Optimization through a Box–Behnken Experimental Design of the Microwave-Assisted Extraction of the Psychoactive Compounds in Hallucinogenic Fungi (Psylocibe cubensis)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Samples
2.2. Fungi Cultivation
2.3. Solvents and Reagents
2.4. Microwave-Assisted Extraction (MAE)
2.4.1. Microwave-Assisted Extraction Equipment
2.4.2. Microwave-Assisted Extraction Procedure
2.5. Alkaloids Quantification
2.6. Box–Behnken Design (BBD) for MAE Optimization
3. Results and Discussion
3.1. Alkaloids Identification Method
3.2. Determination of the Range of Study for Each Factor
3.2.1. Solvent Composition
3.2.2. Temperature
3.3. Optimization of the MAE Method
3.3.1. Box–Behnken Design
− 177962 × X1X3 − 70067.0 × X22 + 262414 × X2X3 − 71043.0 × X32
3.3.2. Optimal Extraction Time
3.3.3. Repeatability and Intermediate Precision
3.4. Quantification of Alkaloids in Real Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blei, F.; Baldeweg, F.; Fricke, J.; Hoffmeister, D. Biocatalytic production of psilocybin and derivatives in tryptophan synthase-enhanced reactions. Chem. Eur. J. 2018, 24, 10028–10031. [Google Scholar] [CrossRef] [PubMed]
- Nichols, D.E. Psilocybin: From ancient magic to modern medicine. J. Antibiot. 2020, 73, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Benko, J.; Vranková, S. Natural psychoplastogens as antidepressant agents. Molecules 2020, 25, 1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carhart-Harris, R.L.; Bolstridge, M.; Day, C.M.J.; Rucker, J.; Watts, R.; Erritzoe, D.E.; Kaelen, M.; Giribaldi, B.; Bloomfield, M.; Pilling, S.; et al. Psilocybin with psychological support for treatment-resistant depression: Six-month follow-up. Psychopharmacology 2018, 235, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Vetulani, J. Drug addiction. Part I. Psychoactive substances in the past and present. Pol. J. Pharmacol. 2001, 53, 201–214. [Google Scholar]
- De Veen, B.T.H.; Schellekens, A.F.A.; Verheij, M.M.M.; Homberg, J.R. Psilocybin for treating Substance Use Disorders? Expert Rev. Neurother. 2017, 17, 203–212. [Google Scholar] [CrossRef]
- Johnson, M.W.; Garcia-Romeu, A.; Cosimano, M.P.; Griffiths, R.R. Pilot study of the 5HT2AR agonist psilocybin in the treatment of tobacco addiction. J. Psychopharmacol. 2014, 28, 983–992. [Google Scholar] [CrossRef] [Green Version]
- Nichols, D.E. Psychedelics. Pharmacol. Rev. 2016, 68, 264–355. [Google Scholar] [CrossRef] [Green Version]
- Solano, J.; Anabalón, L.; Figueroa, S.; Lizama, C.; Reyes, L.C.; Gangitano, D. Psychedelic fungus (Psylocibe sp.) authentication in a case of illegal drug traffic: Sporologcal, molecular analysis and identification of the psychoactive substance. Sci. Justice 2019, 59, 102–108. [Google Scholar] [CrossRef]
- Dasgupta, A. Challenges in Laboratory Detection of Unusual Substance Abuse: Issues with Magic Mushroom, Peyote Cactus, Khat and Solvent Abuse. In Advances in Clinical Chemistry, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; Volume 78, pp. 163–186. [Google Scholar]
- Kit Setas 100% Micelio Rcuatorianas: PSYCODELICE. Available online: https://www.psycodelice.com/es/kit-setas-ecuatoriana-100-micelio.html (accessed on 25 February 2022).
- Kit Setas B+ 100% Micelio: PSYCODELICE. Available online: https://www.psycodelice.com/es/kit-setas-b-2705.html (accessed on 25 February 2022).
- Kreye, G.; Heidecker, B.; Masel, E.K. The top ten things that must be known about end of life therapy in patients with advanced cancer. Memo Mag. Eur. Med. Oncol. 2020, 13, 88–92. [Google Scholar] [CrossRef]
- Libzon, S.; Schleider, L.B.-L.; Saban, N.; Levit, L.; Tamari, Y.; Linder, I.; Lerman-Sagie, T.; Blumkin, L. Medical Cannabis for Pediatric Moderate to Severe Complex Motor Disorders. J. Child Neurol. 2018, 33, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Geiger, H.A.; Wurst, M.G.; Daniels, R.N. Dark Classics in Chemical Neuroscience: Psilocybin. ACS Chem. Neurosci. 2018, 9, 2438–2447. [Google Scholar] [CrossRef] [PubMed]
- Dinis-Oliveira, R.J. Metabolism of psilocybin and psilocin: Clinical and forensic toxicological relevance. Drug Metab. Rev. 2017, 49, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Kamata, T.; Nishikawa, M.; Katagi, M.; Tsuchihashi, H. Direct detection of serum psilocin glucuronide by LC/MS and LC/MS/MS: Time courses of total and free (unconjugated) psilocin concentrations in serum specimens of a “magic mushroom” user. Forensic Toxicol. 2006, 24, 36–40. [Google Scholar] [CrossRef]
- Kamata, T.; Nishikawa, M.; Katagi, M.; Tsuchihashi, H. Optimized glucuronide hydrolysis for the detection of psilocin in human urine samples. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003, 796, 421–427. [Google Scholar] [CrossRef]
- Martin, R.; Schürenkamp, J.; Pfeiffer, H.; Köhler, H. A validated method for quantitation of psilocin in plasma by LC-MS/MS and study of stability. Int. J. Legal Med. 2012, 16, 845–849. [Google Scholar] [CrossRef]
- Martin, R.; Schürenkamp, J.; Gasse, A.; Pfeiffer, H.; Köhler, H. Determination of psilocin, bufotenine, LSD and its metabolites in serum, plasma and urine by SPE-LC-MS/MS. Int. J. Legal Med. 2013, 127, 593–601. [Google Scholar] [CrossRef]
- Chen, J.; Li, M.; Yan, X.; Wu, E.; Zhu, H.; Lee, K.J.; Chu, V.M.; Zhan, L.; Lee, W.; Kang, J.S. Determining the pharmacokinetics of psilocin in rat plasma using ultra-performance liquid chromatography coupled with a photodiode array detector after orally administering an extract of Gymnopilus spectabilis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 2669–2672. [Google Scholar] [CrossRef]
- Bambauer, T.P.; Wagmann, L.; Maurer, H.H.; Weber, A.A.; Meyer, M.R. Development and application of a strategy for analyzing eight biomarkers in human urine to verify toxic mushroom or Ricinus communis ingestions by means of hydrophilic interaction LC coupled to HRMS/MS. Talanta 2020, 213, 129847. [Google Scholar] [CrossRef]
- Poliwoda, A.; Zielińska, K.; Wieczorek, P.P. Direct analysis of psilocin and muscimol in urine samples using simple drop microextraction technique in-line with capillary electrophoresis. Molecules 2020, 25, 1566. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhao, Q.; Song, W.; Xu, Y.; Zhang, X.; Zeng, Q.; Chen, H.; Ding, L.; Ren, N. High-throughput dynamic microwave-assisted extraction on-line coupled with solid-phase extraction for analysis of nicotine in mushroom. Talanta 2011, 85, 743–748. [Google Scholar] [CrossRef] [PubMed]
- De Vita, D.; Madia, V.N.; Tudino, V.; Saccoliti, F.; De Leo, A.; Messore, A.; Roscilli, P.; Botto, A.; Pinidinello, I.; Santilli, G.; et al. Comparison of different methods for the extraction of cannabinoids from cannabis. Nat. Prod. Res. 2020, 34, 2952–2958. [Google Scholar] [CrossRef] [PubMed]
- Aliaño-González, M.J.; Ferreiro-González, M.; Espada-Bellido, E.; Carrera, C.; Palma, M.; Ayuso, J.; Barbero, G.F.; Álvarez, J.Á. Extraction of anthocyanins and total phenolic compounds from Açai (Euterpe oleracea Mart.) using an experimental design methodology. Part 3: Microwave-assisted extraction. Agronomy 2020, 10, 179. [Google Scholar] [CrossRef] [Green Version]
- Saito, K.; Toyo’oka, T.; Fukushima, T.; Kato, M.; Shirota, O.; Goda, Y. Determination of psilocin in magic mushrooms and rat plasma by liquid chromatography with fluorimetry and electrospray ionization mass spectrometry. Anal. Chim. Acta 2004, 527, 149–156. [Google Scholar] [CrossRef]
- Gotvaldová, K.; Hájková, K.; Borovička, J.; Jurok, R.; Cihlářová, P.; Kuchař, M. Stability of psilocybin and its four analogs in the biomass of the psychotropic mushroom Psilocybe cubensis. Drug Test. Anal. 2021, 13, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Mandhania, S.; Pal, A.; Saharan, V. Simultaneous estimation of twenty eight phenolic compounds by a novel and expeditious method developed on quaternary ultra-performance liquid chromatography system with a photodiode array detector. Biomolecules 2020, 10, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Instrucciones de Cultivo de Setas Alucinógenas: PSYCODELICE. Available online: https://www.psycodelice.com/es/tienda-online-panes-setas/instrucciones-cultivo.html (accessed on 2 March 2022).
- Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandao, G.C.; Da Silva, E.G.P.; Portugal, L.A.; Dos Reis, P.S.; Souza, A.S.; et al. Box-Behnken design: An alternative for the optimization of analytical methods. Anal. Chim. Acta 2007, 597, 179–186. [Google Scholar] [CrossRef]
- Chaves, J.O.; De Souza, M.C.; Da Silva, L.C.; Lachos-Perez, D.; Torres-Mayanga, P.C.; Machado, A.P.D.F.; Forster-Carneiro, T.; Vázquez-Espinosa, M.; González-de-Peredo, A.V.; Barbero, G.F.; et al. Extraction of Flavonoids From Natural Sources Using Modern Techniques. Front. Chem. 2020, 8, 507887. [Google Scholar] [CrossRef]
- Routray, W.; Orsat, V. Microwave-Assisted Extraction of Flavonoids: A Review. Food Bioprocess. Technol. 2012, 5, 409–424. [Google Scholar] [CrossRef]
- Association of Official Agricultural Chemists. Peer Verified Methods Advisory Committee. In AOAC Peer Verified Methods Program; AOAC International: Gaithersburg, MD, USA, 1998; pp. 1–35. [Google Scholar]
- Laussmann, T.; Meier-Giebing, S. Forensic analysis of hallucinogenic mushrooms and khat (Catha edulis Forsk) using cation-exchange liquid chromatography. Forensic Sci. Int. 2010, 195, 160–164. [Google Scholar] [CrossRef]
- Tsujikawa, K.; Kanamori, T.; Iwata, Y.; Ohmae, Y.; Sugita, R.; Inoue, H.; Kishi, T. Morphological and chemical analysis of magic mushrooms in Japan. Forensic Sci. Int. 2003, 138, 85–90. [Google Scholar] [CrossRef] [PubMed]
Run | Factors | Response (Sum of Both Peaks) | |||
---|---|---|---|---|---|
X1 | X2 | X3 | Predicted | Experimental | |
1 | 0 | 1 | −1 | 1,313,823 | 894,261 |
2 | −1 | 0 | −1 | 1,487,617 | 535,292 |
3 | 1 | −1 | 0 | 1,317,156 | 931,988 |
4 | 1 | 0 | −1 | 1,399,065 | 887,638 |
5 | 1 | 0 | 1 | 2,460,369 | 1,261,792 |
6 | 0 | −1 | 1 | 1,316,109 | 2,220,876 |
7 | 0 | 0 | 0 | 1,436,270 | 1,540,337 |
8 | −1 | −1 | 0 | 1,569,860 | 1,983,228 |
9 | 1 | 1 | 0 | 2,540,326 | 691,809 |
10 | 0 | 0 | 0 | 1,436,270 | 1,370,605 |
11 | 0 | 1 | 1 | 2,544,031 | 1,050,115 |
12 | −1 | 1 | 0 | 1,752,878 | 702,897 |
13 | −1 | 0 | 1 | 1,837,073 | 1,621,296 |
14 | 0 | −1 | −1 | 1,135,557 | 1,015,368 |
15 | 0 | 0 | 0 | 1,436,270 | 1,397,853 |
Factor | Factor Code | Coefficients | Sum of Squares (1011) | Degrees of Freedom | Mean Square (1010) | F-Value | p-Value |
---|---|---|---|---|---|---|---|
Model | 1.43627 × 106 | ||||||
A: Temperature | X1 | −133,686 | 1.42975 | 1 | 14.2975 | 4.37 | 0.0908 |
B: Solvent composition | X2 | −351,547 | 9.88684 | 1 | 98.8684 | 30.23 | 0.0027 |
C: Sample-solvent ratio | X3 | 352,690 | 9.95122 | 1 | 99.5122 | 30.42 | 0.0027 |
AA | X12 | −288,717 | 3.07783 | 1 | 30.7783 | 9.41 | 0.0279 |
AB | X1 X2 | 260,038 | 2.70479 | 1 | 27.0479 | 8.27 | 0.0348 |
AC | X1 X3 | −177,962 | 1.26683 | 1 | 12.6683 | 3.87 | 0.1062 |
BB | X22 | −70,067.0 | 0.18127 | 1 | 1.8127 | 0.55 | 0.4901 |
BC | X2 X3 | −262,414 | 2.75443 | 1 | 27.5443 | 8.42 | 0.0337 |
CC | X32 | −71,043.0 | 0.186355 | 1 | 1.86355 | 0.57 | 0.4844 |
Lack of fit | 1.46928 | 3 | 4.89759 | 5.89 | 0.1485 | ||
Pure error | 0.166177 | 2 | 0.830885 | ||||
Total correlation | 32.8692 | 14 |
Factor | Optimal Value |
---|---|
Temperature (°C) | 50 |
Sample-solvent ratio (g/10 mL) | 0.60 |
Solvent composition (%MeOH) | 60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polo-Castellano, C.; Álvarez, J.Á.; Palma, M.; Barbero, G.F.; Ayuso, J.; Ferreiro-González, M. Optimization through a Box–Behnken Experimental Design of the Microwave-Assisted Extraction of the Psychoactive Compounds in Hallucinogenic Fungi (Psylocibe cubensis). J. Fungi 2022, 8, 598. https://doi.org/10.3390/jof8060598
Polo-Castellano C, Álvarez JÁ, Palma M, Barbero GF, Ayuso J, Ferreiro-González M. Optimization through a Box–Behnken Experimental Design of the Microwave-Assisted Extraction of the Psychoactive Compounds in Hallucinogenic Fungi (Psylocibe cubensis). Journal of Fungi. 2022; 8(6):598. https://doi.org/10.3390/jof8060598
Chicago/Turabian StylePolo-Castellano, Curro, José Á. Álvarez, Miguel Palma, Gerardo F. Barbero, Jesús Ayuso, and Marta Ferreiro-González. 2022. "Optimization through a Box–Behnken Experimental Design of the Microwave-Assisted Extraction of the Psychoactive Compounds in Hallucinogenic Fungi (Psylocibe cubensis)" Journal of Fungi 8, no. 6: 598. https://doi.org/10.3390/jof8060598
APA StylePolo-Castellano, C., Álvarez, J. Á., Palma, M., Barbero, G. F., Ayuso, J., & Ferreiro-González, M. (2022). Optimization through a Box–Behnken Experimental Design of the Microwave-Assisted Extraction of the Psychoactive Compounds in Hallucinogenic Fungi (Psylocibe cubensis). Journal of Fungi, 8(6), 598. https://doi.org/10.3390/jof8060598