Sorbicillinoid Derivatives with the Radical Scavenging Activities from the Marine-Derived Fungus Acremonium chrysogenum C10
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedure
2.2. Fungal Materials and Fermentation
2.3. Extraction and Isolation
2.4. ECD Calculations
2.5. Antimicrobial Activity Assay
2.6. DPPH Radical Scavenging Assay
2.7. RNA Isolation and Real-Time RT-PCR Analysis
3. Results and Discussion
3.1. Isolation and Structure Elucidation
3.2. Biological Activities Evaluation
3.3. Determination of Acsor Cluster Boundary and Its Proposed Biosynthetic Pathway of Sorbicillinoid
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.N.; Sun, S.S.; Liu, M.Z.; Yan, M.C.; Liu, Y.F.; Zhu, Z.; Zhang, Z. Natural bioactive compounds from marine fungi (2017–2020). J. Asian Nat. Prod. Res. 2022, 24, 203–230. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, A.; Joseph, A.; Nair, B.G. Promising bioactive compounds from the marine environment and their potential effects on various diseases. J. Genet. Eng. Biotechnol. 2022, 20, 14. [Google Scholar] [CrossRef] [PubMed]
- Julianti, E.; Abrian, I.A.; Wibowo, M.S.; Azhari, M.; Tsurayya, N.; Izzati, F.; Juanssilfero, A.B.; Bayu, A.; Rahmawati, S.I.; Putra, M.Y. Secondary metabolites from marine-derived fungi and actinobacteria as potential sources of novel colorectal cancer drugs. Mar. Drugs 2022, 20, 67. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.C.; Li, X.M.; Gloer, J.B.; Wang, B.G. First total syntheses and antimicrobial evaluation of penicimonoterpene, a marine-derived monoterpenoid, and its various derivatives. Mar. Drugs 2014, 12, 3352–3370. [Google Scholar] [CrossRef] [Green Version]
- Terfehr, D.; Dahlmann, T.A.; Kück, U. Transcriptome analysis of the two unrelated fungal β-lactam producers Acremonium chrysogenum and Penicillium chrysogenum: Velvet-regulated genes are major targets during conventional strain improvement programs. BMC Genom. 2017, 18, 272. [Google Scholar] [CrossRef] [Green Version]
- Terfehr, D.; Dahlmann, T.A.; Specht, T.; Zadra, I.; Kürnsteiner, H.; Kück, U. Genome sequence and annotation of Acremonium chrysogenum, producer of the β-lactam antibiotic cephalosporin C. Genome Announc. 2014, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.; Zhang, X.; Xue, M.; Zhao, Z.; Zhang, H.; Xu, D.; Lai, D.; Zhou, L. Recent advances in sorbicillinoids from fungi and their bioactivities (Covering 2016–2021). J. Fungi 2022, 8, 62. [Google Scholar] [CrossRef]
- Harned, A.M.; Volp, K.A. The sorbicillinoid family of natural products: Isolation, biosynthesis, and synthetic studies. Nat. Prod. Rep. 2011, 28, 1790–1810. [Google Scholar] [CrossRef]
- Meng, J.; Wang, X.; Xu, D.; Fu, X.; Zhang, X.; Lai, D.; Zhou, L.; Zhang, G. Sorbicillinoids from fungi and their bioactivities. Molecules 2016, 21, 715. [Google Scholar] [CrossRef]
- Cram, D.J.; Tishler, M. Mold metabolites; isolation of several compounds from clinical penicillin. J. Am. Chem. Soc. 1948, 70, 4238. [Google Scholar] [CrossRef]
- Cram, D.J. Mold metabolites; the structure of sorbicillin, a pigment produced by the mold Penicillium notatum. J. Am. Chem. Soc. 1948, 70, 4240–4243. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Chávez, F.; Salo, O.; Nygård, Y.; Lankhorst, P.P.; Bovenberg, R.A.L.; Driessen, A.J.M. Mechanism and regulation of sorbicillin biosynthesis by Penicillium chrysogenum. Microb. Biotechnol. 2017, 10, 958–968. [Google Scholar] [CrossRef] [PubMed]
- Derntl, C.; Rassinger, A.; Srebotnik, E.; Mach, R.L.; Mach-Aigner, A.R. Identification of the main regulator responsible for synthesis of the typical yellow pigment produced by Trichoderma reesei. Appl. Environ. Microbiol. 2016, 82, 6247–6257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salo, O.; Guzmán-Chávez, F.; Ries, M.I.; Lankhorst, P.P.; Bovenberg, R.A.L.; Vreeken, R.J.; Driessen, A.J.M. Identification of a polyketide synthase involved in sorbicillin biosynthesis by Penicillium chrysogenum. Appl. Environ. Microbiol. 2016, 82, 3971–3978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfahad, A.; Abood, A.; Fisch, K.M.; Osipow, A.; Davison, J.; Avramović, M.; Butts, C.P.; Piel, J.; Simpson, T.J.; Cox, R.J. Oxidative dearomatisation: The key step of sorbicillinoid biosynthesis. Chem. Sci. 2014, 5, 523–527. [Google Scholar]
- Kahlert, L.; Bassiony, E.F.; Cox, R.J.; Skellam, E.J. Diels-Alder reactions during the biosynthesis of sorbicillinoids. Angew. Chem. Int. Ed. Engl. 2020, 59, 5816–5822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahlert, L.; Cox, R.J.; Skellam, E. The same but different: Multiple functions of the fungal flavin dependent monooxygenase SorD from Penicillium chrysogenum. Chem. Commun. 2020, 56, 10934–10937. [Google Scholar] [CrossRef]
- Chen, G.; Chu, J. Characterization of two polyketide synthases involved in sorbicillinoid biosynthesis by Acremonium chrysogenum using the CRISPR/Cas9 system. Appl. Biochem. Biotechnol. 2019, 188, 1134–1144. [Google Scholar] [CrossRef]
- Krishna, C. Solid-state fermentation systems—An overview. Crit. Rev. Biotechnol. 2005, 25, 1–30. [Google Scholar] [CrossRef]
- Ngo, M.T.; Nguyen, M.V.; Han, J.W.; Park, M.S.; Kim, H.; Choi, G.J. In vitro and in vivo antifungal activity of sorbicillinoids produced by Trichoderma longibrachiatum. J. Fungi 2021, 7, 428. [Google Scholar] [CrossRef]
- Abe, N.; Murata, T.; Hirota, A. Novel DPPH radical scavengers, bisorbicillinol and demethyltrichodimerol, from a fungus. Biosci. Biotechnol. Biochem. 1998, 62, 661–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Washida, K.; Abe, N.; Sugiyama, Y.; Hirota, A. Novel DPPH radical scavengers, demethylbisorbibutenolide and trichopyrone, from a fungus. Biosci. Biotechnol. Biochem. 2007, 71, 1052–1057. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Fan, W.; Li, E.; Ren, J.; Wang, W.; Liu, X.; Zhang, Y. Cordycepamides A-E and cordyglycoside A, new alkaloidal and glycoside metabolites from the entomopathogenic fungus Cordyceps sp. Fitoterapia 2020, 142, 104525. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Lin, J.; Niu, S.; Liu, S.; Liu, L. Pestalotiones A-D: Four new secondary metabolites from the plant endophytic fungus Pestalotiopsis Theae. Molecules 2020, 25, 470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, L.K.; Yang, J.; An, Y.; Liu, G. Disruption of a glutathione reductase encoding gene in Acremonium chrysogenum leads to reduction of its growth, cephalosporin production and antioxidative ability which is recovered by exogenous methionine. Fungal Genet. Biol. 2012, 49, 114–122. [Google Scholar] [CrossRef]
- Li, J.; Pan, Y.; Liu, G. Disruption of the nitrogen regulatory gene AcareA in Acremonium chrysogenum leads to reduction of cephalosporin production and repression of nitrogen metabolism. Fungal. Genet. Biol. 2013, 61, 69–79. [Google Scholar] [CrossRef]
- Li, H.; Gao, W.; Cui, Y.; Pan, Y.; Liu, G. Remarkable enhancement of bleomycin production through precise amplification of its biosynthetic gene cluster in Streptomyces verticillus. Sci. China Life Sci. 2021, 64, 1–9. [Google Scholar] [CrossRef]
- Washida, K.; Abe, N.; Sugiyama, Y.; Hirota, A. Novel secondary metabolites, spirosorbicillinols A, B, and C, from a fungus. Biosci. Biotechnol. Biochem. 2009, 73, 1355–1361. [Google Scholar] [CrossRef]
- Xie, C.L.; Zhang, D.; Lin, T.; He, Z.H.; Yan, Q.X.; Cai, Q.; Zhang, X.K.; Yang, X.W.; Chen, H.F. Antiproliferative sorbicillinoids from the deep-sea-derived Penicillium allii-sativi. Front. Microbiol. 2020, 11, 636948. [Google Scholar] [CrossRef]
- Liu, W.; Gu, Q.; Zhu, W.; Cui, C.; Fan, G. Dihydrotrichodimerol and tetrahydrotrichodimerol, two new bisorbicillinoids, from a marine-derived Penicillium terrestre. J. Antibiot. 2005, 58, 621–624. [Google Scholar] [CrossRef]
- Pang, X.; Zhou, X.; Lin, X.; Yang, B.; Tian, X.; Wang, J.; Xu, S.; Liu, Y. Structurally various sorbicillinoids from the deep-sea sediment derived fungus Penicillium sp. SCSIO06871. Bioorg. Chem. 2021, 107, 104600. [Google Scholar] [CrossRef] [PubMed]
- Kontani, M.; Sakagami, Y.; Marumo, S. First β-1,6-glucan biosynthesis inhibitor, bisvertinolone isolated from fungus, Acremonium strictum and its absolute stereochemistry. Tetrahedron Lett. 1994, 35, 2577–2580. [Google Scholar] [CrossRef]
- Corral, P.; Esposito, F.P.; Tedesco, P.; Falco, A.; Tortorella, E.; Tartaglione, L.; Festa, C.; D’Auria, M.V.; Gnavi, G.; Varese, G.C.; et al. Identification of a sorbicillinoid-producing Aspergillus strain with antimicrobial activity against Staphylococcus aureus: A new polyextremophilic marine fungus from Barents Sea. Mar. Biotechnol. 2018, 20, 502–511. [Google Scholar] [CrossRef] [PubMed]
- El-Elimat, T.; Raja, H.A.; Figueroa, M.; Swanson, S.M.; Falkinham, J.O.; Lucas, D.M.; Grever, M.R.; Wani, M.C.; Pearce, C.J.; Oberlies, N.H. Sorbicillinoid analogs with cytotoxic and selective anti-Aspergillus activities from Scytalidium album. J. Antibiot. 2015, 68, 191–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, N.; Yamamoto, K.; Hirota, A. Novel fungal metabolites, demethylsorbicillin and oxosorbicillinol, isolated from Trichoderma sp. USF-2690. Biosci. Biotechnol. Biochem. 2000, 64, 620–622. [Google Scholar] [CrossRef] [Green Version]
- Abe, N.; Murata, T.; Hirota, A. Novel oxidized sorbicillin dimers with 1,1-diphenyl-2-picrylhydrazyl-radical scavenging activity from a fungus. Biosci. Biotechnol. Biochem. 1998, 62, 2120–2126. [Google Scholar] [CrossRef] [Green Version]
Position | 1 a | 2 a | ||
---|---|---|---|---|
δH (J in Hz) | δC | δH (J in Hz) | δC | |
1 | 70.3, qC | 66.7, qC | ||
2 | 200.3, qC | 199.7, qC | ||
3 | 112.3, qC | 113.8, qC | ||
4 | 3.18, t (2.8) | 41.5, CH | 3.30, t (2.7) | 42.3, CH |
5 | 75.4, qC | 75.2, qC | ||
6 | 212.3, qC | 211.4, qC | ||
7 | 47.8, qC | 3.09, dd (10.6, 6.1) | 47.5, CH | |
8a | 2.38, m | 30.6, CH2 | 3.00, ddd (13.6, 10.6, 2.7) | 32.7, CH2 |
8b | 1.97, dd (13.3, 2.8) | 1.80, ddd (13.6, 6.1, 2.7) | ||
9 | 167.6, qC | 167.7, qC | ||
10 | 6.42, d (14.6) | 119.5, CH | 6.48, d (14.6) | 119.6, CH |
11 | 7.26, dd (14.6, 10.9) | 142.9, CH | 7.37, dd (14.6, 11.0) | 143.3, CH |
12 | 6.39, dd (14.6, 10.9) | 132.3, CH | 6.41, dd (14.6, 11.0) | 132.3, CH |
13 | 6.20, dq (14.6, 7.0) | 140.0, CH | 6.23, dq (14.6, 7.0) | 140.1, CH |
14 | 1.89, d (7.0) | 18.9, CH3 | 1.90, d (7.0) | 18.9, CH3 |
15a 15b | 1.81, td (13.2, 4.8) 1.50, m | 34.1, CH2 | 133.9, qC | |
16 | 2.16, m | 31.4, CH2 | 6.80, d (8.4) | 130.5, CH |
17 | 178.3, qC | 6.67, d (8.4) | 116.2, CH | |
18 | 5.18, d (15.6) | 135.4, CH | 157.7, qC | |
19 | 5.13, dd (15.6, 9.0) | 135.9, CH | 6.67, d (8.4) | 116.2, CH |
20 | 1.68, m | 50.6, CH | 6.80, d (8.4) | 130.5, CH |
21a 21b | 1.64, m 1.23, m | 27.2, CH2 | 0.80, s | 11.4, CH3 |
22a 22b | 2.42, m 2.30, m | 42.4, CH2 | 1.21, s | 24.0, CH3 |
23 | 212.4, qC | |||
24 | 2.16, s | 30.0, CH3 | ||
25 | 1.54, m | 33.4, CH | ||
26 | 0.86, d (7.0) | 21.2, CH3 | ||
27 | 0.81, d (7.0) | 19.7, CH3 | ||
28 | 1.16, s | 7.4, CH3 | ||
29 | 1.12, s | 24.5, CH3 |
Position | 3 b | |
---|---|---|
δH (J in Hz) | δC | |
1 | 3.71, s | 53.9, CH |
2 | 78.2, qC | |
3 | 107.8, qC | |
4 | 59.2, qC | |
5 | 190.9, qC | |
6 | 100.6, qC | |
7 | 167.9, qC | |
8 | 6.49, d (14.6) | 120.6, CH |
9 | 7.12, dd (14.6, 10.9) | 137.8, CH |
10 | 6.38, overlap | 131.1, CH |
11 | 6.10, (14.6, 6.8) | 136.2, CH |
12 | 1.83, d (6.8) | 18.4, CH3 |
13 | 1.30, s | 25.2, CH3 |
14 | 1.29, s | 18.8, CH3 |
1’ | 78.3, qC | |
2’ | 78.7, qC | |
3’ | 103.5, qC | |
4’ | 59.2, qC | |
5’ | 199.3, qC | |
6’ | 108.0, qC | |
7’ | 185.2, qC | |
8’ | 7.38, d (14.6) | 122.4, CH |
9’ | 7.48, dd (14.6, 10.9) | 146.5, CH |
10’ | 6.38, overlap | 131.1, CH |
11’ | 6.42, overlap | 143.4, CH |
12’ | 1.89, d (6.8) | 18.3, CH3 |
13’ | 1.17, s | 22.2, CH3 |
14’ | 1.31, s | 18.8, CH3 |
OH-7 | 16.38, s | |
OH-7’ | 18.02, s |
Compounds | S. aureus | C. neoformans |
---|---|---|
IC50 (μM) | ||
1 | >100 | >100 |
2 | 86.93 ± 1.72 | >100 |
3 | >100 | 69.06 ± 10.50 |
4 | >100 | >100 |
5 | >100 | >100 |
6 | >100 | >100 |
7 | >100 | >100 |
8 | >100 | >100 |
Ampicillin | 0.016 ± 0.004 | – |
Amphotericin B | – | 0.018 ± 0.003 |
Compounds | IC50 Value (μM) | |||||
---|---|---|---|---|---|---|
0.5 h | 1 h | 4 h | 6 h | 8 h | 24 h | |
1 | >200 | >200 | >200 | >200 | >200 | >200 |
2 | >200 | >200 | >200 | >200 | >200 | >200 |
3 | 60.29 ± 6.28 | 43.52 ± 5.93 | 22.57 ± 7.34 | 15.85 ± 5.94 | 12.30 ± 5.74 | 11.53 ± 1.53 |
4 | >200 | >200 | >200 | >200 | >200 | 151.87 ± 15.63 |
5 | >200 | >200 | >200 | >200 | >200 | 116.83 ± 3.93 |
6 | >200 | >200 | >200 | >200 | 197.73 ± 27.70 | 102.48 ± 5.04 |
7 | >200 | >200 | >200 | >200 | >200 | >200 |
8 | 155.40 ± 12.42 | 129.87 ± 12.09 | 88.38 ± 16.29 | 77.20 ± 15.38 | 71.00 ± 14.56 | 55.36 ± 14.92 |
Ascorbic acid | 25.36 ± 3.82 | 25.42 ± 3.85 | 26.65 ± 3.29 | 26.77 ± 3.24 | 26.48 ± 4.03 | 28.45 ± 3.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, C.; Wang, S.; Huo, R.; Li, E.; Wang, M.; Ren, J.; Pan, Y.; Liu, L.; Liu, G. Sorbicillinoid Derivatives with the Radical Scavenging Activities from the Marine-Derived Fungus Acremonium chrysogenum C10. J. Fungi 2022, 8, 530. https://doi.org/10.3390/jof8050530
Duan C, Wang S, Huo R, Li E, Wang M, Ren J, Pan Y, Liu L, Liu G. Sorbicillinoid Derivatives with the Radical Scavenging Activities from the Marine-Derived Fungus Acremonium chrysogenum C10. Journal of Fungi. 2022; 8(5):530. https://doi.org/10.3390/jof8050530
Chicago/Turabian StyleDuan, Chengbao, Shiyuan Wang, Ruiyun Huo, Erwei Li, Min Wang, Jinwei Ren, Yuanyuan Pan, Ling Liu, and Gang Liu. 2022. "Sorbicillinoid Derivatives with the Radical Scavenging Activities from the Marine-Derived Fungus Acremonium chrysogenum C10" Journal of Fungi 8, no. 5: 530. https://doi.org/10.3390/jof8050530
APA StyleDuan, C., Wang, S., Huo, R., Li, E., Wang, M., Ren, J., Pan, Y., Liu, L., & Liu, G. (2022). Sorbicillinoid Derivatives with the Radical Scavenging Activities from the Marine-Derived Fungus Acremonium chrysogenum C10. Journal of Fungi, 8(5), 530. https://doi.org/10.3390/jof8050530