Effect of γ-Heptalactone on the Morphology and Production of Monascus Pigments and Monacolin K in Monascus purpureus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism and Media
2.2. Production of MPs and MK
2.3. Determination of MPs
2.4. HPLC Analysis of MK Production
2.5. Microscopy Analysis of Monascus Mycelia and Spore
2.6. Real-Time Quantitative PCR Analysis of MPs and MK Biosynthesis-Related Genes
2.7. Statistical Analysis
3. Results
3.1. Effect of Lactones on Secondary Metabolites in M. purpureus
3.2. Effect of γ-Heptalactone on the Yield of MPs and MK in M. purpureus
3.3. Effect of γ-Heptalactone on the Expression of MPs Biosynthesis-Related Genes
3.4. Effect of γ-Heptalactone on the Expression of MK Biosynthetic Gene Cluster
3.5. Effect of γ-Heptalactone on the Mycelial and Spore Morphology of M. purpureus
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, M.; Wu, M.; Chan, H.; Chen, J.; Cheng, Y.; Chen, Y.; Chen, I.; Yuan, G. A new azaphilone metabolite from the fungus Monascus ruber. Chem. Nat. Compd. 2016, 52, 231–233. [Google Scholar] [CrossRef]
- Feng, Y.; Shao, Y.; Chen, F. Monascus pigments. Appl. Microbiol. Biot. 2012, 96, 1421–1440. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Wang, T.; Lee, M.; Su, N. Biologically active components and nutraceuticals in the Monascus-fermented rice: A review. Appl. Microbiol. Biot. 2008, 77, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; He, Y.; Zhou, Y.; Zhou, Y.; Shao, Y.; Chen, F. Edible filamentous fungi from the species Monascus: Early traditional fermentations, modern molecular biology, and future genomics. Appl. Microbiol. Biot. 2015, 14, 555–567. [Google Scholar]
- Lv, J.; Qian, G.; Chen, L.; Liu, H.; Zhang, G. Efficient biosynthesis of natural yellow pigments by Monascus purpureus in a novel integrated fermentation system. J. Agr. Food Chem. 2018, 66, 918–925. [Google Scholar] [CrossRef]
- Su, Y.; Wang, J.; Lin, T.; Pan, T. Production of the secondary metabolites γ-aminobutyric acid and monacolin K by Monascus. J. Ind. Microbiol. Biot. 2003, 30, 41–46. [Google Scholar] [CrossRef]
- Patakova, P. Monascus secondary metabolites: Production and biological activity. J. Ind. Microbiol. Biot. 2013, 40, 169–181. [Google Scholar] [CrossRef]
- Gao, J.; Yang, S.; Qin, J. Azaphilones: Chemistry and biology. Chem. Rev. 2013, 113, 4755–4811. [Google Scholar] [CrossRef]
- Lin, C.; Lin, T.; Pan, T. Alleviation of metabolic syndrome by monascin and ankaflavin: The perspective of Monascus functional foods. Food Funct. 2017, 8, 2102–2109. [Google Scholar] [CrossRef]
- Mukherjee, G.; Singh, S.K. Purification and characterization of a new red pigment from Monascus purpureus in submerged fermentation. Process Biochem. 2011, 46, 188–192. [Google Scholar] [CrossRef]
- Vendruscolo, F.; Tosin, I.; Giachini, A.J.; Ninow, J.L. Antimicrobial activity of Monascus pigments produced in submerged fermentation. J. Food Process. Pres. 2014, 4, 1860–1865. [Google Scholar] [CrossRef]
- Kurokawa, H.; Taninaka, A.; Shigekawa, H.; Matsui, H. The cytotoxicity of cyclophosphamide is enhanced in combination with monascus pigment. J. Clin. Biochem. Nutr. 2021, 69, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Srianta, I.; Ristiarini, S.; Nugerahani, I.; Sen, S.K.; Zhang, B.B.; Xu, G.R. Recent research and development of Monascus fermentation products. Int. Food Res. J. 2014, 21, 1–12. [Google Scholar]
- Vendruscolo, F.; Schmidell, W.; Oliveira, D.; Ninow, J.L. Kinetic of orange pigment production from Monascus ruber on submerged fermentation. Bioproc. Biosyst. Eng. 2017, 40, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Jie, Q.; Xin, Z.; Xu, D.; Dai, C. Optimization of submerged and solid state culture conditions for Monascus pigment production and characterization of its composition and antioxidant activity. Pigm. Resin Technol. 2019, 48, 108–118. [Google Scholar] [CrossRef]
- Patrovsky, M.; Sinovska, K.; Branska, B.; Patakova, P. Effect of initial pH, different nitrogen sources, and cultivation time on the production of yellow or orange Monascus purpureus pigments and the mycotoxin citrinin. Food Sci. Nutr. 2019, 7, 3494–3500. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Hsu, W.; Pan, T. Monascus secondary metabolites monascin and ankaflavin inhibit activation of RBL-2H3 eells. J. Agr. Food Chem. 2015, 63, 192–199. [Google Scholar] [CrossRef]
- Cheng, C.; Pan, T. Ankaflavin and monascin induce apoptosis in activated hepatic stellate cells through suppression of the Akt/NF-κB/p38 signaling pathway. J. Agr. Food Chem. 2016, 64, 9326–9334. [Google Scholar] [CrossRef]
- Hsu, L.; Liang, Y.; Hsu, Y.; Kuo, Y.; Pan, T. Anti-inflammatory properties of yellow and orange pigments from Monascus purpureus NTU 568. J. Agr. Food Chem. 2013, 61, 2796–2802. [Google Scholar] [CrossRef]
- Hajjaj, H.; Blanc, P.; Groussac, E.; Uribelarrea, J.; Goma, G.; Loubiere, P. Kinetic analysis of red pigment and citrinin production by Monascus ruber as a function of organic acid accumulation. Enzyme Microb. Technol. 2000, 27, 619–625. [Google Scholar] [CrossRef]
- Prodpran, P.; Rapeepun, M.; Chartchai, K.; Saisamorn, L. Antioxidant properties and production of monacolin K, citrinin, and red pigments during solid state fermentation of purple rice (Oryzae sativa) varieties by Monascus purpureus. Czech J. Food Sci. 2017, 35, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Orak, T.; Caglar, O.; Ortucu, S.; Ozkan, H.; Taskin, M. Chicken feather peptone: A new alternative nitrogen source for pigment production by Monascus purpureus. J. Biotechnol. 2018, 271, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Sweeny, J.G.; Estrada-Valdes, M.C.; Iacobucci, G.A.; Sato, H.; Sakamura, S. Photoprotection of the red pigments of Monascus anka in aqueous media by 1,4,6-trihydroxynaphthalene. J. Agr. Food Chem. 1981, 29, 1189–1193. [Google Scholar] [CrossRef]
- Chen, M.H.; Johns, M.R. Effect of pH and nitrogen source on pigment production by Monascus purpureus. Appl. Microbiol. Biot. 1993, 40, 132–138. [Google Scholar] [CrossRef]
- Endo, A. Monacolin K: A new hypocholesterolemic agent produced by a Monascus species. J. Antibiot. 1979, 32, 852–854. [Google Scholar] [CrossRef] [Green Version]
- Alberts, A.W.; Chen, J.; Kuron, G.; Hunt, V.; Huff, J. Mevinolin: A highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme a reductase and a cholesterol-lowering agent. Proc. Natl. Acad. Sci. USA 1980, 77, 3957–3961. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.Y.; Oh, J.H.; Lee, I. Simultaneous enrichment of deglycosylated ginsenosides and monacolin K in red ginseng by fermentation with Monascus pilosus. Biosci. Biotechnol. Biochem. 2011, 75, 1490–1495. [Google Scholar] [CrossRef]
- Endo, A. The discovery and development of HMG-CoA reductase inhibitors. Atheroscler. Supp. 2004, 5, 67–80. [Google Scholar] [CrossRef]
- Zhang, Y.R.; Chen, Z.T.; Wen, Q.Y.; Xiong, Z.X.; Cao, X.H.; Zheng, Z.H.; Zhang, Y.X.; Huang, Z.W. An overview on the biosynthesis and metabolic regulation of monacolin K/lovastatin. Food Funct. 2020, 11, 5738–5748. [Google Scholar] [CrossRef]
- Mazza, A.; Schiavon, L.; Rigatelli, G.; Torin, G.; Montanaro, F.; Lenti, S. The short-term supplementation of monacolin K improves the lipid and metabolic patterns of hypertensive and hypercholesterolemic subjects at low cardiovascular risk. Food Funct. 2018, 9, 3845–3852. [Google Scholar] [CrossRef] [Green Version]
- Manzoni, M.; Rollini, M. Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl. Microbiol. Biot. 2002, 58, 555–564. [Google Scholar]
- Sakai, K.; Kinoshita, H.; Nihira, T. Identification of mokB involved in monacolin K biosynthesis in Monascus pilosus. Biotechnol. Lett. 2009, 31, 1911–1916. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yuan, G.; Hsieh, S.; Lin, Y.; Wang, W.; Liaw, L.; Tseng, C. Identification of the mokH gene encoding transcription factor for the upregulation of monacolin K biosynthesis in Monascus pilosus. J. Agr. Food Chem. 2010, 58, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, S.; Gao, M.; Ding, B.; Zhang, J. Acidic conditions induce the accumulation of orange Monascus pigments during liquid-state fermentation of Monascus ruber M7. Appl. Microbiol. Biot. 2019, 103, 8393–8402. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, B.; Lu, L.; Huang, Y.; Xu, G. Enhanced production of pigments by addition of surfactants in submerged fermentation of Monascus purpureus H1102. J. Sci. Food Agr. 2013, 93, 3339–3344. [Google Scholar] [CrossRef]
- Huang, T.; Tan, H.; Lu, F.; Chen, G.; Wu, Z. Changing oxidoreduction potential to improve water-soluble yellow pigment production with Monascus ruber CGMCC 10910. Microb. Cell Fact. 2017, 16, 208–220. [Google Scholar] [CrossRef] [Green Version]
- Suraiya, S.; Kim, J.; Tak, J.Y.; Siddique, M.P.; Young, C.J.; Kim, J.K.; Kong, I. Influences of fermentation parameters on lovastatin production by Monascus purpureus using Saccharina japonica as solid fermented substrate. LWT 2018, 92, 1–9. [Google Scholar] [CrossRef]
- Chen, G.; Yang, S.; Wang, C.; Shi, K.; Zhao, X.; Wu, Z. Investigation of the mycelial morphology of Monascus and the expression of pigment biosynthetic genes in high-salt-stress fermentation. Appl. Microbiol. Biot. 2020, 104, 2469–2479. [Google Scholar] [CrossRef]
- Babitha, S.; Soccol, C.R.; Pandey, A. Effect of stress on growth, pigment production and morphology of Monascus sp. in solid cultures. J. Basic Microb. 2007, 47, 118–126. [Google Scholar] [CrossRef]
- Liao, Q.; Liu, Y.; Zhang, J.; Li, L.; Gao, M. A low-frequency magnetic field regulates Monascus pigments synthesis via reactive oxygen species in M. purpureus. Process Biochem. 2019, 86, 16–24. [Google Scholar] [CrossRef]
- Zhang, C.; Liang, J.; Yang, L.; Chai, S.Y.; Zhang, C.X.; Sun, B.G.; Wang, C.T. Glutamic acid promotes monacolin K production and monacolin K biosynthetic gene cluster expression in Monascus. AMB Express 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.L.; Xiang, L.B.; Dong, Y.; Cao, Y.P.; Wang, C.T. Effect of nonionic surfactant Brij 35 on morphology, cloud point, and pigment stability in Monascus extractive fermentation. J. Sci. Food Agr. 2020, 100, 4521–4530. [Google Scholar] [CrossRef] [PubMed]
- Qian, G.; Huang, J.; Farhadi, A.; Zhang, B. Ethanol addition elevates cell respiratory activity and causes overproduction of natural yellow pigments in submerged fermentation of Monascus purpureus. LWT 2021, 139, 110534. [Google Scholar] [CrossRef]
- Huang, Z.B.; Zhang, L.J.; Wang, Y.L.; Gao, H.; Li, X.J.; Huang, X.Y.; Huang, T. Effects of rutin and its derivatives on citrinin production by Monascus aurantiacus Li AS3.4384 in liquid fermentation using different types of media. Food Chem. 2019, 284, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wang, Y.R.; Chen, M.H.; Fan, P.; Li, G.L.; Wang, C.L. Ammonium nitrate regulated the color characteristic changes of pigments in Monascus purpureus M9. AMB Express 2021, 11, 3–13. [Google Scholar] [CrossRef]
- Huang, J.; Liao, N.Q.; Li, H.M. Linoleic acid enhance the production of monacolin K and red pigments in Monascus ruber by activating mokH and mokA, and by accelerating cAMP-PKA pathway. Int. J. Biol. Macromol. 2018, 109, 950–954. [Google Scholar] [CrossRef]
- Lai, Y.; Wang, L.; Qing, L.; Chen, F. Effects of cyclic AMP on development and secondary metabolites of Monascus ruber M-7. Lett. Appl. Microbiol. 2011, 52, 420–426. [Google Scholar] [CrossRef]
- Kataoka, M.; Honda, K.; Sakamoto, K.; Shimizu, S. Microbial enzymes involved in lactone compound metabolism and their biotechnological applications. Appl. Microbiol. Biotechnol. 2007, 75, 257–266. [Google Scholar] [CrossRef]
- Krings, U.; Berger, R.G. Biotechnological production of flavours and fragrances. Appl. Microbiol. Biotechnol. 1998, 49, 1–8. [Google Scholar] [CrossRef]
- Williams, H.E.; Steele, J.C.P.; Clements, M.O.; Keshavarz, T. γ-Heptalactone is an endogenously produced quorum-sensing molecule regulating growth and secondary metabolite production by Aspergillus nidulans. Appl. Microbiol. Biot. 2012, 96, 773–781. [Google Scholar] [CrossRef]
- Schimmel, T.G.; Coffman, A.D.; Parsons, S.J. Effect of butyrolactone I on the producing fungus, Aspergillus terreus. Appl. Environ. Microbiol. 1998, 64, 3707–3712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raina, S.; Vizio, D.; Palonen, E.K.; Odell, M.; Brandt, A.M.; Soini, J.T.; Keshavarz, T. Is quorum sensing involved in lovastatin production in the filamentous fungus Aspergillus terreus? Process Biochem. 2012, 47, 843–852. [Google Scholar] [CrossRef]
- Palonen, E.K.; Raina, S.; Brandt, A.; Meriluoto, J.; Keshavarz, T.; Soini, J.T. Transcriptomic complexity of Aspergillus terreus velvet gene family under the influence of butyrolactone I. Microorganisms 2017, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Zhang, H.; Zhu, Q.Q.; Hao, S.; Chai, S.Y.; Li, Y.H.; Jiao, Z.; Shi, J.C.; Sun, B.G.; Wang, C.T. Overexpression of global regulator laeA increases secondary metabolite production in Monascus purpureus. Appl. Microbiol. Biot. 2020, 104, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.L.; Xiang, L.B.; Dong, Y.; Zhang, C.; Cao, Y.P.; Wang, C.T. Promotion of monacolin K production in Monascus extractive fermentation: The variation in fungal morphology and in the expression levels of biosynthetic gene clusters. J. Sci. Food Agr. 2021, 101, 5652–5659. [Google Scholar] [CrossRef]
- Chen, W.P.; Chen, R.F.; Liu, Q.P.; He, Y.; He, K.; Ding, X.L.; Kang, L.J.; Guo, X.X.; Xie, N.N.; Chen, F.S. Orange, red, yellow: Biosynthesis of azaphilone pigments in Monascus fungi. Chem. Sci. 2017, 8, 4917–4925. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.P.; Feng, Y.L.; Molnár, I.; Chen, F.S. Nature and nurture: Confluence of pathway determinism with metabolic and chemical serendipity diversifies Monascus azaphilone pigments. Nat. Prod. Rep. 2019, 36, 561–572. [Google Scholar] [CrossRef]
- Embaby, A.M.; Hussein, M.N.; Hussein, A. Monascus orange and red pigments production by Monascus purpureus ATCC16436 through co-solid state fermentation of corn cob and glycerol: An eco-friendly environmental low cost approach. PLoS ONE 2018, 13, e0207755. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Chai, S.Y.; Hao, S.; Zhang, A.A.; Zhu, Q.Q.; Zhang, H.; Wang, C.T. Effects of glutamic acid on the production of monacolin K in four high-yield monacolin K strains in Monascus. Appl. Microbiol. Biot. 2019, 103, 5301–5310. [Google Scholar] [CrossRef]
- Zhang, C.; Liang, J.; Zhang, A.A.; Hao, S.; Zhang, H.; Zhu, Q.Q.; Sun, B.G.; Wang, C.T. Overexpression of monacolin K biosynthesis genes in the Monascus purpureus azaphilone polyketide pathway. J. Agric. Food Chem. 2019, 67, 2563–2569. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, Q.Q.; Zhang, H.; Zhang, N.; Yang, X.L.; Shi, J.C.; Sun, B.G.; Wang, C.T. Effects on the sporulation and secondary metabolism yields of Monascus purpureus with mokH gene deletion and overexpression. Fungal Biol. 2020, 124, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Erkaya, S.; Arslan, N.P.; Orak, T.; Esim, N.; Taskin, M. Evaluation of tyrosol and farnesol as inducer in pigment production by Monascus purpureu ATCC16365. J. Basic Microb. 2020, 60, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, B.; Chen, C.; Pan, T.; Kwon, H. Mpp7 controls regioselective Knoevenagel condensation during the biosynthesis of Monascus azaphilone pigments. Tetrahedron Lett. 2014, 55, 1640–1643. [Google Scholar] [CrossRef]
- Liang, B.; Du, X.J.; Li, P.; Sun, C.C.; Wang, S. Investigation of citrinin and pigment biosynthesis mechanisms in Monascus purpureus by transcriptomic analysis. Front. Microbiol. 2018, 9, 1374. [Google Scholar] [CrossRef]
- Chai, X.Y.; Ai, Z.L.; Liu, J.; Guo, T.; Wu, J.Y.; Bai, J.; Lin, Q.L. Effects of pigment and citrinin biosynthesis on the metabolism and morphology of Monascus purpureus in submerged fermentation. Food Sci. Biotechnol. 2020, 29, 927–937. [Google Scholar] [CrossRef]
- Chen, Y.P.; Tseng, C.P.; Liaw, L.L.; Wang, C.L.; Chen, I.C.; Wu, W.J.; Wu, M.D.; Yuan, G.F. Cloning and characterization of monacolin K biosynthetic gene cluster from Monascus pilosus. J. Agr. Food Chem. 2008, 56, 5639–5646. [Google Scholar] [CrossRef]
- Palonen, E.K.; Neffling, M.R.; Raina, S.; Brandt, A.; Keshavarz, T.; Meriluoto, J.; Soini, J. Butyrolactone I quantification from lovastatin producing Aspergillus terreususing tandem mass spectrometry-evidence of signaling functions. Microorganisms 2014, 2, 111–127. [Google Scholar] [CrossRef] [Green Version]
- Safari, M.; Amache, R.; Esmaeilishirazifard, E.; Keshavarz, T. Microbial metabolism of quorum-sensing molecules acyl-homoserine lactones, γ-heptalactone and other lactones. Appl. Microbiol. Biot. 2014, 98, 3401–3412. [Google Scholar] [CrossRef]
- Piewngam, P.; Zheng, Y.; Nguyen, T.H.; Dickey, S.W.; Joo, H.S.; Villaruz, A.E.; Glose, K.A.; Fisher, E.L.; Hunt, R.L.; Li, B.; et al. Pathogen elimination by probiotic Bacillus via signaling interference. Nature 2018, 562, 532–537. [Google Scholar] [CrossRef]
- Raina, S.; Odell, M.; Keshavarz, T. Quorum sensing as a method for improving sclerotiorin production in Penicillium sclerotiorum. J. Biotechnol. 2010, 148, 91–98. [Google Scholar] [CrossRef]
- Recio, E.; Colinas, A.; Rumbero, A.; Aparicio, F.; Martin, J.F. PI factor, a novel type quorum-sensing inducer elicits pimaricin production in streptomyces natalensis. J. Biol. Chem. 2004, 279, 41586–41593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorrentino, F.; Roy, I.; Keshavarz, T. Impact of linoleic acid supplementation on lovastatin production in Aspergillus terreus cultures. Appl. Microbiol. Biot. 2010, 88, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Takano, E.; Chakraburtty, R.; Nihira, T.; Yamada, Y.; Bibb, M. A complex role for the γ-butyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor A3(2). Mol. Microbiol. 2001, 41, 1015–1028. [Google Scholar] [CrossRef] [PubMed]
- Bok, J.W.; Balajee, S.A.; Marr, K.A.; Andes, D.; Nielsen, K.; Frisvad, J.C.; Keller, N.P. LaeA, a regulator of morphogenetic fungal virulence factors. Eukary. Cell 2005, 4, 1574–1582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarikaya, B.O.; Bayram, O.; Valerius, O.; Park, H.; Irniger, S.; Gerke, J.; Ni, M.N.; Han, K.H.; Yu, J.H.; Braus, G.H. LaeA control of velvet family regulatory proteins for light-dependent and fungal cell-type specificity. PLoS Genet. 2010, 6, e1001226. [Google Scholar] [CrossRef] [Green Version]
- Kale, S.P.; Milde, L.; Trapp, M.K.; Frisvad, J.C.; Keller, N.P.; Bok, J.W. Requirement of laeA for secondary metabolism and sclerotial production in Aspergillus flavus. Fungal Genet. Biol. 2008, 45, 1422–1429. [Google Scholar] [CrossRef] [Green Version]
- Chang, P.K.; Scharfenstein, L.L.; Ehrlich, K.C.; Wei, Q.; Bhatnagar, D.; Ingber, B.F. Effects of laeA deletion on Aspergillus flavus conidial development and hydrophobicity may contribute to loss of aflatoxin production. Fungal Biol. 2012, 116, 298–307. [Google Scholar] [CrossRef]
- Jia, L.L.; Yu, J.H.; Chen, F.S.; Chen, W.P. Characterization of the asexual developmental genes brlA and wetA in Monascus ruber M7. Fungal Genet. Biol. 2021, 151, 103564. [Google Scholar] [CrossRef]
- Yang, H.; Wang, X.; Li, Z.J.; Guo, Q.B.; Yang, M.G.; Chen, D.; Wang, C.L. The effect of blue light on the production of citrinin in Monascus purpureus M9 by regulating the mraox gene through lncRNA AOANCR. Toxins 2019, 11, 536. [Google Scholar] [CrossRef] [Green Version]
Genes | Primer sequences (5′to3′) | Length (bp) | Tm Value | PCR Product Length (bp) | Description |
---|---|---|---|---|---|
MpPKS5 F | TGTCCGACGAGTTTCTGCAA | 20 | 58 | 134 | NR-PKS |
MpPKS5 R | TATCAACGCTGCTTGGGCAT | 20 | 60 | 134 | |
MpFasA2 F | ATGGATCGCCCGATCTTGTC | 20 | 59 | 129 | FAS subunit alpha |
MpFasA2 R | CTTTGTCGAGTCCGCTGGAT | 20 | 59 | 129 | |
MpFasB2 F | CCTCCAGGGATTACAACCCG | 20 | 58 | 131 | FAS subunit beta |
MpFasB2 R | ATTCAATGCCAGGTGCTCCA | 20 | 58 | 131 | |
mppA F | TCCCGTTTCTTGGACGTGAG | 20 | 59 | 132 | C-11-ketoreductase |
mppA R | ACGTGCCATGGTTCTGTCTT | 20 | 59 | 132 | |
mppB F | CGTCTCGCCCGATAACTTCA | 20 | 60 | 108 | acyltransferase |
mppB R | TTGACAGACGGGTCGAAGTC | 20 | 58 | 108 | |
mppC F | CAGTCCTCGTCCCTTCCAGT | 20 | 60 | 137 | NADPH-dependent oxidoreductase |
mppC R | CCACGGTGAAGGATGTCGAG | 20 | 58 | 137 | |
mppD F | TCAACACGGGAGATGCTGTC | 20 | 62 | 140 | serine hydrolase |
mppD R | GCCAAAGGACAGGAGCAGAT | 20 | 63 | 140 | |
mppE F | CTTCCCGATGCCGTTGTGAT | 20 | 60 | 99 | enoyl reductase |
mppE R | GTCTCGTGGATCATCTCGT | 19 | 60 | 99 | |
mppG F | TCAACACGGGAGATGCTGTC | 20 | 56 | 140 | FAD-dependent oxidoreductase |
mppG R | GCCAAAGGACAGGAGCAGAT | 20 | 59 | 140 | |
mpp7 F | ATCGTCGGATCAGCGTCAC | 19 | 59 | 148 | acetylatransferase |
mpp7 R | CGGCTGTTATAGGGTGGC | 18 | 57 | 148 | |
mppR1 F | TCTGCAGTATGCCATGTGGG | 20 | 59 | 123 | transcription factor |
mppR1 R | ATGGCACCGTCACTTAGCTC | 20 | 55 | 123 | |
mppR2 F | ACGAAACCCTCCATGACACC | 20 | 59 | 138 | transcription factor |
mppR2 R | TGCAGACAGCCTTGTGGTAG | 20 | 59 | 138 | |
mokA F | GACCTCGGTCATCTTGGC | 18 | 57 | 78 | polyketide synthase |
mokA R | TTGTTCCAAGCGGTCTTC | 18 | 54 | 78 | |
mokB F | AAACATCGTCACCAGTCT | 18 | 53 | 78 | polyketide synthase |
mokB R | CTAAGTCGGGCATCTACC | 18 | 53 | 78 | |
mokC F | CAAGCTGCGAAATACACCAAGCCTC | 25 | 62 | 80 | P450 monooxygenase |
mokC R | AGCCGTGTGCCATTCCTTGTTGTCC | 25 | 60 | 80 | |
mokD F | TTCATCTGCTGCTGGTAT | 18 | 53 | 92 | oxidoreductase |
mokD R | AACTTCTCACCGTCAATG | 18 | 52 | 92 | |
mokE F | ATCGCAGGTCACGCACATCCAAGTC | 25 | 65 | 221 | dehydrogenase |
mokE R | GTAAAGGCAGCCCGAGCAGCTTCAT | 25 | 65 | 221 | |
mokF F | GAGATCATAGTGGCCGACTGAA | 22 | 60 | 190 | transesterase |
mokF R | ACCGTCTCATCCAACCTCACGA | 22 | 61 | 190 | |
mokG F | CCAGGTAACCAACGGATTA | 19 | 51 | 82 | HMG-CoA reductase |
mokG R | GATCAGAGCAGTCACCAG | 18 | 54 | 82 | |
mokH F | CAGGAAATCTGGACTTACCCCATTG | 25 | 58 | 123 | transcription factor |
mokH R | TGTTGGATTGTTGTTGGAGATATAC | 25 | 55 | 123 | |
mokI F | CAGGAAATCTGGACTTACCCCATTG | 20 | 60 | 135 | efflux pump |
mokI R | TGTTGGATTGTTGTTGGAGATATAC | 18 | 57 | 135 | |
laeA F | ACTCGTAGCGGATGTAAGA | 19 | 55 | 105 | global regulator |
laeA R | CCGTGCTTGGTAGATGTG | 18 | 55 | 105 | |
brIA F | ATGTCAGGGTGGCGTGAAGT | 20 | 60 | 187 | asexual development |
brIA R | CCTGAACTGTACCTGCTTGAT | 21 | 56 | 187 | |
wetA F | ATGTGTTATATTCCCCGGGA | 20 | 60 | 174 | asexual development |
wetA R | TTAGCAGAGTGCGGCCTCGAG | 21 | 62 | 174 | |
GAPDH F | CCGTATTGTCTTCCGTAAC | 19 | 55 | 114 | Reference gene |
GAPDH R | GTGGGTGCTGTCATACTTG | 19 | 56 | 114 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, R.; Luo, Q.; Liu, Y.; Chen, W.; Wang, C. Effect of γ-Heptalactone on the Morphology and Production of Monascus Pigments and Monacolin K in Monascus purpureus. J. Fungi 2022, 8, 179. https://doi.org/10.3390/jof8020179
Shi R, Luo Q, Liu Y, Chen W, Wang C. Effect of γ-Heptalactone on the Morphology and Production of Monascus Pigments and Monacolin K in Monascus purpureus. Journal of Fungi. 2022; 8(2):179. https://doi.org/10.3390/jof8020179
Chicago/Turabian StyleShi, Ruoyu, Qiaoqiao Luo, Yutong Liu, Wei Chen, and Chengtao Wang. 2022. "Effect of γ-Heptalactone on the Morphology and Production of Monascus Pigments and Monacolin K in Monascus purpureus" Journal of Fungi 8, no. 2: 179. https://doi.org/10.3390/jof8020179
APA StyleShi, R., Luo, Q., Liu, Y., Chen, W., & Wang, C. (2022). Effect of γ-Heptalactone on the Morphology and Production of Monascus Pigments and Monacolin K in Monascus purpureus. Journal of Fungi, 8(2), 179. https://doi.org/10.3390/jof8020179