Biological Control and Plant Growth Promotion by Volatile Organic Compounds of Trichoderma koningiopsis T-51
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Isolates and Growth Condition
2.2. Antifungal Activity of the VOCs of Trichoderma Isolates
2.3. Efficacy of VOCs of T-51 in Control of B. Cinerea Fruit Rot of Tomato
2.4. Efficacy of VOCs of T-51 in Ggrowth Promotion of Arabidopsis Thaliana
2.5. Analysis of VOCs of T-51
2.6. Statistical Data Analyses
3. Results
3.1. Inhibition of B. Cinerea and F. oxysporum by Trichoderma Isolates
3.2. Efficacy of the VOCs of T-51 in Control of Botrytis Fruit Rot of Tomato
3.3. Efficacy of the VOCs of T-51 in Growth Promotion of A. Thaliana
3.4. GC-MS Analysis of the VOCs of T. Koningiopsis T-51
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Vespermann, A.; Kai, M.; Piechulla, B. Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl. Environ. Microbiol. 2007, 73, 5639–5641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morath, S.U.; Hung, R.; Bennett, J.W. Fungal volatile organic compounds: A review with emphasis on their biotechnological potential. Fungal Biol. Rev. 2012, 26, 73–83. [Google Scholar] [CrossRef]
- Hung, R.; Lee, S.; Bennett, J.W. Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol. 2013, 6, 19–26. [Google Scholar] [CrossRef]
- McCormick, A.C.; Unsicker, S.B.; Gershenzon, J. The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci. 2012, 17, 303–310. [Google Scholar]
- Zamioudis, C.; Korteland, J.; Van Pelt, J.A.; Hamersveld, M.; Dombrowski, N.; Bai, Y.; Hanson, J.; Van Verk, M.C.; Ling, H.Q.; Schulze-Lefert, P. Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses. Plant J. 2015, 84, 309–322. [Google Scholar] [CrossRef] [Green Version]
- Collins, R.P.; Halim, A.F. Characterization of the Major Aroma Constituent of the Fungus Trichoderma viride (Pers.). J. Agr. Food Chem. 1972, 20, 437–438. [Google Scholar] [CrossRef]
- Claydon, N.; Allan, M.; Hanson, J.R.; Avent, A.G. Antifungal alkyl pyrones of Trichoderma harzianum. Trans. Br. Mycol. Soc. 1987, 88, 503–513. [Google Scholar] [CrossRef]
- Dunlop, R.W.; Simon, A.; Sivasithamparam, K.; Ghisalberti, E.L. An antibiotic from Trichoderma koningii active against soilborne plant pathogens. J. Nat. Prod. 1989, 52, 67–74. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Horwitz, B.A.; Kenerley, C.M. Secondary metabolism in Trichoderma—A genomic perspective. Microbiology 2012, 158, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Elad, Y. Plant. Hosts of Botrytis Spp., Botrytis—The Fungus, the Pathogen and Its Management in Agricultural Systems; Springer: New York, NY, USA, 2016; pp. 413–486. [Google Scholar]
- Fillinger, S.; Elad, Y. Botrytis: The Fungus, the Pathogen and Its Management in Agricultural Systems; Springer: New York, NY, USA, 2016; pp. 247–267. [Google Scholar]
- Michielse, C.B.; Rep, M. Pathogen profile update: Fusarium oxysporum. Mol. Plant Pathol. 2009, 10, 311–324. [Google Scholar] [CrossRef]
- Fravel, D.; Olivain, C.; Alabouvette, C. Fusarium oxysporum and its biocontrol. New Phytol. 2003, 157, 493–502. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Zhang, J.; Wu, M.; Yang, L.; Chen, W.; Li, G. Multiple criteria-based screening of Trichoderma isolates for biological control of Botrytis cinerea on tomato. Biol. Control 2016, 101, 31–38. [Google Scholar] [CrossRef]
- Wan, M.; Li, G.; Zhang, J.; Jiang, D.; Huang, H.-C. Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biol. Control 2008, 46, 552–559. [Google Scholar] [CrossRef]
- Huang, R.; Li, G.Q.; Zhang, J.; Yang, L.; Che, H.J.; Jiang, D.H.; Huang, H.C. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology 2011, 101, 859–869. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Yang, L.; Zhang, J.; Wu, M.; Chen, W.; Jiang, D.; Li, G. Production of anti-fungal volatiles by non-pathogenic Fusarium oxysporum and its efficacy in suppression of Verticillium wilt of cotton. Plant Soil. 2015, 392, 101–114. [Google Scholar] [CrossRef]
- Weigel, D.; Glazebrook, J. Arabidopsis: A Laboratory, Anual; Cold spring Harbor Laboratory Press: Long Island, NY, USA, 2002; pp. 1–18. [Google Scholar]
- Somerville, C.; Meyerowitz, E. Arabidopsis Book; American Society of Plant Biologists: Rockville, MD, USA, 2007. [Google Scholar]
- Bruinsma, J. A comment on the spectrophotometric determination of chlorophyll. Biochim. Biophys. Acta 1961, 52, 576–578. [Google Scholar] [CrossRef]
- Li, N.; Alfiky, A.; Vaughan, M.M.; Kang, S. Stop and smell the fungi: Fungal volatile metabolites are overlooked signals involved in fungal interaction with plants. Fungal Biol. Rev. 2016, 30, 134–144. [Google Scholar] [CrossRef] [Green Version]
- Hussein, K.A.; Lee, Y.D.; Joo, J.H. Effect of rosemary essential oil and Trichoderma koningiopsis VOCs on pathogenic fungi responsible for ginseng root-rot disease. J. Microbiol. Biotechnol. 2020, 30, 1018–1026. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.; Yang, L.; Zhang, L.; Jiang, D.; Chen, W.; Li, G. Diversity and biocontrol potential of endophytic fungi in Brassica napus. Biol. Control 2014, 72, 98–108. [Google Scholar] [CrossRef]
- Yuan, J.; Raza, W.; Shen, Q.; Huang, Q. Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Appl. Environ. Microbiol. 2012, 78, 5942–5944. [Google Scholar] [CrossRef] [Green Version]
- Raza, W.; Yuan, J.; Ling, N.; Huang, Q.; Shen, Q. Production of volatile organic compounds by an antagonistic strain Paenibacillus polymyxa WR-2 in the presence of root exudates and organic fertilizer and their antifungal activity against Fusarium oxysporum f. sp. niveum. Biol. Control 2015, 80, 89–95. [Google Scholar] [CrossRef]
- Yan, D.-H.; Song, X.; Li, H.; Luo, T.; Dou, G.; Strobel, G. Antifungal activities of volatile secondary metabolites of four Diaporthe strains isolated from Catharanthus roseus. J. Fungi 2018, 4, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalali, F.; Zafari, D.; Salari, H. Volatile organic compounds of some Trichoderma spp. increase growth and induce salt tolerance in Arabidopsis thaliana. Fungal Ecol. 2017, 29, 67–75. [Google Scholar] [CrossRef]
- Lee, S.; Yap, M.; Behringer, G.; Hung, R.; Bennett, J.W. Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol. Biotechnol. 2016, 3, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Shao, J.; Fu, Y.; Chen, Y.; Wang, H.; Xu, Z.; Feng, H.; Xun, W.; Liu, Y.; Zhang, N.; et al. The volatile cedrene from Trichoderma guizhouense modulates Arabidopsis root development through auxin transport and signalling. Plant Cell. Environ. 2021, 45, 1–16. [Google Scholar] [CrossRef]
- Stoppacher, N.; Kluger, B.; Zeilinger, S.; Krska, R.; Schuhmacher, R. Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J. Microbiol. Meth. 2010, 81, 187–193. [Google Scholar] [CrossRef]
- Ruangwong, O.-U.; Wonglom, P.; Suwannarach, N.; Kumla, J.; Thaochan, N.; Chomnunti, P.; Pitija, K.; Sunpapao, A. Volatile organic compound from Trichoderma asperelloides TSU1: Impact on plant pathogenic fungi. J. Fungi 2021, 7, 187. [Google Scholar] [CrossRef]
- Chen, J.-L.; Sun, S.-Z.; Miao, C.-P.; Wu, K.; Chen, Y.-W.; Xu, L.-H.; Guan, H.-L.; Zhao, L.-X. Endophytic Trichoderma gamsii YIM PH30019: A promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng. J. Ginseng Res. 2016, 40, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Majdabadi, N.; Falahati, M.; Heidarie-Kohan, F.; Farahyar, S.; Rahimi-Moghaddam, P.; Ashrafi-Khozani, M.; Razavi, T.; Mohammadnejad, S. Effect of 2-phenylethanol as antifungal agent and common antifungals (amphotericin B, fluconazole, and itraconazole) on Candida species isolated from chronic and recurrent cases of candidal vulvovaginitis. Assay Drug Dev. Technol. 2018, 16, 141–149. [Google Scholar] [CrossRef]
- Liu, P.; Cheng, Y.; Yang, M.; Liu, Y.; Chen, K.; Long, C.-a.; Deng, X. Mechanisms of action for 2-phenylethanol isolated from Kloeckera apiculata in control of Penicillium molds of citrus fruits. BMC Microbiol. 2014, 14, 242. [Google Scholar] [CrossRef] [Green Version]
- Mo, E.K.; Sung, C.K. Phenylethyl alcohol (PEA) application slows fungal growth and maintains aroma in strawberry. Postharvest Biol. Technol. 2007, 45, 234–239. [Google Scholar] [CrossRef]
RT (min) | RA (%) | Compound Name | Cas # |
---|---|---|---|
4.53 | 2.39 | Cyclotrisiloxane, hexamethyl- | 541-05-9 |
6.62 | 5.32 | Oxime-, methoxy-phenyl- | NA |
10.15 | 2.49 | Cyclotetrasiloxane, octamethyl- | 556-67-2 |
11.02 | 7.22 | β-Phellandrene | 555-10-2 |
11.67 | 0.69 | Benzeneacetaldehyde | 122-78-1 |
14.69 | 1.49 | Phenylethyl Alcohol | 60-12-8 |
17.03 | 0.80 | Cyclopentasiloxane, decamethyl- | 541-02-6 |
19.44 | 0.20 | Benzothiazole | 95-16-9 |
20.61 | 0.50 | Cyclotetrasiloxane, octamethyl- | 556-67-2 |
24.44 | 0.11 | Ethanone, 1-(3,4-dimethylphenyl)- | 3637-01-2 |
24.66 | 0.88 | Cyclohexasiloxane, dodecamethyl- | 540-97-6 |
27.05 | 1.04 | Cyclopentasiloxane, decamethyl- | 541-02-6 |
27.39 | 2.33 | Tetradecane | 629-59-4 |
29.70 | 1.37 | Caryophyllene | 87-44-5 |
30.68 | 1.91 | Benzene, 1-(1,5-dimethyl-4-hexenyl)-4-methyl- | 644-30-4 |
31.46 | 0.69 | Tetradecane, 2,6,10-trimethyl- | 14905-56-7 |
31.77 | 3.36 | Cycloheptasiloxane, tetradecamethyl- | 107-50-6 |
38.21 | 1.76 | Cyclooctasiloxane, hexadecamethyl- | 556-68-3 |
39.24 | 0.39 | Tetradecane, 2,6,10-trimethyl- | 14905-56-7 |
44.62 | 4.88 | Cycloocta-2,4-dien-1-ol | NA |
46.69 | 0.18 | (R,1E,5E,9E)-1,5,9-Trimethyl-12-(prop-1-en-2-yl)cyclotetradeca-1,5,9-triene | 31570-39-5 |
47.06 | 6.88 | 1,3,6,10-Cyclotetradecatetraene, 3,7,11-trimethyl-14-(1-methylethyl)-, [S-(E,Z,E,E)]- | 1898-13-1 |
47.73 | 2.51 | (S,E)-8,12,15,15-Tetramethyl-4-methylenebicyclo [9.3.1]pentadeca-7,11-diene | 386223-19-4 |
48.38 | 4.00 | Oxacyclododec-9-en-2-one, 12-methyl-, (E)- | 33644-08-5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, J.; Li, G.; Li, C.; Zhu, L.; Yang, H.; Song, R.; Gu, W. Biological Control and Plant Growth Promotion by Volatile Organic Compounds of Trichoderma koningiopsis T-51. J. Fungi 2022, 8, 131. https://doi.org/10.3390/jof8020131
You J, Li G, Li C, Zhu L, Yang H, Song R, Gu W. Biological Control and Plant Growth Promotion by Volatile Organic Compounds of Trichoderma koningiopsis T-51. Journal of Fungi. 2022; 8(2):131. https://doi.org/10.3390/jof8020131
Chicago/Turabian StyleYou, Jiaqi, Guoqing Li, Chaohan Li, Lihua Zhu, Hongjuan Yang, Ronghao Song, and Weihong Gu. 2022. "Biological Control and Plant Growth Promotion by Volatile Organic Compounds of Trichoderma koningiopsis T-51" Journal of Fungi 8, no. 2: 131. https://doi.org/10.3390/jof8020131