmeal, Eimeria and Clostridium perfringens in a necrotic enteritis challenge model in chickens. PLoS ONE 2014, 9, e104739. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.B.; Stanley, D.; Rodgers, N.; Swick, R.A.; Moore, R.J. Two necrotic enteritis predisposing factors, dietary fishmeal and Eimeria infection, induce large changes in the caecal microbiota of broiler chickens. Vet. Microbiol. 2014, 169, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Nordentoft, S.; Molbak, L.; Bjerrum, L.; De Vylder, J.; Immersee, F.V.; Pedersen, K. The influence of the cage system and colonisation of Salmonella Enteritidis on the microbial gut flora of laying hens studied by T-RFLP and 454 pyrosequencing. BMC Microbiol. 2011, 11, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juricova, H.; Videnska, P.; Lukac, M.; Faldynova, M.; Babak, V.; Havlickova, H.; Sisak, F.; Rychlik, I. Influence of Salmonella enterica serovar Enteritidis infection on the development of the cecum microbiota in newly hatched chicks. Appl. Environ. Microbiol. 2013, 79, 745–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Videnska, P.; Faldynova, M.; Juricova, H.; Babak, V.; Sisak, F.; Havlickova, H. Chicken faecal microbiota and disturbances induced by single or repeated therapy with tetracycline and streptomycin. BMC Vet. Res. 2013, 9, 30. [Google Scholar] [CrossRef]
- Banjeree, P.; Pradhan, N.R. Live yeasts a good alternative to AGP in broiler chickens. World Poult. 2006, 22, 32–34. [Google Scholar]
- Higgins, S.E.; Erf, G.F.; Higgins, J.P.; Henderson, S.N.; Wolfenden, A.D.; Gaona-Ramirez, G.; Hargis, B.M. Effect of probiotic treatment in broiler chicks on intestinal macrophage numbers and phagocytosis of Salmonella enteritidis by abdominal exudate cells. Poult. Sci. 2007, 86, 2315–2321. [Google Scholar] [CrossRef]
- Higgins, S.E.; Higgins, J.P.; Wolfenden, A.D.; Henderson, S.N.; Torres-Rodriguez, A.; Tellez, G.; Hargis, B. Evaluation of a Lactobacillus-based probiotic culture for the reduction of Salmonella enteritidis in neonatal broiler chicks. Poult. Sci. 2008, 87, 27–31. [Google Scholar] [CrossRef]
- Elghandour, M.M.Y.; Tan, Z.L.; Abu Hafsa, S.H.; Adegbeye, M.J.; Greiner, R.; Ugbogu, E.A.; Cedillo Monroy, J.; Salem, A.Z.M. Saccharomyces cerevisiae as a probiotic feed additive to non and pseudo-ruminant feeding: A review. J. Appl. Microbiol. 2020, 128, 658–674. [Google Scholar] [CrossRef] [Green Version]
- Line, J.E.; Bailey, J.S.; Cox, N.A.; Stem, N.J. Yeast treatment to reduce Salmonella and Campylobacter populations associated with broiler chickens subjected to transport stress. Poult. Sci. 1997, 76, 1227–1231. [Google Scholar] [CrossRef]
- Zhe, S.; Zhen, Y.G.; Zhao, W.; Zhao, X.L.; Wang, X.D.; Qin, G.X. Effect of different fermentation time of yeast culture on growth performance and immunity of broilers. Chin. J. Vet. Sci. 2018, 38, 1222–1227. [Google Scholar]
- Gheisari, A.; Kholeghipour, B. Effect of dietary inclusion of live yeast (Sachharomyces cerevisiae) on growth performance, immune response and blood parameters of broiler chickens. In Proceedings of the XII European Poultry Conference, Verona, Italia, 10–14 September 2006. [Google Scholar]
- Parlat, S.S.; Ozcan, M.; Oguz, H. Biological suppression of aflatoxicosis in Japanese quail (Coturnixcoturnix japonica) by dietary addition of yeast (Saccharomyces cerevisiae). Res. Vet. Sci. 2001, 71, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Koc, F.; Samli, H.; Okur, A.; Ozduven, M.; Akyurek, H.; Senkoylu, N. Effects of Saccharomyces cerevisiae and/or mannanoligosaccharide on performance, blood parameters and intestinal microbiota of broiler chicks. Bulg. J. Agric. Sci. 2010, 16, 643–650. [Google Scholar]
- Ahmed, M.E.; Abbas, T.E.; Abdlhag, M.A.; Mukhtar, D.E. Effect of dietary yeast (Saccharomyces cerevisiae) supplementation on performance, carcass characteristics and some metabolic responses of broilers. Anim. Vet. Sci. 2015, 3, 5–10. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Ren, W.; Yue, Y.; Guo, Y. Effects of live yeast supplementation on lipopolysaccharide-induced inflammatory responses in broilers. Poult. Sci. 2016, 95, 2557–2564. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Han, Q.; Guo, Y.; Zhang, B.; D’Inca, R. Dietary live yeast and mannan-oligosaccharide supplementation attenuate intestinal inflammation and barrier dysfunction induced by Escherichia coli in broilers. Br. J. Nutr. 2016, 116, 1878–1888. [Google Scholar] [CrossRef] [Green Version]
- Oyedeji, J.O.; Ajayi, H.I.; Egere, T. The effect of increasing level of yeast culture (Levucel SB) in a high fibre diet, on the performance and nutrient retention of broiler chicken. Asian J. Poul. Sci. 2008, 2, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Abdelrahman, M.M. Effects of feeding dry fat and yeast culture on broiler chicken performance. Turk. J. Vet. Anim. Sci. 2013, 37, 31–37. [Google Scholar] [CrossRef]
- Pizzolitto, R.P.; Armando, M.R.; Salvano, M.A.; Dalcero, A.M.; Rosa, C.A. Evaluation of Saccharomyces cerevisiae as an antiaflatoxicogenic agent in broiler feedstuffs. Poult. Sci. 2013, 92, 1655–1663. [Google Scholar] [CrossRef]
- Shi, M.; Yuan, L.K.; Zheng, W.Y.; Tang, Y.M.; Li, S.Q.; Tao, L.; Yan, X.H.; Ma, L.B. Effects of dietary novel Saccharomyces cerevisiae culture supplementation on growth performance, antioxidant capability and immune function of White Pekin ducks. Feed Ind. 2018, 39, 43–49. [Google Scholar]
- Shi, M.; Li, S.Q.; Tang, Y.M.; Zheng, W.Y.; Niu, Y.R.; Lv, C.X.; Hou, Q.L.; Yan, X.H.; Ma, L.B. Effects of dietary novel Saccharomyces cerevisiae culture supplementation on meat quality and intestinal microbiota of White Pekin ducks. Feed Rev. 2018, 12, 1–11. [Google Scholar]
- Gao, H.L.; Hou, P.X.; Mei, N.A.; Liang, X.J. Effects of dietary supplementation of yeast culture on productive performance and economic benefits of Beef cattle. Anim. Husb. Feed Sci. 2017, 38, 45–50. [Google Scholar]
- Chen, L.; Jie, H.D.; Ren, A.; Zhou, C.D.; Tan, Z.L.; Li, B. Effect of Saccharomyces cerevisiae on nutrient digestibility, rumen fermentation and plasma biochemical parameters of Xiangzhong Black beef. Chin. J. Anim. Nutr. 2017, 29, 3359–3365. [Google Scholar]
- Zhou, D.N.; Yao, K.; Xie, S.M.; Li, B.; Zhou, F.T.; Li, S.L.; Yu, X. Effects of Saccharomyces cerevisiae culture on performance, nutrient apparent digestibility and serum indices of lactating dairy cows. Chin. J. Anim. Nutr. 2018, 30, 2741–2748. [Google Scholar]
- Ma, X.J. Effects of Saccharomyces cerevisiae cultures on rumen physiological functions in ruminants. Contemp. Anim. Husb. 2014, 24, 23–25. [Google Scholar]
- Tian, Q.Z.; Jin, X.; Zhang, M.; Zhang, Z.Y.; Wang, Y.H.; Yang, Y.F. Effect of cell wall of Saccharomyces cerevisiae on the expression of SBD-1 in cultured ruminal epithelial cells of sheep. Acta Vet. Et Zootech. Sin. 2018, 49, 927–934. [Google Scholar]
- Gao, J.Q.; Han, X.T.; Kong, L.; Yuan, W.J.; Wang, N.; Bai, F.W. Application of Kluyveromyces marxianus in industrial biotechnology. Chin. Biotech. 2014, 34, 109–117. [Google Scholar]
- Zhou, Y.; Zhang, W.; Zhou, J.G.; Lv, H. Effects of adding active Kluyveromyces marxianus on the growth performance, serum biochemical indicators and intestinal structure of broilers. J. Fudan Univ. 2021, 60, 262–270. [Google Scholar]
- Intanoo, M.; Kongkeitkajorn, M.B.; Suriyasathaporn, W.; Phasuk, Y.; Bernard, J.K.; Pattarajinda, V. Effect of supplemental Kluyveromyces marxianus and Pichia kudriavzevii on aflatoxin M1 excretion in milk of lactating dairy cows. Animals 2020, 10, 709. [Google Scholar] [CrossRef] [Green Version]
- Kieliszek, M.; Bierla, K.; Jiménez-Lamana, J.; Kot, A.M.; Alcántara-Durán, J.; Piwowarek, K.; Błazejak, S.; Szpunar, J. Metabolic response of the yeast Candida utilis during enrichment in selenium. Int. J. Mol. Sci. 2020, 21, 5287–5304. [Google Scholar] [CrossRef]
- Cruz, A.; Håkenåsen, I.M.; Skugor, A.; Mydland, L.T.; Åkesson, C.P.; Hellestveit, S.S.; Sorby, R.; Press, C.M.; Overland, M. Candida utilis yeast as a protein source for weaned piglets: Effects on growth performance and digestive function. Livest. Sci. 2019, 226, 31–39. [Google Scholar] [CrossRef]
- Jalasutram, V.; Ktaram, S.; Gandu, B.; Anupuju, G.R. Single cell protein production from digested and undigested poultry litter by Candida utilis: Optimization of process parameters using response surface methodology. Clean Technol. Environ. Policy 2013, 15, 265–273. [Google Scholar] [CrossRef]
- Tasteyre, A.; Barc, M.C.; Karjalainen, T.; Bourlioux, P.; Collignon, A. Inhibition of in vitro cell adherence of Clostridium difficile by Saccharomyces boulardii. Microb. Pathog. 2002, 32, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Zhang, K.L.; Li, F.J.; Tian, Y.H.; Wang, J.; Gu, W. Research status of Saccharomyces boulardii. J. Feed Anim. Husb. 2014, 5, 38–40. [Google Scholar]
- Collier, C.T.; Carroll, J.A.; Ballou, M.A.; Starkey, J.D.; Sparks, J.C. Oral administration of Saccharomyces cerevisiae boulardii reduces mortality associated with immune and cortisol responses to Escherichia coli endotoxin in pigs. J. Anim. Sci. 2011, 89, 52–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lessard, M.; Dupuis, M.; Gagnon, N.; Nadeau, E.; Matte, J.J.; Goulet, J.; Fairbrother, J.M. Administration of Pediococcus acidilactici or Saccharomyces cerevisiae boulardii modulates development of porcine mucosal immunity and reduces intestinal bacterial translocation after Escherichia coli challenge. J. Anim. Sci. 2009, 87, 922–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giang, H.H.; Viet, T.Q.; Ogle, B.; Lindberg, J.E. Growth performance, digestibility, gut environment and health status in weaned piglets fed a diet supplemented with a complex of lactic acid bacteria alone or in combination with Bacillus subtilis and Saccharomyces boulardii. Livest. Sci. 2012, 143, 132–141. [Google Scholar] [CrossRef]
- Yan, L.; Kim, I.H. Effect of dietary grape pomace fermented by Saccharomyces boulardii on the growth performance, nutrient digestibility and meat quality in finishing pigs. Asian Austra. J. Anim. 2011, 24, 1763–1770. [Google Scholar] [CrossRef]
- Rajput, I.R.; Li, L.Y.; Xin, X.; Wu, B.B.; Juan, Z.L.; Cui, Z.W.; Li, W.F. Effect of Saccharomyces boulardii and Bacillus subtilis B10 on intestinal ultrastructure modulation and mucosal immunity development mechanism in broiler chickens. Poult. Sci. 2013, 92, 956–965. [Google Scholar] [CrossRef]
- Qin, C.; Gong, L.; Zhang, X.; Wang, Y.; Wang, Y.; Wang, B.; Li, W. Effect of Saccharomyces boulardii and Bacillus subtilis B10 on gut microbiota modulation in broilers. Anim. Nutr. 2018, 4, 358–366. [Google Scholar] [CrossRef]
- Rajput, I.R.; Li, Y.L.; Xu, X.; Huang, Y.; Zhi, W.C.; Yu, D.Y.; Li, W. Supplementary effects of Saccharomyces boulardii and Bacillus subtilis B10 on digestive enzyme activities, antioxidation capacity and blood homeostasis in broiler. Inter. J. Agric. Biol. 2013, 15, 1560–8530. [Google Scholar]
- Pinos-Rodríguez, J.M.; Robinson, P.H.; Ortega, M.E.; Berry, S.L.; Mendoza, G.; Bárcena, R. Performance and rumen fermentation of dairy calves supplemented with Saccharomyces cerevisiae1077 or Saccharomyces boulardii1079. Anim. Feed Sci. Technol. 2008, 140, 223–232. [Google Scholar] [CrossRef]
- Lu, Q.C.; Wu, Y.Y.; Zhang, W.J. Biological function, mechanism and application of Saccharomyces boulardii. Chin. Anim. Husb. Vet. Med. 2020, 47, 2472–2480. [Google Scholar]
- Fomenky, B.E.; Chiquette, J.; Lessard, M.; Bissonnette, N.; Talbot, G.; Chouinard, Y.P.; Ibeagha-Awemu, E.M. Saccharomyces cerevisiae var. boulardii CNCM I-1079 and Lactobacillus acidophilus BT1386 influence innate immune response and serum levels of acute-phase proteins during weaning in Holstein calves. Can. J. Anim. Sci. 2018, 98, 576–588. [Google Scholar] [CrossRef]
- Keyser, S.A.; McMeniman, J.P.; Smith, D.R.; MacDonald, J.C.; Galyean, M.L. Effects of Saccharomyces cerevisiae subspecies boulardii CNCM I-1079 on feed intake by healthy beef cattle treated with florfenicol and on health and performance of newly received beef heifers. J. Anim. Sci. 2007, 85, 1264–1273. [Google Scholar] [CrossRef] [Green Version]
- Roos, T.B.; Tabeleão, V.C.; Dümmer, L.A.; Schwegler, E.; Goulart, M.A.; Moura, S.V.; Gil-Turnes, C. Effect of Bacillus cereus var. Toyoi and Saccharomyces boulardii on the immune response of sheep to vaccines. Food Agric. Immunol. 2010, 21, 113–118. [Google Scholar] [CrossRef]
- Villot, C.; Ma, T.; Renaud, D.L.; Ghaffari, M.H.; Gibson, D.J.; Skidmore, A.; Steele, M.A. Saccharomyces cerevisiae boulardii CNCM I-1079 affects health, growth, and fecal microbiota in milk-fed veal calves. J. Dairy Sci. 2019, 102, 7011–7025. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.L.; Zhang, Y.L.; Chen, T. Research progress in the application of feed yeast product. Guangdong J. Anim. Vet. Sci. 2022, 47, 51–57. [Google Scholar]
- Wang, X.D.; Guo, Y.M.; Yao, J.; Tan, B.; He, H.C. Effects of active dry yeast on performance of sows. China Feed 2006, 17, 17–19. [Google Scholar]
- Gao, K.G.; Wang, L.; Yang, X.F.; Wen, X.L.; Jiang, Z.Y. Consideration on feed safety and quality under African swine fever epidemic. Chin. J. Anim. Sci. 2020, 56, 181–183. [Google Scholar]
- Zhou, Z.H. Discussion on the influence of African swine fever on feed industry and its scientific prevention and control measures. Hunan Feed 2019, 4, 16–21. [Google Scholar]
- Šperanda, M.; Didara, M.; Šperanda, T.; Domacinovic, M.; Valpotic, H.; Kovacevic, J.; Novoselec, J. Hydrolyzed brewery yeast product like immunomodulator in weaned piglets. Arch. Zootech. 2008, 11, 52–60. [Google Scholar]
- Liu, H.; Ji, H.F.; Wang, S.X.; Zhang, D.Y.; Wang, J.; Shan, D.C.; Wang, Y.M. Effects of probiotics on growth performance, fecal microbe number, nutrient apparent digestibility and serum immune indices of growing pigs. Chin. J. Anim. Nutr. 2015, 27, 829–837. [Google Scholar]
- Xie, M.X.; Wang, H.R.; Yang, J.L.; Wang, G.C.; Li, J.J.; Li, C.R. Effects of yeast mannan oligosaccharides on Growth performance, serum immune and inflammatory indices and Antioxidant indices of Mongolian sheep. Chin. J. Anim. Nutr. 2018, 30, 219–226. [Google Scholar]
- Yan, G.L.; Yuan, J.M.; Guo, Y.M.; Wang, Z.; Liu, D. Effects of Saccharomyces cerevisiae mannan oligosaccharides on intestinal microflora and immune function of broilers. J. Chin. Agric. Univ. 2008, 13, 85–90. [Google Scholar]
- Hang, S.Q.; Huang, R.H.; Zhu, W.Y. Effects of mannan oligosaccharides on Performance and Blood Biochemical Indices of Weaned Piglets. Chin. J. Vet. Med. 2009, 29, 220–223. [Google Scholar]
- Chen, X.B.; Ding, H.B.; Qiao, Y. Probiotics, immune mechanism and application technology of mannan oligosaccharides. Chin. Anim. Husb. Vet. Med. 2005, 32, 6–8. [Google Scholar]
- Zhou, Z.; Diao, Q.Y.; Tu, Y.; Yun, Q. Effects of yeast β-glucan and Bacitracin zinc on growth Performance and Gastrointestinal Development of Early-weaned Calves. Chin. J. Anim. Nutr. 2011, 23, 813–820. [Google Scholar]
- Li, Y.P.; Zhan, H.J.; Zheng, J.T.; Cao, L.; Feng, G.L.; Niu, X.Y.; Ren, K.L. Effects of β-glucan on growth performance, immune organ index, serum biochemical and immune indexes of meat rabbits. Chin. J. Anim. Nutr. 2020, 32, 5365–5372. [Google Scholar]
- Chen, Q.; Chen, P.; Li, J.Y.; Cui, S.H.; Qiao, Q. Effects of yeast β-glucan and zinc compound formula on immune regulation in immunosuppressed young mice. Sci. Technol. Food. Indust. 2021, 42, 313–319. [Google Scholar]
- Liao, W.; Lin, J.X.; Leonard, W.J. IL-2 family cytokines: New insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr. Opin. Immunol. 2011, 23, 598–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desmedt, M.; Rottiers, P.; Dooms, H.; Fiers, W.; Grooten, J. Macrophages induce cellular immunity by activating Th1 cell responses and suppressing Th2 cell responses. J. Immunol. 1998, 160, 5300–5308. [Google Scholar]
- Gao, J. Effects of Yeast Culture on Broilers and Its Mechanism. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2008. [Google Scholar]
- Sun, Q.D.; Zhu, A.M. Effects of Yeast Culture on growth Performance, Antioxidant capacity and immune function of Weaned Piglets. China Feed 2021, 2, 62–65. [Google Scholar] [CrossRef]
- Huang, Q.S.; Wang, J.Q. Effects of different yeast cultures on rumen fibrolytic flora and cellulase activity. Chin. J. Anim. Sci. Vet. Med. 2005, 36, 144–148. [Google Scholar]
- Mousaie, A. Dietary supranutritional supplementation of selenium-enriched yeast improves feed efficiency and blood antioxidant status of growing lambs reared under warm environmental condition. Trop. Anim. Health Prod. 2021, 53, 138. [Google Scholar] [CrossRef]
- Mohrekesh, M.; Shahraki, A.F.; Ghalamkari, G.R.; Guyot, H. Effects of three methods of oral selenium-enriched yeast supplementation on blood components and growth in Holstein dairy calves. Anim. Prod. Sci. 2018, 59, 260–265. [Google Scholar] [CrossRef]
- Lu, J.; Qu, L.; Shen, M.M.; Hu, Y.P.; Guo, J.; Dou, T.C.; Wang, K.H. Comparison of dynamic change of egg selenium deposition after feeding sodium selenite or selenium-enriched yeast. Poult. Sci. 2018, 97, 3102–3108. [Google Scholar] [CrossRef]
- Li, Y.H.; Xie, J.L.; Zhang, G.P.; Wang, C.; Wu, X.M.; Jiang, Y.R.; Xin, Y.P.; Lv, Y.J. Effects of Selenium enriched yeast feeding on selenium content in growing finishing Pigs. Chin. J. Anim. Sci. Vet. Med. 2020, 39, 34–36. [Google Scholar]
- Pechova, A.; Pavlata, L. Chromium as an essential nutrient: A review. Veterinární Med. 2007, 52, 1–18. [Google Scholar] [CrossRef]
- Shan, Q.; Ma, F.T.; Jin, Y.H.; Li, H.Y.; Gao, D.; Sun, P. Effects of Chromium-rich Yeast on Performance, serum Indices and Contents of Trace Elements in plasma and milk of Heat-stressed Dairy Cows. Chin. J. Anim. Nutr. 2020, 32, 2198–2208. [Google Scholar]
- European Commission of Health and Consumer Protection Directorate-General. Update of the Opinion of the Scientific Committee on Animal Nutrition on the Use of Astaxanthin-Rich Phaffia Rhodozyma in Feedingstuffs for Salmon and Trout. 2003. Available online: https://food.ec.europa.eu/system/files/2020-12/sci-com_scan-old_report_out111.pdf (accessed on 1 September 2022).
S. cerevisiae Doses | Poultry Species | Impacts | References |
---|---|---|---|
0.1, 0.2, and 0.3% in powdered form | Broiler | Minor serum cholesterol levels, higher serum high-density lipoprotein concentrations | Gheisari [36] |
1 g/kg of feed | Quail | Lesser deleterious effects of aflatoxins | Parlat [37] |
2 kg/ton of feed | Broiler | Higher numbers of ileal LAB, lesser counts of ileal E. coli | Koc [38] |
1, 2 and 3 g/kg of feed | Broiler | Lesser final body weight and daily weight gain, higher feed conversion | Ahmed [39] |
0.5 g/kg of feed | Broiler | Lesser serum concentration of nitric oxide, lesser serum myeloperoxidase activity | Wang [40] |
0.5 g/kg of feed | Broiler | Minor serum diamine oxidase activity, higher ratio of villus height to crypt depth in the ileum | Wang [41] |
200, 250 and 300 mg/kg of feed | Broiler | Lesser feed conversion ratio, lesser mortality | Oyedeji [42] |
3 kg/ton of feed | Broiler | Lower blood cholesterol concentrations | Abdelrahman [43] |
5 × 109 cells/L drinking water | Broiler | Higher total serum protein levels, serum albumin levels | Pizzolitto [44] |
2.5% and 5.0% novel S. cerevisiae culture | White Pekin ducks | Higher feed/gain ratio, serum IgM and IgA | Shimin [45] |
2.5% novel S. cerevisiae culture | White Pekin ducks | Improve meat quality | Shimin [46] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, Y.; Zhang, H.; Wen, H.; Wan, H.; Wu, H.; Chen, Y.; Li, S.; Zhang, L.; Sun, X.; Li, B.; et al. Yeast Probiotic and Yeast Products in Enhancing Livestock Feeds Utilization and Performance: An Overview. J. Fungi 2022, 8, 1191. https://doi.org/10.3390/jof8111191
Pang Y, Zhang H, Wen H, Wan H, Wu H, Chen Y, Li S, Zhang L, Sun X, Li B, et al. Yeast Probiotic and Yeast Products in Enhancing Livestock Feeds Utilization and Performance: An Overview. Journal of Fungi. 2022; 8(11):1191. https://doi.org/10.3390/jof8111191
Chicago/Turabian StylePang, Yuanxiang, Hailiang Zhang, Haoyu Wen, Hongbing Wan, Hao Wu, Ying Chen, Shengshuo Li, Le Zhang, Xiaojie Sun, Bichen Li, and et al. 2022. "Yeast Probiotic and Yeast Products in Enhancing Livestock Feeds Utilization and Performance: An Overview" Journal of Fungi 8, no. 11: 1191. https://doi.org/10.3390/jof8111191
APA StylePang, Y., Zhang, H., Wen, H., Wan, H., Wu, H., Chen, Y., Li, S., Zhang, L., Sun, X., Li, B., & Liu, X. (2022). Yeast Probiotic and Yeast Products in Enhancing Livestock Feeds Utilization and Performance: An Overview. Journal of Fungi, 8(11), 1191. https://doi.org/10.3390/jof8111191