Antifungal and Antiaflatoxinogenic Effects of Cymbopogon citratus, Cymbopogon nardus, and Cymbopogon schoenanthus Essential Oils Alone and in Combination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Extraction of the Essential Oils
2.3. Chemical Composition of Essential Oils
2.4. Fungal Species
2.5. Determination of the Antifungal Activity
2.5.1. Determination of Minimum Inhibitory Concentration and Minimum Fungicidal Concentration
2.5.2. Evaluation of the Antifungal Activity of EOs Combinations
2.6. Aflatoxin Extraction
2.7. Quantification of Aflatoxins by HPLC
2.8. Statistical Analysis
3. Results
3.1. Extraction Yields of Essential Oils
3.2. Chemical Composition of Essential Oils
3.3. Antifungal Activity of Essential Oils
3.3.1. Mycelial Growth Inhibition
3.3.2. Antifungal Activity of Essential Oils Tested Alone on Aspergillus flavus and Aspergillus parasiticus
3.3.3. Antifungal Activity of Essential Oil Pair Combinations
3.4. Antiaflatoxinogenic Activity of Essential Oils on the Production of Aflatoxin
3.5. Antiaflatoxinogenic Activity of Essential Oil Pair Combinations on the Production of Aflatoxin
4. Discussion
4.1. Extraction Yield and Chemical Composition of the Essential Oils
4.2. Antifungal Activity of Essential Oils Tested Alone on Aspergillus flavus and Aspergillus parasiticus
4.3. Antifungal Activity of Essential Oils Tested in Combination on Aspergillus flavus and Aspergillus parasiticus
4.4. Antiaflatoxinogenic Activity of Essential Oils Tested Alone or in Combination
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Ruyck, K.; De Boevre, M.; Huybrechts, I.; De Saeger, S. Dietary mycotoxins, co-exposure, and carcinogenesis in humans: Short review. Mutat. Res. Mutat. Res. 2015, 766, 32–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozcakmak, S.; Gul, O. Inhibition kinetics of Penicillium verrucosum using different essential oils and application of predictive inactivation models. Int. J. Food Prop. 2017, 20, S684–S692. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yamdeu, J.H.G.; Gong, Y.Y.; Orfila, C. A review of postharvest approaches to reduce fungal and mycotoxin contamination of foods. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1521–1560. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Mishra, A.K.; Dubey, N.; Tripathi, Y. Evaluation of Chenopodium ambrosioides oil as a potential source of antifungal, antiaflatoxigenic and antioxidant activity. Int. J. Food Microbiol. 2007, 115, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Benkerroum, N. Aflatoxins: Producing-Molds, Structure, Health Issues and Incidence in Southeast Asian and Sub-Saharan African Countries. Int. J. Environ. Res. Public Health 2020, 17, 1215. [Google Scholar] [CrossRef] [Green Version]
- International Agency for Research on Cancer Monographs on the Evaluation of Carcinogenic Risks to Humans. Available online: https://www.cancer-environnement.fr/Portals/0/Documents%20PDF/Rapport/Autre/mono82.pdf (accessed on 12 January 2022).
- Marchese, S.; Polo, A.; Ariano, A.; Velotto, S.; Costantini, S.; Severino, L. Aflatoxin B1 and M1: Biological Properties and Their Involvement in Cancer Development. Toxins 2018, 10, 214. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Khan, A.; Kumar, P.; Bhatt, R.P.; Manzoor, N. Antifungal activity of Coriaria nepalensis essential oil by disrupting ergosterol biosynthesis and membrane integrity against Candida. Yeast 2011, 28, 611–617. [Google Scholar] [CrossRef]
- Engel, E.; Meurillon, M.; Planche, C.; Peyret, P. Devenir des contaminants toxiques des aliments dans l’environnement digestif. Innov. Agron. 2014, 36, 83–96. [Google Scholar]
- Kaaya, A.N.; Kyamuhangire, W. The effect of storage time and agroecological zone on mould incidence and aflatoxin contamination of maize from traders in Uganda. Int. J. Food Microbiol. 2006, 110, 217–223. [Google Scholar] [CrossRef]
- Conte, G.; Fontanelli, M.; Galli, F.; Cotrozzi, L.; Pagni, L.; Pellegrini, E. Mycotoxins in Feed and Food and the Role of Ozone in Their Detoxification and Degradation: An Update. Toxins 2020, 12, 486. [Google Scholar] [CrossRef]
- Peng, W.-X.; Marchal, J.; van der Poel, A. Strategies to prevent and reduce mycotoxins for compound feed manufacturing. Anim. Feed Sci. Technol. 2018, 237, 129–153. [Google Scholar] [CrossRef]
- Paster, N.; Barkai-Golan, R. Mouldy fruits and vegetables as a source of mycotoxins: Part 2. World Mycotoxin J. 2008, 1, 385–396. [Google Scholar] [CrossRef]
- Zubrod, J.P.; Bundschuh, M.; Arts, G.; Brühl, C.A.; Imfeld, G.; Knäbel, A.; Payraudeau, S.; Rasmussen, J.J.; Rohr, J.; Scharmüller, A.; et al. Fungicides: An Overlooked Pesticide Class? Environ. Sci. Technol. 2019, 53, 3347–3365. [Google Scholar] [CrossRef] [PubMed]
- Ons, L.; Bylemans, D.; Thevissen, K.; Cammue, B.P.A. Combining Biocontrol Agents with Chemical Fungicides for Integrated Plant Fungal Disease Control. Microorganisms 2020, 8, 1930. [Google Scholar] [CrossRef] [PubMed]
- Juntarawijit, C.; Juntarawijit, Y. Association between diabetes and pesticides: A case-control study among Thai farmers. Environ. Health Prev. Med. 2018, 23, 3. [Google Scholar] [CrossRef] [Green Version]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, A.; Zamani, E.; Sharaifi, R.; Javan-Nikkhah, M.; Nazari, S. Antifungal activity of some essential oils against toxigenic Aspergillus species. Commun. Agric. Appl. Boil. Sci. 2010, 75, 761–767. [Google Scholar]
- Prakash, B.; Shukla, R.; Singh, P.; Mishra, P.K.; Dubey, N.K.; Kharwar, R.N. Efficacy of chemically characterized Ocimum gratissimum L. essential oil as an antioxidant and a safe plant based antimicrobial against fungal and aflatoxin B1 contamination of spices. Food Res. Int. 2011, 44, 385–390. [Google Scholar] [CrossRef]
- Pandey, D.K.; Tripathi, N.N.; Tripathi, R.D.; Dixit, S.N. Fungitoxic and phytotoxic properties of the essential oil of Hyptis suaveolens. J. Plant Dis. Prot. 1982, 89, 344–349. [Google Scholar]
- CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing for Filamentous Fungi; Approved standart-second edition; CSLI: Wayne, PA, USA, 2008; Volume 28, p. 13. [Google Scholar]
- Mahlo, S.; McGaw, L.; Eloff, J. Antifungal activity and cytotoxicity of isolated compounds from leaves of Breonadia salicina. J. Ethnopharmacol. 2013, 148, 909–913. [Google Scholar] [CrossRef]
- Zore, G.B.; Thakre, A.D.; Jadhav, S.; Karuppayil, S.M. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomedicine 2011, 18, 1181–1190. [Google Scholar] [CrossRef] [PubMed]
- Thathana, M.G.; Murage, H.; Abia, A.L.K.; Pillay, M. Morphological Characterization and Determination of Aflatoxin-Production Potentials of Aspergillus flavus Isolated from Maize and Soil in Kenya. Agriculture 2017, 7, 80. [Google Scholar] [CrossRef] [Green Version]
- Venzon, L.; Mariano, L.N.B.; Somensi, L.B.; Boeing, T.; de Souza, P.; Wagner, T.M.; de Andrade, S.F.; Nesello, L.A.N.; da Silva, L.M. Essential oil of Cymbopogon citratus (lemongrass) and geraniol, but not citral, promote gastric healing activity in mice. Biomed. Pharmacother. 2018, 98, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Nguefack, J.; Tamgue, O.; Dongmo, J.L.; Dakole, C.; Leth, V.; Vismer, H.; Zollo, P.A.; Nkengfack, A. Synergistic action between fractions of essential oils from Cymbopogon citratus, Ocimum gratissimum and Thymus vulgaris against Penicillium expansum. Food Control 2012, 23, 377–383. [Google Scholar] [CrossRef]
- Nakahara, K.; Alzoreky, N.S.; Yoshihashi, T.; Nguyen, H.T.T.; Trakoontivakorn, G. Chemical Composition and Antifungal Activity of Essential Oil from Cymbopogon nardus (Citronella Grass). Jpn. Agric. Res. Q. JARQ 2013, 37, 249–252. [Google Scholar] [CrossRef] [Green Version]
- De Toledo, L.G.; Ramos, M.A.D.S.; Spósito, L.; Castilho, E.M.; Pavan, F.R.; Lopes, É.D.O.; Zocolo, G.J.; Silva, F.A.N.; Soares, T.H.; Dos Santos, A.G.; et al. Essential Oil of Cymbopogon nardus (L.) Rendle: A Strategy to Combat Fungal Infections Caused by Candida Species. Int. J. Mol. Sci. 2016, 17, 1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pontes, E.K.U.; Melo, H.M.; Nogueira, J.W.A.; Firmino, N.C.S.; de Carvalho, M.G.; Júnior, F.E.A.C.; Cavalcante, T.T.A. Antibiofilm activity of the essential oil of citronella (Cymbopogon nardus) and its major component, geraniol, on the bacterial biofilms of Staphylococcus aureus. Food Sci. Biotechnol. 2019, 28, 633–639. [Google Scholar] [CrossRef]
- Bellik, F.-Z.; Benkaci-Ali, F.; Alsafra, Z.; Eppe, G.; Tata, S.; Sabaou, N.; Zidani, R. Chemical composition, kinetic study and antimicrobial activity of essential oils from Cymbopogon schoenanthus L. Spreng extracted by conventional and microwave-assisted techniques using cryogenic grinding. Ind. Crop. Prod. 2019, 139, 111505. [Google Scholar] [CrossRef]
- Kpoviessi, S.; Bero, J.; Agbani, P.; Gbaguidi, F.; Kpadonou-Kpoviessi, B.; Sinsin, B.; Accrombessi, G.; Frédérich, M.; Moudachirou, M.; Quetin-Leclercq, J. Chemical composition, cytotoxicity and in vitro antitrypanosomal and antiplasmodial activity of the essential oils of four Cymbopogon species from Benin. J. Ethnopharmacol. 2014, 151, 652–659. [Google Scholar] [CrossRef]
- Bossou, A.D.; Ahoussi, E.; Ruysbergh, E.; Adams, A.; Smagghe, G.; De Kimpe, N.; Avlessi, F.; Sohounhloue, D.C.; Mangelinckx, S. Characterization of volatile compounds from three Cymbopogon species and Eucalyptus citriodora from Benin and their insecticidal activities against Tribolium castaneum. Ind. Crop. Prod. 2015, 76, 306–317. [Google Scholar] [CrossRef]
- Ketoh, G.K.; Koumaglo, H.K.; Glitho, I.A. Inhibition of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) development with essential oil extracted from Cymbopogon schoenanthus L. Spreng. (Poaceae), and the wasp Dinarmus basalis (Rondani) (Hymenoptera: Pteromalidae). J. Stored Prod. Res. 2005, 41, 363–371. [Google Scholar] [CrossRef]
- Verma, R.S.; Padalia, R.C.; Chauhan, A. Introduction of Cymbopogon distans (Nees ex Steud.) Wats to the sub-tropical India: Evaluation of essential-oil yield and chemical composition during annual growth. Ind. Crop. Prod. 2013, 49, 858–863. [Google Scholar] [CrossRef]
- Sonker, N.; Pandey, A.K.; Singh, P.; Tripathi, N. Assessment ofCymbopogon citratus(DC.) Stapf Essential Oil as Herbal Preservatives Based on Antifungal, Antiaflatoxin, and Antiochratoxin Activities andIn VivoEfficacy during Storage. J. Food Sci. 2014, 79, M628–M634. [Google Scholar] [CrossRef] [PubMed]
- Ntonga, P.A.; Baldovini, N.; Mouray, E.; Mambu, L.; Belong, P.; Grellier, P. Activity ofOcimum basilicum, Ocimum canum, andCymbopogon citratusessential oils againstPlasmodium falciparumand mature-stage larvae ofAnopheles funestuss.s. Parasite 2014, 21, 33. [Google Scholar] [CrossRef] [Green Version]
- Blanco, M.; Costa, C.; Freire, A.; Santos, J.; Costa, M. Neurobehavioral effect of essential oil of Cymbopogon citratus in mice. Phytomedicine 2009, 16, 265–270. [Google Scholar] [CrossRef]
- Bayala, B.; Bassole, I.H.; Maqdasy, S.; Baron, S.; Simpore, J.; Lobaccaro, J.-M.A. Cymbopogon citratus and Cymbopogon giganteus essential oils have cytotoxic effects on tumor cell cultures. Identification of citral as a new putative anti-proliferative molecule. Biochimie 2018, 153, 162–170. [Google Scholar] [CrossRef]
- Calo, J.R.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Essential oils as antimicrobials in food systems—A review. Food Control 2015, 54, 111–119. [Google Scholar] [CrossRef]
- Aous, W.; Benchabane, O.; Outaleb, T.; Hazzit, M.; Mouhouche, F.; Yekkour, A.; Baaliouamer, A. Essential oils of Cymbopogon schoenanthus (L.) Spreng. from Algerian Sahara: Chemical variability, antioxidant, antimicrobial and insecticidal properties. J. Essent. Oil Res. 2019, 31, 562–572. [Google Scholar] [CrossRef]
- Bhatt, V.; Sharma, S.; Kumar, N.; Sharma, U.; Singh, B. Chemical Composition of Essential Oil among Seven Populations of Zanthoxylum armatum from Himachal Pradesh: Chemotypic and Seasonal Variation. Nat. Prod. Commun. 2017, 12, 1643–1646. [Google Scholar] [CrossRef] [Green Version]
- Antonioli, G.; Fontanella, G.; Echeverrigaray, S.; Delamare, A.P.L.; Pauletti, G.F.; Barcellos, T. Poly(lactic acid) nanocapsules containing lemongrass essential oil for postharvest decay control: In vitro and in vivo evaluation against phytopathogenic fungi. Food Chem. 2020, 326, 126997. [Google Scholar] [CrossRef]
- Cofelice, M.; Cinelli, G.; Lopez, F.; Di Renzo, T.; Coppola, R.; Reale, A. Alginate-Assisted Lemongrass (Cymbopogon nardus) Essential Oil Dispersions for Antifungal Activity. Foods 2021, 10, 1528. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-E.; Seo, S.-M.; Huh, M.-J.; Lee, S.-C.; Park, I.-K. Reactive oxygen species mediated-antifungal activity of cinnamon bark (Cinnamomum verum) and lemongrass (Cymbopogon citratus) essential oils and their constituents against two phytopathogenic fungi. Pestic. Biochem. Physiol. 2020, 168, 104644. [Google Scholar] [CrossRef] [PubMed]
- Mesa-Arango, A.C.; Montiel-Ramos, J.; Zapata, B.; Durán, C.; Galvis, L.A.B.; Stashenko, E. Citral and carvone chemotypes from the essential oils of Colombian Lippia alba (Mill.) N.E. Brown: Composition, cytotoxicity and antifungal activity. Memórias Do Inst. Oswaldo Cruz 2009, 104, 878–884. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas-Ortega, N.C.; Zavala-Sánchez, M.A.; Aguirre-Rivera, J.R.; Pérez-González, C.; Pérez-Gutiérrez, S. Chemical Composition and Antifungal Activity of Essential Oil of Chrysactinia mexicana Gray. Agric. Food Chem. 2005, 53, 4347–4349. [Google Scholar] [CrossRef] [PubMed]
- Kalemba, D.; Kunicka, A. Antibacterial and Antifungal Properties of Essential Oils. Curr. Med. Chem. 2003, 10, 813–829. [Google Scholar] [CrossRef]
- Mutlu-Ingok, A.; Devecioglu, D.; Dikmetas, D.N.; Karbancioglu-Guler, F.; Capanoglu, E. Antibacterial, Antifungal, Antimycotoxigenic, and Antioxidant Activities of Essential Oils: An Updated Review. Molecules 2020, 25, 4711. [Google Scholar] [CrossRef]
- Saka, B.; Djouahri, A.; Djerrad, Z.; Terfi, S.; Aberrane, S.; Sabaou, N.; Baaliouamer, A.; Boudarene, L. Chemical Variability and Biological Activities ofBrassica rapavar.rapiferaParts Essential Oils Depending on Geographic Variation and Extraction Technique. Chem. Biodivers. 2017, 14, e1600452. [Google Scholar] [CrossRef]
- Zhan, J.; He, F.; Cai, H.; Wu, M.; Xiao, Y.; Xiang, F.; Yang, Y.; Ye, C.; Wang, S.; Li, S. Composition and antifungal mechanism of essential oil from Chrysanthemum morifolium cv. Fubaiju. J. Funct. Foods 2021, 87, 104746. [Google Scholar] [CrossRef]
- Hu, Z.; Yuan, K.; Zhou, Q.; Lu, C.; Du, L.; Liu, F. Mechanism of antifungal activity of Perilla frutescens essential oil against Aspergillus flavus by transcriptomic analysis. Food Control 2021, 123, 107703. [Google Scholar] [CrossRef]
- van Vuuren, S.; Suliman, S.; Viljoen, A. The antimicrobial activity of four commercial essential oils in combination with conventional antimicrobials. Lett. Appl. Microbiol. 2009, 48, 440–446. [Google Scholar] [CrossRef]
- Tang, X.; Shao, Y.-L.; Tang, Y.-J.; Zhou, W.-W. Antifungal Activity of Essential Oil Compounds (Geraniol and Citral) and Inhibitory Mechanisms on Grain Pathogens (Aspergillus flavus and Aspergillus ochraceus). Molecules 2018, 23, 2108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paranagama, P.; Abeysekera, K.; Abeywickrama, K.; Nugaliyadde, L. Fungicidal and anti-aflatoxigenic effects of the essential oil of Cymbopogon citratus (DC.) Stapf. (lemongrass) against Aspergillus flavus Link. isolated from stored rice. Lett. Appl. Microbiol. 2003, 37, 86–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, P.; Shukla, R.; Kumar, A.; Prakash, B.; Singh, S.; Dubey, N.K. Effect of Citrus reticulata and Cymbopogon citratus Essential Oils on Aspergillus flavus Growth and Aflatoxin Production on Asparagus racemosus. Mycopathologia 2010, 170, 195–202. [Google Scholar] [CrossRef]
- Chandra, H. Effect of essential oil of Cymbopogan caseius and Cymbopogan nardus against Aflatoxin producing Aspergillus flavus. Environ. Conserv. J. 2016, 17, 109–114. [Google Scholar] [CrossRef]
- Jayaratne, K.H.T.; Paranagama, P.A.; Abeywickrama, K.P.; Nugaliyadde, L. Inhibition of Aspergillus flavus Link and Anatoxin Formation by Essential Oils of Cinnamomum zeylanicum (L.) and Cymbopogon nardus Rendle. Trop. Agric. Res. 2002, 14, 148–153. [Google Scholar]
- Yaguchi, A.; Yoshinari, T.; Tsuyuki, R.; Takahashi, H.; Nakajima, T.; Sugita-Konishi, Y.; Nagasawa, H.; Sakuda, S. Isolation and Identification of Precocenes and Piperitone from Essential Oils as Specific Inhibitors of Trichothecene Production by Fusarium graminearum. J. Agric. Food Chem. 2009, 57, 846–851. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.K.; Shukla, R.; Singh, P.; Prakash, B.; Kedia, A.; Dubey, N.K. Antifungal, anti-aflatoxigenic, and antioxidant efficacy of Jamrosa essential oil for preservation of herbal raw materials. Int. Biodeterior. Biodegrad. 2012, 74, 11–16. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, N.; Wang, D.; Wang, M. Effects of Essential Oil Citral on the Growth, Mycotoxin Biosynthesis and Transcriptomic Profile of Alternaria alternata. Toxins 2019, 11, 553. [Google Scholar] [CrossRef] [Green Version]
- Fountain, J.C.; Bajaj, P.; Pandey, M.; Nayak, S.N.; Yang, L.; Kumar, V.; Jayale, A.S.; Chitikineni, A.; Zhuang, W.; Scully, B.T.; et al. Oxidative stress and carbon metabolism influence Aspergillus flavus transcriptome composition and secondary metabolite production. Sci. Rep. 2016, 6, 38747. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Shang, B.; Wang, L.; Lu, Z.; Liu, Y. Cinnamaldehyde inhibits fungal growth and aflatoxin B1 biosynthesis by modulating the oxidative stress response of Aspergillus flavus. Appl. Microbiol. Biotechnol. 2016, 100, 1355–1364. [Google Scholar] [CrossRef]
- Jallow, A.; Xie, H.; Tang, X.; Qi, Z.; Li, P. Worldwide aflatoxin contamination of agricultural products and foods: From occurrence to control. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2332–2381. [Google Scholar] [CrossRef] [PubMed]
- Nakasugi, L.P.; Bomfim, N.S.; Romoli, J.C.Z.; Nerilo, S.B.; Silva, M.V.; Oliveira, G.H.R.; Machinski, M., Jr. Antifungal and antiaflatoxigenic activities of thymol and carvacrol against Aspergillus flavus. Saúde E Pesqui. 2021, 14, e7727. [Google Scholar] [CrossRef]
- Nogueira, J.H.; Gonçalez, E.; Galleti, S.R.; Facanali, R.; Marques, M.O.; Felício, J.D. Ageratum conyzoides essential oil as aflatoxin suppressor of Aspergillus flavus. Int. J. Food Microbiol. 2010, 137, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Sukcharoen, O.; Sirirote, P.; Thanaboripat, D. Control of aflatoxigenic strains by Cinnamomum porrectum essential oil. J. Food Sci. Technol. 2017, 54, 2929–2935. [Google Scholar] [CrossRef] [PubMed]
Plants | Yield % (w/w) |
---|---|
Cymbopogon citratus | 0.82 ± 0.14 |
Cymbopogon nardus | 1.37 ± 0.18 |
Cymbopogon schoenanthus | 0.95 ± 0.15 |
Compounds | Retention Index | Cymbopogon citratus (%) | Cymbopogon nardus (%) | Cymbopogon schoenanthus (%) |
---|---|---|---|---|
2-carene | 999 | - | - | 16.4 |
Limonene | 1028 | - | - | 1.8 |
Citronellal | 1158 | - | 41.7 | - |
Citronellol | 1230 | - | 8.0 | - |
Neral | 1242 | 44.7 | - | - |
Piperitone | 1252 | - | - | 59.8 |
Geraniol | 1253 | - | 20.8 | - |
Geranial | 1268 | 55.2 | - | - |
β-Elemene | 1372 | - | 11.0 | 3.4 |
α−Copaene | 1390 | - | 3.7 | - |
β-Caryophyllene | 1415 | - | 3.1 | |
Β-himachalene | 1499 | - | 1.4 | |
Hedycaryol | 1520 | - | 7.4 | |
Elemol | 1545 | - | - | 8.5 |
β-eudesmol | 1650 | - | 3.7 | |
Hydrocarbon monoterpenes | - | - | 18.2 | |
Oxygenated monoterpenes | 99.9 | 77.9 | 72 | |
Hydrocarbon sesquiterpenes | - | 14.7 | 7.9 | |
Total | 99.9 | 92.6 | 98.1 |
Concentration of EOs (µL/mL) | Essential Oils | ||
---|---|---|---|
Cymbopogon citratus | Cymbopogon nardus | Cymbopogon schoenanthus | |
0.5 | 55.4 ± 2.1 a | 48.8 ± 1.4 a | 24 ± 1.0 a |
1 | 87 ± 1.1 b | 79.9 ± 1.6 b | 51.1 ± 2.7 b |
1.5 | 100 ± 0.0 c | 100 ± 0.0 c | 65.3 ± 1.7 c |
2 | 100 ± 0.0 c | 100 ± 0.0 c | 88.5 ± 1.5 d |
2.5 | 100 ± 0.0 c | 100 ± 0.0 c | 100 ± 0.0 e |
Concentration of EOs (µL/mL) | Essential Oils | ||
---|---|---|---|
Cymbopogon citratus | Cymbopogon nardus | Cymbopogon schoenanthus | |
0.5 | 59.1 ± 1.8 a | 54.2 ± 0.9 a | 34.5 ± 1.6 a |
1 | 85.7 ± 1.8 b | 87.7 ± 1.1 b | 53.2 ± 1.3 b |
1.5 | 100 ± 0.0 c | 100 ± 0.0 c | 71.9 ± 1.46 c |
2 | 100 ± 0.0 c | 100 ± 0.0 c | 89.1 ± 1.3 d |
2.5 | 100 ± 0.0 c | 100 ± 0.0 c | 100 ± 0.0 e |
EOs | MIC (µL/mL) | MFC (µL/mL) | ||
---|---|---|---|---|
A. flavus | A. parasiticus | A. flavus | A. parasiticus | |
Cymbopogon citratus | 1.50 ± 0.12 a | 1.25 ± 0.08 a | 2.0 ± 0.22 a | 2.33 ± 0.11 ab |
Cymbopogon nardus | 1.25 ± 0.09 a | 1.25 ± 0.03 a | 1.50 ± 0.16 a | 1.75 ± 0.22 a |
Cymbopogon schoenanthus | 2.50 ± 0.12 b | 2.25 ± 0.08 b | 3.25 ± 0.33 b | 2.75 ± 0.33 b |
Combinations of EOs | MIC in Combination (µL/mL) | FIC Value | Interaction | ||
---|---|---|---|---|---|
A. flavus * | A. parasiticus + | A. flavus | A. parasiticus | ||
C. citratus/C. nardus | 0.31/0.63 | 0.14 | 0.75 | Synergistic | Additivity |
C. citratus/C. schoenanthus | 0.63/1.13 | 0.52 | 1.00 | Additivity | Additivity |
C. nardus/C. schoenanthus | 0.04/0.07 | 0.52 | 0.06 | Additivity | Synergistic |
Essential Oils | EO Concentrations (µL/mL) | AFB1 | AFB2 | AFG1 | AFG2 |
---|---|---|---|---|---|
0 | 1620.7 ± 44.5 c | 74.4 ± 3.7 b | 1341.7 ± 49 b | 168.6 ± 37 b | |
Cymbopogon citratus | 0.50 | 144.3 ± 9.4 b | 0.0 ± 0.0 a | 43.7 ± 4.3 a | 0.0 ± 0.0 a |
0.75 | 103.8± 11.2 b | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | |
1.00 | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | |
1.25 | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | |
1.50 | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | |
1.75 | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | |
2.00 | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | |
2.25 | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | |
2.50 | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
Essential Oil | EO Concentrations (µL/mL) | AFB1 | AFB2 | AFG1 | AFG2 |
---|---|---|---|---|---|
0 | 1620.7 ± 44.5 d | 74.4 ± 3.7 d | 1341.7 ± 49 e | 168.6 ± 37.d | |
Cymbopogon nardus | 0.50 | 690.9 ± 10.2 c | 66.8 ± 2.5 c | 1314.07 ± 49.7 e | 70.8 ± 3.4 c |
0.75 | 552.6 ± 38.22 b | 43.2 ± 3.b | 970.9 ± 50.2 d | 35.4 ± 3.0 b | |
1.00 | 30.9 ± 4.3 a | 45.9 ± 2.4 b | 778.7 ± 7.6 c | 0.0 ± 0.0 a | |
1.25 | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 361.1± 7.6 b | 0.0 ± 0.0 a | |
1.50 | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 a | 0.0 ± 0.0 a | |
1.75 | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 a | 0.0 ± 0.0 a | |
2.00 | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 a | 0.0 ± 0.0 a | |
2.25 | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 a | 0.0 ± 0.0 a | |
2.50 | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 a | 0.0 ± 0.0 a |
Essential Oil | EO Concentrations (µL/mL) | AFB1 | AFB2 | AFG1 | AFG2 |
---|---|---|---|---|---|
0 | 1620.7 ± 44.5 c | 74.4 ± 3.7 b | 1341.7 ± 49 c | 168.6 ± 37 c | |
Cymbopogon schoenanthus | 0.50 | 196 ± 9.9 b | 14.1 ± 0.7 a | 650.7 ± 42.1 b | 19.2 ± 3.2 b |
0.75 | 51.4 ± 2.5 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | |
1.00 | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | |
1.25 | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | |
1.50 | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | |
1.75 | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | |
2.00 | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | |
2.25 | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | |
2.50 | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
Combinations of EOs | MIC in Combination | AFB1 | AFB2 | AFG1 | AFG2 |
---|---|---|---|---|---|
Control | - | 1626.5 ± 13.9 | 30.1 ± 3.0 | 890.2 ± 11.7 | 32.6 ± 2.2 |
C. citratus/C. nardus | 0.31/0.63 | 8.7 ± 0.03 | 0.0 | 0.0 | 0.0 |
C. citratus/C. schoenanthus | 0.63/1.13 | 0.0 | 0.0 | 0.0 | 0.0 |
C. nardus/C. schoenanthus | 0.04/0.07 | 1475.0 ± 4.7 | 17.1 ± 4.3 | 756.0 ± 3.2 | 30.6 ± 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawadogo, I.; Paré, A.; Kaboré, D.; Montet, D.; Durand, N.; Bouajila, J.; Zida, E.P.; Sawadogo-Lingani, H.; Nikiéma, P.A.; Nebié, R.H.C.; et al. Antifungal and Antiaflatoxinogenic Effects of Cymbopogon citratus, Cymbopogon nardus, and Cymbopogon schoenanthus Essential Oils Alone and in Combination. J. Fungi 2022, 8, 117. https://doi.org/10.3390/jof8020117
Sawadogo I, Paré A, Kaboré D, Montet D, Durand N, Bouajila J, Zida EP, Sawadogo-Lingani H, Nikiéma PA, Nebié RHC, et al. Antifungal and Antiaflatoxinogenic Effects of Cymbopogon citratus, Cymbopogon nardus, and Cymbopogon schoenanthus Essential Oils Alone and in Combination. Journal of Fungi. 2022; 8(2):117. https://doi.org/10.3390/jof8020117
Chicago/Turabian StyleSawadogo, Ignace, Adama Paré, Donatien Kaboré, Didier Montet, Noël Durand, Jalloul Bouajila, Elisabeth P. Zida, Hagrétou Sawadogo-Lingani, Philippe Augustin Nikiéma, Roger Honorat Charles Nebié, and et al. 2022. "Antifungal and Antiaflatoxinogenic Effects of Cymbopogon citratus, Cymbopogon nardus, and Cymbopogon schoenanthus Essential Oils Alone and in Combination" Journal of Fungi 8, no. 2: 117. https://doi.org/10.3390/jof8020117
APA StyleSawadogo, I., Paré, A., Kaboré, D., Montet, D., Durand, N., Bouajila, J., Zida, E. P., Sawadogo-Lingani, H., Nikiéma, P. A., Nebié, R. H. C., & Bassolé, I. H. N. (2022). Antifungal and Antiaflatoxinogenic Effects of Cymbopogon citratus, Cymbopogon nardus, and Cymbopogon schoenanthus Essential Oils Alone and in Combination. Journal of Fungi, 8(2), 117. https://doi.org/10.3390/jof8020117