Environmental Factors Affecting Diversity, Structure, and Temporal Variation of Airborne Fungal Communities in a Research and Teaching Building of Tianjin University, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sampling
2.2. Fungal Identification
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Durugbo, E.U.; Kajero, A.O.; Omoregie, E.I.; Oyejide, N.E. A survey of outdoor and indoor airborne fungal spora in the Redemption City, Ogun State, southwestern Nigeria. Aerobiologia 2013, 29, 201–216. [Google Scholar] [CrossRef]
- Fang, Z.; Ouyang, Z.; Hua, Z.; Wang, X.; Hu, L. Culturable airborne fungi in outdoor environments in Beijing, China. Sci. Total Environ. 2007, 350, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Pickering, C.; Faragher, E.B.; Austwick, P.; Little, S.A.; Lawton, L.; Harrison, J. An investigation of the relationship between microbial and particulate indoor air pollution and the sick building syndrome. Respir. Med. 1992, 86, 225–235. [Google Scholar]
- Hargreaves, M.; Parappukkaran, S.; Morawska, L.; Hitchins, J.; He, C.; Gilbert, D. A pilot investigation into association between indoor airborne fungal and non-biological particle concentrations in residential houses in Brisbane, Australia. Sci. Total Environ. 2003, 312, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Tariq, S.M.; Matthews, S.M.; Stevens, M.; Hakim, E.A. Sensitization to Alternaria and Cladosporium by the age of 4 years. Clin. Exp. Allergy 1996, 26, 794–798. [Google Scholar] [CrossRef]
- Atalay, A.; Koc, A.N.; Akyol, G.; Cakir, N.; Kaynar, L.; Ulu-Kilic, A. Pulmonary infection caused by Talaromyces purpurogenus in a patient with multiple myeloma. Infez Med. 2016, 24, 153–157. [Google Scholar]
- Renpenning-Carrasco, E.W.; Villanueva-Lozano, H.; Gonzalez, G.M. Successful treatment of Talaromyces amestolkiae pulmonary infection with voriconazole in an acute lymphoblastic leukemia patient. J. Infect. Chemother. 2017, 23, 400–402. [Google Scholar]
- Horner, W.E.; Helbling, A.; Salvaggio, J.E.; Lehrer, S.B. Fungal allergens. Clin. Microbiol. Rev. 1995, 8, 161–179. [Google Scholar] [CrossRef]
- Nageen, Y.; MD Asemoloye, P.S.; Wang, X.; Pecoraro, L. Analysis of culturable airborne fungi in outdoor environments in Tianjin, China. BMC Microbiol. 2021, 21, 134. [Google Scholar] [CrossRef]
- Fuiano, N.; Fusilli, S.; Incorvaia, C. A role for measurement of nasal ige antibodies in diagnosis of Alternaria-induced rhinitis in children. Allergol. Immunopathol. 2012, 40, 71–74. [Google Scholar] [CrossRef]
- Kurup, V.P.; Vijay, H.M.; Kumar, V.; Castillo, L.; Elms, N. IgE binding synthetic peptides of Alt a 1, a major allergen of Alternaria alternata. Peptides 2003, 24, 179–185. [Google Scholar] [CrossRef]
- Shokri, H.; Khosravi, A.R. Detection of specific anti-Alternaria alternata ige in asthmatic patients. World Allergy Organ. J. NA 2007, 19, 173–177. [Google Scholar] [CrossRef]
- Bush, R.K.; Sanchez, H. In vitro synthesis of alternaria allergens and their recognition by murine monoclonal and human ige antibodies. Ann. Allergy Asthma Immunol. 1997, 78, 287–292. [Google Scholar] [CrossRef]
- Bousquet, P.J.; Hooper, R.; Kogevinas, M.; Jarvis, D.; Burney, P.; Chinn, S.; Luezynska, K.; Vermeire, P.; Kesteloot, H.; Bousquet, J.; et al. Number of allergens to be tested to assess allergenic sensitization in epidemiologic studies: Results of the European Community Respiratory Health Survey I. Clin. Exp. Allergy 2007, 37, 780–787. [Google Scholar] [CrossRef]
- Downs, S.; Mitakakis, T.; Marks, G.; Car, N.G.; Peat, J. Clinical importance of Alternaria exposure in children. Am. J. Respir. Crit. Care Med. 2001, 164, 455–459. [Google Scholar] [CrossRef] [Green Version]
- Bednarz, A.; Lipiec, A.; Rapiejko, P.; Myszowska, D.; Ziemianin, M.; Rapiejko, A.; Chłopek, K.; Jurkiewicz, D. Cladosporium spores in the air of selected Polish cities in 2014. Alergoprofil 2014, 10, 32–34. [Google Scholar]
- Resano, A.; Sanz, M.L.; Oehling, A. Sensitization to Alternaria and Cladosporium in asthmatic patients and its in vitro diagnostic confirmation. J. Investig. Allergol. Clin. Immunol. 1998, 8, 353–358. [Google Scholar]
- Alberti, C.; Bouakline, A.; Ribaud, P.; Lacroix, C.; Rousselot, P.; Leblanc, T.; Derouin, F.; Aspergillus Study Group. Relationship between environmental fungal contamination and the incidence of invasive aspergillosis in haematology patients. J. Hosp. Infect. 2001, 48, 198–206. [Google Scholar] [CrossRef]
- Faure, O.; Fricker-Hidalgo, H.; Lebeau, B.; Mallaret, M.R.; Ambroise-Thomas, P.; Grillot, R. Eight-year surveillance of environmental fungal contamination in hospital operating rooms and haematological units. J. Hosp. Infect. 2002, 50, 155–160. [Google Scholar] [CrossRef]
- Ana, S.; Torres-Rodríguez, J.; Ramírez, E.; García, S.; Belmonte-Soler, J. Seasonal distribution of Alternaria, Aspergillus, Cladosporium and Penicillium species isolated in homes of fungal allergic patients. J. Investig. Allergol. Clin. Immunol. 2006, 16, 357–363. [Google Scholar]
- Robbins, S.L.; Cotran, R.S.; Kumar, V. Robbins pathologic basis of disease. J. Clin. Pathol. 1998, 140, 1776–1777. [Google Scholar]
- Tupaki-Sreepurna, A.; Kindo, A.J. Fusarium: The Versatile Pathogen. Indian J. Med. Microbiol. 2018, 36, 8–17. [Google Scholar] [CrossRef]
- Saini, S.K.; Boas, S.R.; Jerath, A.; Roberts, M.; Greenberger, P.A. Allergic Bronchopulmonary Mycosis to Fusarium vasinfectum in a Child. Ann. Allergy Asthma Immunol. 1998, 80, 377–380. [Google Scholar] [CrossRef]
- Ahluwalia, S.K.; Matsui, E.C. Indoor environmental interventions for furry pet allergens, pest allergens, and mold: Looking to the future. J. Allergy Clin. Immunol. Pract. 2018, 6, 9–19. [Google Scholar] [CrossRef]
- Kalwasińska, A.; Burkowska, A.; Wilk, I. Microbial air contamination in indoor environment of a University Library. Ann. Agric. Environ. Med. 2012, 19, 25–29. [Google Scholar]
- Knutsen, A.P.; Bush, R.K.; Demain, J.G.; Denning, D.W.; Dixit, A.; Fairs, A.; Greenberger, P.A.; Kariuki, B.; Kita, H.; Kurup, V.P.; et al. Fungi and allergic lower respiratory tract diseases. J. Allergy Clin. Immunol. 2012, 129, 280–291. [Google Scholar] [CrossRef]
- Ye, J.; Qian, H.; Zhang, J.; Sun, F.; Cao, G. Concentrations and size-resolved I/O ratios of household airborne bacteria and fungi in Nanjing, southeast China. Sci. Total Environ. 2021, 774, 145559. [Google Scholar] [CrossRef]
- Awad, A.H.; Saeed, Y.; Hassan, Y.; Fawzy, Y.; Osman, M. Air microbial quality in certain public buildings, Egypt: A comparative study. Atmos. Pollut. Res. 2018, 9, 617–626. [Google Scholar] [CrossRef]
- Levetin, E.; Shaughnessy, R.; Fisher, E.; Ligman, B.; Harrison, J.; Brennan, T. Indoor air quality in schools: Exposure to fungal allergens. Aerobiologia 1995, 11, 27–34. [Google Scholar] [CrossRef]
- Adhikari, A.; Sen, M.M.; Gupta-Bhattacharya, S.; Chanda, S. Airborne viable, nonviable, and allergenic fungi in a rural agricultural area of India: A 2-year study at five outdoor sampling stations. Sci. Total Environ. 2004, 326, 123–141. [Google Scholar] [CrossRef] [PubMed]
- Meadow, J.F.; Altrichter, A.E.; Kembel, S.W.; Kline, J.; Mhuireach, G.; Moriyama, M. Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source. Indoor Air. 2014, 24, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Hospodsky, D.; Qian, J.; Nazaroff, W.W.; Yamamoto, N.; Bibby, K.; RismaniYazdi, H.; Peccia, J. Human occupancy as a source of indoor airborne bacteria. PLoS ONE 2012, 7, e34867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shelton, B.G.; Kirkland, K.H.; Flanders, W.D.; Morris, G.K. Profiles of airborne fungi in buildings and outdoor environments in the United States. Appl. Environ. Microbiol. 2002, 68, 1743–1753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, W.K.; Seo Y., J. Indoor and outdoor bioaerosols levels at recreation facilities, elementary schools, and homes. Chemosphere 2005, 61, 1570–1579. [Google Scholar] [CrossRef]
- Medrela-Kuder, E. Seasonal variations in the occurrence of culturable airborne fungi in outdoor and indoor air in Craców. Int. Biodeterior. Biodegrad. 2003, 52, 203–205. [Google Scholar] [CrossRef]
- Aydogdu, H.; Asan, A. Airborne fungi in child day care centers in Edirne City, Turkey. Environ. Monit. Assess. 2008, 9, 1–22. [Google Scholar] [CrossRef]
- Barck, C.; Sandstrom, T.; Lundahl, J.; Hallden, G.; Svartengren, M.; Strand, V.; Rak, S.; Bylin, G. Ambient level of NO2 augments the inflammatory response to inhaled allergen in asthmatics. Respir. Med. 2002, 96, 907–917. [Google Scholar] [CrossRef] [Green Version]
- Erbas, B.; Jazayeri, M.; Lambert, K.A.; Katelaris, C.H.; Prendergast, L.A.; Tham, R.; Parrodi, M.J.; Davies, J.; Newbigin, E.; Abramson, M.J.; et al. Outdoor pollen is a trigger of child and adolescent asthma emergency department presentations: A systematic review and meta-analysis. Allergy 2018, 73, 1632–1641. [Google Scholar] [CrossRef]
- Orellano, P.; Quaranta, N.; Reynoso, J.; Balbi, B.; Vasquez, J. Effect of outdoor air pollution on asthma exacerbations in children and adults: Systematic review and multilevel meta-analysis. PLoS ONE 2017, 12, e0174050. [Google Scholar] [CrossRef]
- Salonen, H.; Duchaine, C.; Mazaheri, M.; Clifford, S.; Lappalainen, S.; Reijula, K.; Morawska, L. Airborne viable fungi in school environments in different climatic regions—A review. Atmos. Environ. 2015, 104, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Hiwar, W.; King, M.F.; Shuweihdi, F.; Fletcher, L.A.; Dancer, S.J.; Noakes, C.J. What is the relationship between indoor air quality parameters and airborne microorganisms in hospital environments? A systematic review and meta-analysis. Indoor Air. 2021, 31, 1308–1322. [Google Scholar] [CrossRef]
- Chen, Y.C.; Liao, C.H.; Shen, W.T.; Su, C.; Wu, Y.C.; Tsai, M.H.; Hsiao, S.-S.; Yu, K.-P.; Tseng, C.-H. Effective disinfection of airborne microbial contamination in hospital wards using a zero-valentnano-silver/TiO2-chitosan composite. Indoor Air. 2019, 29, 439–449. [Google Scholar] [CrossRef]
- Odebode, A.; Nimawanya, G. Characterization of airborne fungi present in two hospitals in Kabale district–Uganda. Int. J. Infect. Dis. 2021, 101, 384–402. [Google Scholar] [CrossRef]
- Wu, D.M.; Zhang, Y.; Tian, Y.; Li, A.G.; Xiong, J. On-site investigation of the concentration and size distribution characteristics of airborne fungi in a university library. Environ. Pollut. 2020, 261, 114138. [Google Scholar] [CrossRef]
- Wu, D.M.; Zhang, Y.; Tian, Y.; Li, A.G.; Xiong, J. Assessment of seasonal variations in concentration, particle-size distribution, and taxonomic composition of airborne fungi in a courtyard space. Atmos. Pollut. Res. 2020, 12, 113–121. [Google Scholar] [CrossRef]
- Guo, K.Q.; Qian, H.; Ye, J.; Sun, F.; Zhuge, Y.; Wang, S.; Liu, C.; Cao, G.; Zheng, X. Assessment of airborne bacteria and fungi in different-type buildings in Nanjing, a hot summer and cold winter moist Chinese city. Build. Environ. 2021, 205, 108258. [Google Scholar] [CrossRef]
- Fang, Z.G.; Zhang, J.W.; Guo, W.J.; Lou, X.Q. Assemblages of Culturable Airborne Fungi in a Typical Urban, Tourism-driven Center of Southeast China. Aerosol Air Qual. Res. 2019, 19, 820–831. [Google Scholar] [CrossRef] [Green Version]
- Robertson, S.; Douglas, P.; Jarvis, D.; Marczylo, E. Bioaerosol exposure from composting facilities and health outcomes in workers and in the community: A systematic review update. Int. J. Hyg. Environ. Health 2019, 222, 364–386. [Google Scholar] [CrossRef]
- Madsen, A.M.; Moslehi-Jenabian, S.; Islam, M.Z.; Frankel, M.; Spilak, M.; Frederiksen, M.W. Concentrations of Staphylococcus species in indoor air as associated with other bacteria, season, relative humidity, air change rate, and S. aureus-positive occupants. Environ. Res. 2018, 160, 282–291. [Google Scholar] [CrossRef]
- Kim, K.Y.; Kim, H.T.; Kim, D.; Nakajima, J.; Higuchi, T. Distribution characteristics of airborne bacteria and fungi in the feedstuff-manufacturing factories. J. Hazard. Mater. 2009, 169, 1054–1060. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, T.; Su, J.; Zhao, L.L.; Hao, W.; Fang, X.M.; Zhang, Y.-Q.; Liu, H.-Y.; Yu, L.-Y. Diversity and composition of airborne fungal community associated with particulate matters in Beijing during haze and non-haze days. Front. Microbiol. 2016, 7, 487. [Google Scholar]
- Morin, N.; Vallaeys, T.; Hendrickx, L.; Natalie, L.; Wilmotte, A. An efficient DNA isolation protocol for filamentous cyanobacteria of the genus Arthrospira. J. Microbiol. Methods 2010, 80, 2148–2154. [Google Scholar] [CrossRef]
- Burge, H.; Chew, G.; Muilenberg, M.; Gold, D. Role of fungi in-house dust ecosystems. J. Allergy Clin. Immunol. 1995, 95, 167. [Google Scholar]
- Doyle, J. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Ondov, B.D.; Bergman, N.H.; Phillippy, A.M. Interactive metagenomic visualization in a web browser. BMC Bioinform. 2011, 12, 385. [Google Scholar] [CrossRef] [Green Version]
- Conway, J.R.; Lex, A.; Gehlenborg, N. UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics 2017, 33, 2938–2940. [Google Scholar] [CrossRef] [Green Version]
- Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef] [Green Version]
- GB/T 18883; Indoor Air Quality Standard. Ministry of Environmental Protection (MEP), and General Administration of Quality Supervision, Inspection and Quarantine (AQSIQ). Chinese Ministry of Health (MOH): Beijing, China, 2002. (In Chinese)
- Brief, R.S.; Bernath, T. Indoor pollution: Guidelines for prevention and control of microbiological respiratory hazards associated with air conditioning and ventilation systems. Appl. Ind. Hyg. 1988, 3, 5–10. [Google Scholar] [CrossRef]
- WHO. Indoor air quality: Biological contaminants. WHO Reg. Publ. Eur. 1990, 31, 1–67. [Google Scholar]
- Meklin, T.; Husman, T.; Vahteristo, M.; Koivisto, J.; Halla-Aho, J.; Hyvärinen, A.; Moschandreas, D.; Nevalainen, A. Indoor air microbes and respiratory symptoms of children in moisture damaged and reference schools. Indoor Air. 2002, 12, 175–183. [Google Scholar] [CrossRef]
- Meklin, T.; Hyvarinen, A.; Toivola, M.; Reponen, T.; Koponen, V.; Husman, T.; Taskinen, T.; Korppi, M.; Nevalainen, A. Effect of building frame and moisture damage on microbiological indoor air quality in school buildings. AIHA J. 2003, 64, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Stryjakowska-Sekulska, M.; Piotraszewska-Pajak, A.; Szyszka, A.; Nowicki, M.; Filipiak, M. Microbiological quality of indoor air in university rooms. Pol. J. Environ. Stud. 2007, 16, 623–632. [Google Scholar]
- Anees-Hill, S.; Douglas, P.; Pashley, C.H. A systematic review of outdoor airborne fungal spore seasonality across Europe and the implications for health. Sci. Total Environ. 2021, 818, 151716. [Google Scholar] [CrossRef] [PubMed]
- Hayleeyesus, S.F.; Manaye, A.M. Microbiological Quality of Indoor Air in University Libraries. Asian Pac. J. Trop Biomed. 2014, 4, 312–317. [Google Scholar] [CrossRef] [Green Version]
- Qian, J.; Hospodsky, D.; Yamamoto, N.; Nazaroff, W.W.; Peccia, J. Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom. Indoor Air. 2012, 22, 339–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotem, J. The Genus Alternaria: Biology, Epidemiology, and Pathogenicity; APS PRESS: St. Paul, MN, USA, 1994. [Google Scholar]
- Picco, A.M.; Rodolfi, M. Airborne fungi as biocontaminants at two Milan underground stations. Int. Biodeterior. Biodegrad. 2000, 45, 43–47. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, S.; Tormo-Molina, R.; Maya-Manzano, J.M.; Silva-Palacios, I.; Gonzalo-Garijo, Á. Outdoor airborne fungi captured by viable and non-viable methods. Fungal Ecol. 2014, 7, 16–26. [Google Scholar] [CrossRef]
- Mui, K.W.; Chan, W.Y.; Wong, L.T.; Hui, P.S. Scoping indoor airborne fungi in an excellent indoor air quality office building in Hong Kong. Build. Serv. Eng. Res. Technol. 2010, 31, 191–199. [Google Scholar] [CrossRef]
- Didehdar, M.; Khoshbayan, A.; Vesal, S.; Darban-Sarokhalil, D.; Shariati, A. An overview of possible pathogenesis mechanisms of Alternaria alternata in chronic rhinosinusitis and nasal polyposis. Microb. Pathog. 2021, 155, 104905. [Google Scholar] [CrossRef]
- Gabriel, M.F.; Postigo, I.; Tomaz, C.T.; Martínez, J. Alternaria alternata allergens: Markers of exposure, phylogeny and risk of fungi-induced respiratory allergy. Environ. Int. 2016, 89–90, 71–80. [Google Scholar] [CrossRef]
- Wickman, M.; Gravesen, S.; Nordvall, S.; Pershagen, G.; Sundell, J. Indoor viable dust-bound micro fungi in relation to residential characteristics, living habits, and symptoms in atopic and control children. J. Allergy Clin. Immunol. 1993, 89, 752–759. [Google Scholar] [CrossRef]
- Burge, H. Bioaerosols: Prevalence and health effects in the indoor environment. J. Allergy Clin. Immunol. 1990, 86, 687–701. [Google Scholar] [CrossRef]
- Chao, H.J.; Milton, D.K.; Schwartz, J.; Burge, H.A. Dustborne fungi in large office buildings. Mycopathologia 2002, 154, 93–106. [Google Scholar] [CrossRef]
- Stamatelopoulou, A.; Pyrri, I.; Asimakopoulos, D.N.; Maggos, T. Indoor air quality and dustborne biocontaminants in bedrooms of toddlers in Athens, Greece. Build. Environ. 2020, 173, 106756. [Google Scholar] [CrossRef]
- Bensch, K.; Braun, U.; Groenewald, J.Z.; Crous, P.W. The genus Cladosporium. Stud. Mycol. 2012, 72, 1–401. [Google Scholar] [CrossRef] [Green Version]
- Bensch, K.; Groenewald, J.Z.; Meijer, M.; Dijksterhuis, J.; Jurjević, Z.; Andersen, B.; Houbraken, J.; Crous, P.; Samson, R. Cladosporium species in indoor environments. Stud. Mycol. 2018, 89, 177–301. [Google Scholar] [CrossRef]
- Ma, X.; Gu, Y.; Liu, X.; Li, D.; Ling, S.; Hou, J.; Wang, C.; Cao, S.; Huang, X.; Wen, X.; et al. Phaeohyphomycotic dermatitis in a giant panda (Ailuropoda melanoleuca) caused by Cladosporium cladosporioides. Med. Mycol. Case Rep. 2013, 2, 119–121. [Google Scholar] [CrossRef]
- Castro, A.S.; Oliveira, A.; Lopes, V. Pulmonary phaeohyphomycosis: A challenge to the clinician. Eur. Respir. Rev. 2013, 22, 187–188. [Google Scholar] [CrossRef] [Green Version]
- Burge, H.A. The fungi. In Indoor Air Quality Handbook; Spengler, J.D., Jonathan, S., McCarthy, J.F., Eds.; McGraw-Hill Companies, Inc.: New York, NY, USA, 2000; pp. 45.1–45.33. [Google Scholar]
- Burge, H.A.; Simmons, E.G.; Muilenberg, M.; Hoyer, M.; Gallup, J.; Solomon, W. Intrinsic variability in airborne fungi: Implications for allergen standardization. J. Clin. Otorhinolaryngol. 1987, 51, 143–146. [Google Scholar]
- López-Gómez, J.P.; Pérez-Rivero, C. 2.02-Cellular Systems. In Comprehensive Biotechnology, 3rd ed.; Pergamon Press: Oxford, UK, 2019; pp. 9–21. [Google Scholar]
- Jing, R.; Yang, W.H.; Xiao, M.; Li, Y.; Hsueh, P.R. Species identification and antifungal susceptibility testing of Aspergillus strains isolated from patients with otomycosis in northern China. J. Microbiol. Immunol. Infect. 2021, 55, 282–290. [Google Scholar] [CrossRef]
- Patterson, T.F.; Thompson, G.R.; Denning, D.W.; Fishman, J.A.; Bennett, J.E. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 63, 433–442. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Yang, P.C.; Chang, C.; Lin, I.T.; Cia, C.T. Community-acquired adenoviral and pneumococcal pneumonia complicated by pulmonary aspergillosis in an immunocompetent adult. J. Microbiol. Immunol. Infect. 2019, 52, 838–839. [Google Scholar] [CrossRef]
- Lai, C.C.; Wang, C.Y.; Hsueh, P.R. Co-infections among patients with covid-19: The need for combination therapy with non-anti-sars-cov-2 agents? J. Microbiol. Immunol. Infect. 2020, 53, 505–512. [Google Scholar] [CrossRef]
- Tsai, M.H.; Lin, L.-C.; Hsu, J.-F.; Lai, M.-Y.; Huang, H.-R.; Chiang, M.-C.; Lu, J.J. Rapid identification of invasive fungal species using sensitive universal primers-based pcr and restriction endonuclease digestions coupled with high-resolution melting analysis. J. Microbiol. Immunol. Infect. 2019, 52, 728–735. [Google Scholar] [CrossRef]
- Millington, W.M.; Corden, J.M. Long term trends in outdoor Aspergillus/Penicillium spore concentrations in Derby, UK from 1970 to 2003 and a comparative study in 1994 and 1996 with the indoor air of two local houses. Aerobiologia 2005, 21, 105–113. [Google Scholar] [CrossRef]
- Bundy, K.W.; Gent, J.F.; Beckett, W.; Bracken, M.B.; Belanger, K.; Triche, E.; Leaderer, B.P. Household airborne Penicillium associated with peak expiratory flow variability in asthmatic children. Ann. Allergy Asthma Immunol. 2009, 103, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Feng, C.T.; Macher, J.M.; Hung, Y.Y. Biodiversity and concentrations of airborne fungi in large US office buildings from the BASE study. Atmos. Environ. 2007, 41, 5181–5191. [Google Scholar]
- Kim, K.Y.; Chi, N.K. Airborne microbiological characteristics in public buildings of Korea. Build. Environ. 2007, 42, 2188–2196. [Google Scholar] [CrossRef]
- Sautour, M.; Sixtc, N.; Dalle, F.; L’Ollivier, C.; Fourquenet, V.; Calinon, C.; Paul, K.; Valvin, S.; Maurel, A.; Aho, S.; et al. Profiles and seasonal distribution of airborne fungi in indoor and outdoor environments at a French hospital. Sci. Total Environ. 2009, 407, 3766–3771. [Google Scholar] [CrossRef]
- Taylor, M.; Gaskin, S.; Bentham, R.; Pisaniello, D. Airborne fungal profiles in office buildings in metropolitan Adelaide, South Australia: Background levels, diversity and seasonal variation. Indoor Built Environ. 2013, 23, 1002–1011. [Google Scholar] [CrossRef]
- Zhou, F.; Niu, M.; Zheng, Y.; Sun, Y.; Wu, Y.; Zhu, T.; Shen, F. Impact of outdoor air on indoor airborne microbiome under hazy air pollution: A case study in winter Beijing. J. Aerosol Sci. 2021, 156, 105798. [Google Scholar] [CrossRef]
- Lee, T.; Grinshpun, S.A.; Martuzevicius, D.; Adhikari, A.; Crawford, C.M.; Reponen, T. Culturability and concentration of indoor and outdoor airborne fungi in six single-family homes. Atmos. Environ. 2006, 40, 2902–2910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frankel, M.; Beko, G.; Timm, M.; Gustavsen, S.; Hansen, E.W.; Madsen, A.M. Seasonal variations of indoor microbial exposures and their relation to temperature, relative humidity, and air exchange rate. Appl. Environ. Microbiol. 2012, 78, 8289–8297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, P.; Du, R.; Ren, W.; Lu, Z.; Zhang, Y.; Fu, P. Variations of bacteria and fungi in pm2.5 in Beijing, China. Atmos. Environ. 2018, 172, 55–64. [Google Scholar] [CrossRef]
- Hoyos, M.; Soler, V.; Sanz-Rubio, S.M. Microclimatic characterization of a karstic cave: Human impact on microenvironmental parameters of a prehistoric rock art cave (Candamo Cave, northern Spain). Environ. Geol. 1998, 33, 231–242. [Google Scholar] [CrossRef]
- Qi, Y.; Li, Y.; Xie, W.; Lu, R.; Mu, F.; Bai, W.; Du, S. Temporal-spatial variations of fungal composition in pm2.5 and source tracking of airborne fungi in mountainous and urban regions. Sci. Total Environ. 2020, 708, 135027. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.H.; Li, C.S. Associations of fungal aerosols, air pollutants, and meteorological factors. Aerosol Sci. Technol. 2000, 32, 359–368. [Google Scholar] [CrossRef]
- Meredith, D.S. Spore dispersal in Alternaria porri (Ellis) Neerg. on onions in Nebraska. Ann. Appl. Biol. 1966, 57, 67–73. [Google Scholar] [CrossRef]
- Hameed, A.; Khoder, M.I.; Ibrahim, Y.H.; Saeed, Y.; Osman, M.E.; Ghanem, S. Study on some factors affecting survivability of airborne fungi. Sci. Total Environ. 2012, 414, 696–700. [Google Scholar] [CrossRef]
- Tang, Q.; Huang, K.; Liu, J.Z.; Jin, X.; Li, C. Distribution characteristics of bioaerosols inside pig houses and the respiratory tract of pigs. Ecotoxicol. Environ. Saf. 2021, 212, 11026. [Google Scholar] [CrossRef]
- Dong, L.; Qi, J.; Shao, C.; Zhong, X.; Gao, D.; Cao, W.; Gao, J.; Bai, R.; Long, G.; Chu, C. Concentration and size distribution of total airborne microbes in hazy and foggy weather. Sci. Total Environ. 2016, 541, 1011–1018. [Google Scholar] [CrossRef]
- Chakraborty, P.; Gupta-Bhattacharya, S.; Chowdhury, I.; Majumdar, M.R.; Chanda, S. Differences in concentrations of allergenic pollens and spores at different heights on an agricultural farm in West Bengal, India. Ann. Agric. Environ. Med. 2001, 8, 123–130. [Google Scholar]
- Li, L.; Lei, C.; Liu, Z.G. Investigation of airborne fungi at different altitudes in Shenzhen University. Nat. Sci. 2010, 2, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Glushakova, A.M.; Kachalkin, A.V. Endophytic yeasts in Malus domestica and Pyrus communis fruits under anthropogenic impact. Microbiology 2017, 86, 128–135. [Google Scholar] [CrossRef]
- Kolek, F.; Plaza, M.P.; Charalampopoulos, A.; Traidl-Hoffmann, C.; Damialis, A. Biodiversity, abundance, seasonal and diurnal airborne pollen distribution patterns at two different heights in Augsburg, Germany. Atmos. Environ. 2021, 267, 118774. [Google Scholar] [CrossRef]
- Alamia, S.; Sekkalb, J.; Aoufi, S.; Lyagoubi, M.; Benzekri, L.; Senouci, K. Subcutaneous phaeohyphomycosis caused by Aureobasidium Pullulans in an immunocompetent carpenter. Med. Mycol. Case Rep. 2022, 36, 1–4. [Google Scholar] [CrossRef]
- Aboutalebian, S.; Mahmoudi, S.; Okhovat, A.; Khodavaisy, S.; Mirhendi, H. Otomycosis Due to the Rare Fungi Talaromyces purpurogenus, Naganishia albida and Filobasidium magnum. Mycopathologia 2020, 185, 569–575. [Google Scholar] [CrossRef]
- Gharehbolagh, S.A.; Nasimi, M.; Afshari, S.A.K.; Ghasemi, Z.; Rezaie, S. First case of superficial infection due to Naganishia albida (formerly Cryptococcus albidus) in Iran: A review of the literature. Curr. Med. Mycol. 2017, 3, 33. [Google Scholar] [CrossRef]
Fungal Genera | Outdoor | Corridor | Washroom | Coffee Area |
---|---|---|---|---|
Alternaria | 136 | 49 | 64 | 4 |
Cladosporium | 78 | 36 | 24 | 4 |
Penicillium | 13 | 4 | 8 | 3 |
Aspergillus | 19 | 11 | 5 | 0 |
Talaromyces | 13 | 3 | 6 | 0 |
Arthrinium | 11 | 2 | 2 | 0 |
Aureobasidium | 9 | 0 | 3 | 0 |
Filobasidium | 8 | 3 | 0 | 0 |
Shannon Index (H’) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sampling Environments | 1-May | 1-Jun | 1-Jul | 1-Aug | 1-Sep | 1-Oct | 1-Nov | 1-Dec | 1-Jan | 1-Feb | 1-Mar | 1-Apr |
Outdoor | 1.253 | 0.33 | 2.131 | 3.237 | 3.575 | 3.366 | 3.771 | 4.459 | 4.336 | 2.923 | 3.735 | 3.746 |
Corridor | 2.807 | 2.264 | 2.524 | 2.059 | 2.02 | 2.778 | 2.322 | 2.725 | 2.322 | 0 | 2.585 | 3.471 |
Washroom | 2.429 | 1.921 | 2.18 | 2.912 | 2.521 | 3.18 | 1.858 | 0 | 1 | 2 | 1.5 | 3.325 |
Coffee Area | 0 | 1.585 | 0 | 0 | 2.585 | 1.585 | 1 | 0 | 0 | 0 | 0.918 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Wang, X.; Almeida, L.C.S.d.S.; Pecoraro, L. Environmental Factors Affecting Diversity, Structure, and Temporal Variation of Airborne Fungal Communities in a Research and Teaching Building of Tianjin University, China. J. Fungi 2022, 8, 431. https://doi.org/10.3390/jof8050431
Lu Y, Wang X, Almeida LCSdS, Pecoraro L. Environmental Factors Affecting Diversity, Structure, and Temporal Variation of Airborne Fungal Communities in a Research and Teaching Building of Tianjin University, China. Journal of Fungi. 2022; 8(5):431. https://doi.org/10.3390/jof8050431
Chicago/Turabian StyleLu, Yixuan, Xiao Wang, Lucineidy C. S. de S. Almeida, and Lorenzo Pecoraro. 2022. "Environmental Factors Affecting Diversity, Structure, and Temporal Variation of Airborne Fungal Communities in a Research and Teaching Building of Tianjin University, China" Journal of Fungi 8, no. 5: 431. https://doi.org/10.3390/jof8050431
APA StyleLu, Y., Wang, X., Almeida, L. C. S. d. S., & Pecoraro, L. (2022). Environmental Factors Affecting Diversity, Structure, and Temporal Variation of Airborne Fungal Communities in a Research and Teaching Building of Tianjin University, China. Journal of Fungi, 8(5), 431. https://doi.org/10.3390/jof8050431