Aspergillus Endophthalmitis: Epidemiology, Pathobiology, and Current Treatments
Abstract
:1. Introduction
2. Epidemiology
3. Aspergillus Species and Endophthalmitis
- a.
- Aspergillus fumigatus
- b.
- Aspergillus flavus
4. Clinical Manifestations of Endophthalmitis
5. Pathobiology and Immune Response in Aspergillus Infection
6. Diagnosis
6.1. Tissue Microscopy/Culture and Histopathology
6.2. Blood Cultures
6.3. Broad Range Real-Time PCR
6.4. Imaging
6.5. (1→3)-β-D-Glucan Test
6.6. Serum and Vitreous Galactomannan Assay
7. Antifungal Management
7.1. Polyenes
7.2. Azoles (Triazoles)
- a.
- Voriconazole
- b.
- Isavuconazole
7.3. Echinocandins
7.4. Combination Therapy
7.5. Corticosteroids
8. Surgical Management
8.1. Vitreous Tap vs. Pars Plana Vitrectomy
8.2. Evisceration
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nabili, M.; Shokohi, T.; Moazeni, M.; Khodavaisy, S.; Aliyali, M.; Badiee, P.; Zarrinfar, H.; Hagen, F.; Badali, H. High prevalence of clinical and environmental triazole-resistant Aspergillus fumigatus in Iran: Is it a challenging issue? J. Med. Microbiol. 2016, 65, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Ziaee, A.; Zia, M.; Goli, M. Identification of saprophytic and allergenic fungi in indoor and outdoor environments. Environ. Monit. Assess. 2018, 190, 574. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, C.L.; Mota, F.V.; Ferreira, G.F.; Mendes, J.F.; Pereira, E.C.; Freitas, C.H.; Vieira, J.N.; Villarreal, J.P.; Nascente, P.S. Airborne fungi in an intensive care unit. Braz. J. Biol. 2018, 78, 265–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gniadek, A.; Macura, A.B. Air-conditioning vs. presence of pathogenic fungi in hospital operating theatre environment. Wiad. Parazytol. 2011, 57, 103–106. [Google Scholar]
- Zanganeh, E.; Zarrinfar, H.; Rezaeetalab, F.; Fata, A.; Tohidi, M.; Najafzadeh, M.J.; Alizadeh, M.; Seyedmousavi, S. Predominance of non-fumigatus Aspergillus species among patients suspected to pulmonary aspergillosis in a tropical and subtropical region of the Middle East. Microb. Pathog. 2018, 116, 296–300. [Google Scholar] [CrossRef]
- Zarrinfar, H.; Mirhendi, H.; Fata, A.; Khodadadi, H.; Kordbacheh, P. Detection of Aspergillus flavus and A. fumigatus in Bronchoalveolar Lavage Specimens of Hematopoietic Stem Cell Transplants and Hematological Malignancies Patients by Real-Time Polymerase Chain Reaction, Nested PCR and Mycological Assays. Jundishapur J. Microbiol. 2015, 8, e13744. [Google Scholar] [CrossRef] [Green Version]
- Zarrinfar, H.; Saber, S.; Kordbacheh, P.; Makimura, K.; Fata, A.; Geramishoar, M.; Mirhendi, H. Mycological Microscopic and Culture Examination of 400 Bronchoalveolar Lavage (BAL) Samples. Iran. J. Public Health 2012, 41, 70–76. [Google Scholar]
- Latge, J.P. Aspergillus fumigatus and aspergillosis. Clin. Microbiol. Rev. 1999, 12, 310–350. [Google Scholar] [CrossRef] [Green Version]
- Kernt, M.; Kampik, A. Endophthalmitis: Pathogenesis, clinical presentation, management, and perspectives. Clin. Ophthalmol. 2010, 4, 121–135. [Google Scholar] [CrossRef]
- Joseph, J.; Sontam, B.; Guda, S.J.M.; Gandhi, J.; Sharma, S.; Tyagi, M.; Dave, V.P.; Das, T. Trends in microbiological spectrum of endophthalmitis at a single tertiary care ophthalmic hospital in India: A review of 25 years. Eye 2019, 33, 1090–1095. [Google Scholar] [CrossRef]
- Wykoff, C.C.; Flynn, H.W., Jr.; Miller, D.; Scott, I.U.; Alfonso, E.C. Exogenous fungal endophthalmitis: Microbiology and clinical outcomes. Ophthalmology 2008, 115, 1501–1507. [Google Scholar] [CrossRef]
- Relhan, N.; Forster, R.K.; Flynn, H.W., Jr. Endophthalmitis: Then and Now. Am. J. Ophthalmol. 2018, 187, 20–27. [Google Scholar] [CrossRef]
- Dave, V.P.; Pappuru, R.R.; Pathengay, A.; Gupta, R.; Joseph, J.; Sharma, S.; Das, T. Aspergillus Endophthalmitis: Clinical Presentations and Factors Determining Outcomes. Asia Pac. J. Ophthalmol. 2020, 9, 9–13. [Google Scholar] [CrossRef]
- Kim, D.Y.; Moon, H.I.; Joe, S.G.; Kim, J.G.; Yoon, Y.H.; Lee, J.Y. Recent Clinical Manifestation and Prognosis of Fungal Endophthalmitis: A 7-Year Experience at a Tertiary Referral Center in Korea. J. Korean Med. Sci. 2015, 30, 960–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danielescu, C.; Cantemir, A.; Chiselita, D. Successful treatment of fungal endophthalmitis using intravitreal caspofungin. Arq. Bras. Oftalmol. 2017, 80, 196–198. [Google Scholar] [CrossRef]
- Rao, N.A.; Hidayat, A.A. Endogenous mycotic endophthalmitis: Variations in clinical and histopathologic changes in candidiasis compared with aspergillosis. Am. J. Ophthalmol. 2001, 132, 244–251. [Google Scholar] [CrossRef]
- Rocco, J.M.; Benson, M.K. Aspergillus aortitis in an immunocompetent patient presenting with acute endophthalmitis. Infect. Dis. Rep. 2018, 10, 7750. [Google Scholar] [CrossRef]
- Spadea, L.; Giannico, M.I. Diagnostic and Management Strategies of Aspergillus Endophthalmitis: Current Insights. Clin. Ophthalmol. 2019, 13, 2573–2582. [Google Scholar] [CrossRef] [Green Version]
- William, A.; Spitzer, M.S.; Deuter, C.; Blumenstock, G.; Partsch, M.; Voykov, B.; Ziemssen, F.; Bartz-Schmidt, K.U.; Doycheva, D. Outcomes of Primary Transconjunctival 23-Gauge Vitrectomy in the Diagnosis and Treatment of Presumed Endogenous Fungal Endophthalmitis. Ocul. Immunol. Inflamm. 2017, 25, 239–245. [Google Scholar] [CrossRef]
- Callanan, D.; Scott, I.U.; Murray, T.G.; Oxford, K.W.; Bowman, C.B.; Flynn, H.W., Jr. Early onset endophthalmitis caused by Aspergillus species following cataract surgery. Am. J. Ophthalmol. 2006, 142, 509–511. [Google Scholar] [CrossRef]
- Mamandhar, A.; Bajracharya, L. Endogenous Aspergillus endophthalmitis in a healthy individual. Nepal. J. Ophthalmol. 2012, 4, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Baldinger, J.; Doft, B.H.; Burns, S.A.; Johnson, B. Retinal toxicity of amphotericin B in vitrectomised versus non-vitrectomised eyes. Br. J. Ophthalmol. 1986, 70, 657–661. [Google Scholar] [CrossRef] [PubMed]
- Doft, B.H.; Clarkson, J.G.; Rebell, G.; Forster, R.K. Endogenous Aspergillus endophthalmitis in drug abusers. Arch. Ophthalmol. 1980, 98, 859–862. [Google Scholar] [CrossRef] [PubMed]
- Fincher, T.; Fulcher, S.F. Diagnostic and therapeutic challenge of Aspergillus flavus scleritis. Cornea 2007, 26, 618–620. [Google Scholar] [CrossRef]
- Haseeb, A.A.; Elhusseiny, A.M.; Siddiqui, M.Z.; Ahmad, K.T.; Sallam, A.B. Fungal Endophthalmitis: A Comprehensive Review. J. Fungi 2021, 7, 996. [Google Scholar] [CrossRef]
- AlQahtani, G.M.S.; AlSayed, A.A.D.; Gangadharan, S.; Adhi, M.I. Fungal endophthalmitis in a case of granulomatosis with polyangitis. Saudi J. Ophthalmol. 2018, 32, 261–265. [Google Scholar] [CrossRef]
- Hoenigl, M.; Krause, R. Antifungal therapy of aspergillosis of the central nervous system and aspergillus endophthalmitis. Curr. Pharm. Des. 2013, 19, 3648–3668. [Google Scholar] [CrossRef] [PubMed]
- Puah, S.H.; Ng, J.; Ang, B.; Xu, H.; Agrawal, R.; Ho, S.L. Recurrent Aspergillus terreus Endophthalmitis from Focal Bronchiectasis. Ocular Immunol. Inflamm. 2018, 26, 358–361. [Google Scholar] [CrossRef]
- Aigner, M.; Lass-Florl, C. Treatment of drug-resistant Aspergillus infection. Expert Opin. Pharm. 2015, 16, 2267–2270. [Google Scholar] [CrossRef] [Green Version]
- Cheon, S.; Yang, M.K.; Kim, C.J.; Kim, T.S.; Song, K.H.; Woo, S.J.; Kim, E.S.; Park, K.U.; Kim, H.B. Disseminated Aspergillosis in the Immunocompetent Host: A Case Report and Literature Review. Mycopathologia 2015, 180, 217–222. [Google Scholar] [CrossRef]
- Hunt, K.E.; Glasgow, B.J. Aspergillus endophthalmitis. An unrecognized endemic disease in orthotopic liver transplantation. Ophthalmology 1996, 103, 757–767. [Google Scholar] [CrossRef]
- Dagenais, T.R.T.; Keller, N.P. Pathogenesis of Aspergillus fumigatus in Invasive Aspergillosis. Clin. Microbiol. Rev. 2009, 22, 447–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weishaar, P.D.; Flynn, H.W., Jr.; Murray, T.G.; Davis, J.L.; Barr, C.C.; Gross, J.G.; Mein, C.E.; McLean, W.C., Jr.; Killian, J.H. Endogenous Aspergillus endophthalmitis. Clinical features and treatment outcomes. Ophthalmology 1998, 105, 57–65. [Google Scholar] [CrossRef]
- Lupia, T.; Corcione, S.; Fea, A.M.; Reibaldi, M.; Fallico, M.; Petrillo, F.; Galdiero, M.; Scabini, S.; Polito, M.S.; Ciabatti, U.; et al. Exogenous Fungal Endophthalmitis: Clues to Aspergillus Aetiology with a Pharmacological Perspective. Microorganisms 2020, 9, 74. [Google Scholar] [CrossRef]
- Person, A.K.; Chudgar, S.M.; Norton, B.L.; Tong, B.C.; Stout, J.E. Aspergillus niger: An unusual cause of invasive pulmonary aspergillosis. J. Med. Microbiol. 2010, 59, 834–838. [Google Scholar] [CrossRef] [Green Version]
- Araiza, J.; Canseco, P.; Bonifaz, A. Otomycosis: Clinical and mycological study of 97 cases. Rev. Laryngol. Otol. Rhinol. 2006, 127, 251–254. [Google Scholar]
- Loudon, K.W.; Coke, A.P.; Burnie, J.P.; Shaw, A.J.; Oppenheim, B.A.; Morris, C.Q. Kitchens as a source of Aspergillus niger infection. J. Hosp. Infect. 1996, 32, 191–198. [Google Scholar] [CrossRef]
- Bastos, R.W.; Valero, C.; Silva, L.P.; Schoen, T.; Drott, M.; Brauer, V.; Silva-Rocha, R.; Lind, A.; Steenwyk, J.L.; Rokas, A.; et al. Functional Characterization of Clinical Isolates of the Opportunistic Fungal Pathogen Aspergillus nidulans. mSphere 2020, 5, e00153-20. [Google Scholar] [CrossRef] [Green Version]
- Ries, L.N.A.; Steenwyk, J.L.; de Castro, P.A.; de Lima, P.B.A.; Almeida, F.; de Assis, L.J.; Manfiolli, A.O.; Takahashi-Nakaguchi, A.; Kusuya, Y.; Hagiwara, D.; et al. Nutritional Heterogeneity Among Aspergillus fumigatus Strains Has Consequences for Virulence in a Strain- and Host-Dependent Manner. Front. Microbiol. 2019, 10, 854. [Google Scholar] [CrossRef]
- Keller, N.P. Heterogeneity Confounds Establishment of “a” Model Microbial Strain. mBio 2017, 8, e00135-17. [Google Scholar] [CrossRef] [Green Version]
- Latgé, J.P. The pathobiology of Aspergillus fumigatus. Trends Microbiol. 2001, 9, 382–389. [Google Scholar] [CrossRef]
- Chazalet, V.; Debeaupuis, J.P.; Sarfati, J.; Lortholary, J.; Ribaud, P.; Shah, P.; Cornet, M.; Thien, H.V.; Gluckman, E.; Brücker, G.; et al. Molecular typing of environmental and patient isolates of Aspergillus fumigatus from various hospital settings. J. Clin. Microbiol. 1998, 36, 1494–1500. [Google Scholar] [CrossRef] [Green Version]
- Debeaupuis, J.P.; Sarfati, J.; Chazalet, V.; Latge, J.P. Genetic diversity among clinical and environmental isolates of Aspergillus fumigatus. Infect. Immunity 1997, 65, 3080–3085. [Google Scholar] [CrossRef] [Green Version]
- Latgé, J.P.; Chamilos, G. Aspergillus fumigatus and Aspergillosis in 2019. Clin. Microbiol. Rev. 2019, 33, e00140-18. [Google Scholar] [CrossRef]
- Wösten, H.A.; van Veluw, G.J.; de Bekker, C.; Krijgsheld, P. Heterogeneity in the mycelium: Implications for the use of fungi as cell factories. Biotechnol. Lett. 2013, 35, 1155–1164. [Google Scholar] [CrossRef]
- Bertuzzi, M.; Schrettl, M.; Alcazar-Fuoli, L.; Cairns, T.C.; Munoz, A.; Walker, L.A.; Herbst, S.; Safari, M.; Cheverton, A.M.; Chen, D.; et al. The pH-responsive PacC transcription factor of Aspergillus fumigatus governs epithelial entry and tissue invasion during pulmonary aspergillosis. PLoS Pathog. 2014, 10, e1004413. [Google Scholar] [CrossRef] [Green Version]
- Kashefi, E.; Seyedi, S.J.; Zomorodian, K.; Zare Shahrabadi, Z.; Zarrinfar, H. Successful treatment of pulmonary aspergillosis due to Aspergillus fumigatus in a child affected by systemic lupus erythematosus: A case report from Northeastern Iran. Clin. Case Rep. 2021, 9, e04248. [Google Scholar] [CrossRef]
- Gruener, A.M.; Allen, F.; Stanford, M.R.; Graham, E.M. Aspergillus fumigatus Endophthalmitis with Necrotizing Scleritis following Pars Plana Vitrectomy. Case Rep. Ophthalmol. Med. 2016, 2016, 9289532. [Google Scholar] [CrossRef] [Green Version]
- Logan, S.; Rajan, M.; Graham, E.; Johnson, E.; Klein, J. A case of aspergillus endophthalmitis in an immuncompetent woman: Intra-ocular penetration of oral voriconazole: A case report. Cases J. 2010, 3, 31. [Google Scholar] [CrossRef] [Green Version]
- Rudramurthy, S.M.; Paul, R.A.; Chakrabarti, A.A.; Mouton, J.W.; Meis, J.A. Invasive Aspergillosis by Aspergillus flavus: Epidemiology, Diagnosis, Antifungal Resistance, and Management. J. Fungi 2019, 5, 55. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, S.; Manavathu, E.K.; Chandrasekar, P.H. Aspergillus flavus: An emerging non-fumigatus Aspergillus species of significance. Mycoses 2009, 52, 206–222. [Google Scholar] [CrossRef]
- Chakrabarti, A.; Chatterjee, S.S.; Das, A.; Shivaprakash, M.R. Invasive aspergillosis in developing countries. Med. Mycol. 2011, 49 (Suppl. 1), S35–S47. [Google Scholar] [CrossRef] [Green Version]
- Hedayati, M.T.; Pasqualotto, A.C.; Warn, P.A.; Bowyer, P.; Denning, D.W. Aspergillus flavus: Human pathogen, allergen and mycotoxin producer. Microbiology (Reading) 2007, 153, 1677–1692. [Google Scholar] [CrossRef] [Green Version]
- Spadea, L.; Abbouda, A.; Abicca, I.; Paroli, M.P. Aspergillus flavus endophthalmitis after penetrating keratoplasty combined with cataract phacoemulsification and IOL implantation. Int. Ophthalmol. 2015, 35, 145–148. [Google Scholar] [CrossRef]
- Viswanathaiah, S.; Babu, M.; Manjunatha, M. Endogenous endophthalmitis caused by Aspergillus flavus in an immunocompetent individual—A rare case with review of literature. J. Acad. Clin. Microbiol. 2019, 21, 34–37. [Google Scholar] [CrossRef]
- Aydin, S.; Ertugrul, B.; Gultekin, B.; Uyar, G.; Kir, E. Treatment of two postoperative endophthalmitis cases due to Aspergillus flavus and Scopulariopsis spp. with local and systemic antifungal therapy. BMC Infect. Dis. 2007, 7, 87. [Google Scholar] [CrossRef] [Green Version]
- Taylor, E.L.S.; Ferreira, G.; Freitas, G.; Ferreira, R.; de Assis Santos, D.; de Resende-Stoianoff, M. Screening of antifungal susceptibility in cave-dwelling aspergilli and report of an amphotericin B-resistant Aspergillus flavus. Int. J. Speleol. 2017, 46, 369–378. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarti, A.; Shivaprakash, M.R.; Singh, R.; Tarai, B.; George, V.K.; Fomda, B.A.; Gupta, A. Fungal endophthalmitis: Fourteen years’ experience from a center in India. Retina 2008, 28, 1400–1407. [Google Scholar] [CrossRef] [PubMed]
- Durand, M.L. Bacterial and Fungal Endophthalmitis. Clin. Microbiol. Rev. 2017, 30, 597–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Ji, J.; Wang, Z.; Chen, H.; Cao, W.; Sun, X. Microbiological Isolates and Antibiotic Susceptibilities in Cases of Posttraumatic Endophthalmitis: A 15-Year Review. J. Ophthalmol. 2020, 2020, 5053923. [Google Scholar] [CrossRef] [PubMed]
- Dogra, M.; Akella, M.; Dogra, M.R.; Gupta, A. Presumably contaminated intravenous infusion-induced Aspergillus terreus endogenous endophthalmitis presenting with posterior hypopyon. Indian J. Ophthalmol. 2018, 66, 593–595. [Google Scholar] [CrossRef]
- Haddock, L.J.; Flynn, H.W., Jr.; Dubovy, S.R.; Khurana, R.N.; Egbert, P.R. Histopathologic correlation of Aspergillus endophthalmitis following uncomplicated cataract surgery. Clin. Ophthalmol. 2012, 6, 1573–1577. [Google Scholar] [CrossRef] [Green Version]
- Słowik, M.; Biernat, M.M.; Urbaniak-Kujda, D.; Kapelko-Slowik, K.; Misiuk-Hojlo, M. Mycotic Infections of the Eye. Adv. Clin. Exp. Med. 2015, 24, 1113–1117. [Google Scholar] [CrossRef]
- Sachdev, N.; Gupta, P.; Singh, R.; Chakrabarti, A.; Gupta, V.; Gupta, A. Bilateral simultaneous endogenous Aspergillus endophthalmitis in an immunocompetent patient. Retin. Cases Brief Rep. 2010, 4, 14–17. [Google Scholar] [CrossRef]
- Adam, C.R.; Sigler, E.J. Multimodal imaging findin.ngs in endogenous Aspergillus endophthalmitis. Retina 2014, 34, 1914–1915. [Google Scholar] [CrossRef]
- Espinosa, V.; Rivera, A. First Line of Defense: Innate Cell-Mediated Control of Pulmonary Aspergillosis. Front. Microbiol. 2016, 7, 272. [Google Scholar] [CrossRef] [Green Version]
- Underhill, D.M.; Pearlman, E. Immune Interactions with Pathogenic and Commensal Fungi: A Two-Way Street. Immunity 2015, 43, 845–858. [Google Scholar] [CrossRef] [Green Version]
- Jhingran, A.; Mar, K.B.; Kumasaka, D.K.; Knoblaugh, S.E.; Ngo, L.Y.; Segal, B.H.; Iwakura, Y.; Lowell, C.A.; Hamerman, J.A.; Lin, X.; et al. Tracing conidial fate and measuring host cell antifungal activity using a reporter of microbial viability in the lung. Cell Rep. 2012, 2, 1762–1773. [Google Scholar] [CrossRef] [Green Version]
- Werner, J.L.; Metz, A.E.; Horn, D.; Schoeb, T.R.; Hewitt, M.M.; Schwiebert, L.M.; Faro-Trindade, I.; Brown, G.D.; Steele, C. Requisite role for the dectin-1 beta-glucan receptor in pulmonary defense against Aspergillus fumigatus. J. Immunol. 2009, 182, 4938–4946. [Google Scholar] [CrossRef] [Green Version]
- Cunha, C.; Di Ianni, M.; Bozza, S.; Giovannini, G.; Zagarella, S.; Zelante, T.; D’Angelo, C.; Pierini, A.; Pitzurra, L.; Falzetti, F.; et al. Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity. Blood 2010, 116, 5394–5402. [Google Scholar] [CrossRef]
- Jhingran, A.; Kasahara, S.; Shepardson, K.M.; Junecko, B.A.; Heung, L.J.; Kumasaka, D.K.; Knoblaugh, S.E.; Lin, X.; Kazmierczak, B.I.; Reinhart, T.A.; et al. Compartment-specific and sequential role of MyD88 and CARD9 in chemokine induction and innate defense during respiratory fungal infection. PLoS Pathog. 2015, 11, e1004589. [Google Scholar] [CrossRef] [Green Version]
- Caffrey, A.K.; Lehmann, M.M.; Zickovich, J.M.; Espinosa, V.; Shepardson, K.M.; Watschke, C.P.; Hilmer, K.M.; Thammahong, A.; Barker, B.M.; Rivera, A.; et al. IL-1alpha signaling is critical for leukocyte recruitment after pulmonary Aspergillus fumigatus challenge. PLoS Pathog. 2015, 11, e1004625. [Google Scholar] [CrossRef] [Green Version]
- Karki, R.; Man, S.M.; Malireddi, R.K.S.; Gurung, P.; Vogel, P.; Lamkanfi, M.; Kanneganti, T.D. Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates host protection against Aspergillus infection. Cell Host Microbe 2015, 17, 357–368. [Google Scholar] [CrossRef] [Green Version]
- Gresnigt, M.S.; Cunha, C.; Jaeger, M.; Goncalves, S.M.; Malireddi, R.K.S.; Ammerdorffer, A.; Lubbers, R.; Oosting, M.; Rasid, O.; Jouvion, G.; et al. Genetic deficiency of NOD2 confers resistance to invasive aspergillosis. Nat. Commun. 2018, 9, 2636. [Google Scholar] [CrossRef]
- Moalli, F.; Doni, A.; Deban, L.; Zelante, T.; Zagarella, S.; Bottazzi, B.; Romani, L.; Mantovani, A.; Garlanda, C. Role of complement and Fc{gamma} receptors in the protective activity of the long pentraxin PTX3 against Aspergillus fumigatus. Blood 2010, 116, 5170–5180. [Google Scholar] [CrossRef] [Green Version]
- Bozza, S.; Campo, S.; Arseni, B.; Inforzato, A.; Ragnar, L.; Bottazzi, B.; Mantovani, A.; Moretti, S.; Oikonomous, V.; De Santis, R.; et al. PTX3 binds MD-2 and promotes TRIF-dependent immune protection in aspergillosis. J. Immunol. 2014, 193, 2340–2348. [Google Scholar] [CrossRef] [Green Version]
- Cunha, C.; Aversa, F.; Lacerda, J.F.; Busca, A.; Kurzai, O.; Grube, M.; Loffler, J.; Maertens, J.A.; Bell, A.S.; Inforzato, A.; et al. Genetic PTX3 deficiency and aspergillosis in stem-cell transplantation. N. Engl. J. Med. 2014, 370, 421–432. [Google Scholar] [CrossRef]
- Boyle, K.B.; Gyori, D.; Sindrilaru, A.; Scharffetter-Kochanek, K.; Taylor, P.R.; Mocsai, A.; Stephens, L.R.; Hawkins, P.T. Class IA phosphoinositide 3-kinase beta and delta regulate neutrophil oxidase activation in response to Aspergillus fumigatus hyphae. J. Immunol. 2011, 186, 2978–2989. [Google Scholar] [CrossRef] [Green Version]
- Leal, S.M., Jr.; Vareechon, C.; Cowden, S.; Cobb, B.A.; Latge, J.P.; Momany, M.; Pearlman, E. Fungal antioxidant pathways promote survival against neutrophils during infection. J. Clin. Investig. 2012, 122, 2482–2498. [Google Scholar] [CrossRef] [Green Version]
- Lionakis, M.S.; Netea, M.G.; Holland, S.M. Mendelian genetics of human susceptibility to fungal infection. Cold Spring Harb. Perspect. Med. 2014, 4, a019638. [Google Scholar] [CrossRef] [Green Version]
- Vinh, D.C.; Sugui, J.A.; Hsu, A.P.; Freeman, A.F.; Holland, S.M. Invasive fungal disease in autosomal-dominant hyper-IgE syndrome. J. Allergy Clin. Immunol. 2010, 125, 1389–1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, P.R.; Roy, S.; Meszaros, E.C.; Sun, Y.; Howell, S.J.; Malemud, C.J.; Pearlman, E. JAK/STAT regulation of Aspergillus fumigatus corneal infections and IL-6/23-stimulated neutrophil, IL-17, elastase, and MMP9 activity. J. Lukoc. Biol. 2016, 100, 213–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reeves, E.P.; Messina, C.G.; Doyle, S.; Kavanagh, K. Correlation between gliotoxin production and virulence of Aspergillus fumigatus in Galleria mellonella. Mycopathologia 2004, 158, 73–79. [Google Scholar] [CrossRef]
- Netea, M.G.; Van der Graaf, C.; Van der Meer, J.W.; Kullberg, B.J. Recognition of fungal pathogens by Toll-like receptors. Eur. J. Clin. Microbiol. Infect. Dis. 2004, 23, 672–676. [Google Scholar] [CrossRef] [PubMed]
- Brieland, J.K.; Jackson, C.; Menzel, F.; Loebenberg, D.; Cacciapuoti, A.; Halpern, J.; Hurst, S.; Muchamuel, T.; Debets, R.; Kastelein, R.; et al. Cytokine networking in lungs of immunocompetent mice in response to inhaled Aspergillus fumigatus. Infect. Immunity 2001, 69, 1554–1560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spikes, S.; Xu, R.; Nguyen, C.K.; Chamilos, G.; Kontoyiannis, D.P.; Jacobson, R.H.; Ejzykowicz, D.E.; Chiang, L.Y.; Filler, S.G.; May, G.S. Gliotoxin production in Aspergillus fumigatus contributes to host-specific differences in virulence. J. Infect. Dis. 2008, 197, 479–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, N.; Singh, P.K.; Revankar, S.G.; Chandrasekar, P.H.; Kumar, A. Pathobiology of Aspergillus Fumigatus Endophthalmitis in Immunocompetent and Immunocompromised Mice. Microorganisms 2019, 7, 297. [Google Scholar] [CrossRef] [Green Version]
- Guest, J.M.; Singh, P.K.; Revankar, S.G.; Chandrasekar, P.H.; Kumar, A. Isavuconazole for Treatment of Experimental Fungal Endophthalmitis Caused by Aspergillus fumigatus. Antimicrob. Agents Chemother. 2018, 62, e01537-18. [Google Scholar] [CrossRef] [Green Version]
- Sugui, J.A.; Pardo, J.; Chang, Y.C.; Zarember, K.A.; Nardone, G.; Galvez, E.M.; Mullbacher, A.; Gallin, J.I.; Simon, M.M.; Kwon-Chung, K.J. Gliotoxin is a virulence factor of Aspergillus fumigatus: GliP deletion attenuates virulence in mice immunosuppressed with hydrocortisone. Eukaryot Cell 2007, 6, 1562–1569. [Google Scholar] [CrossRef] [Green Version]
- Scharf, D.H.; Heinekamp, T.; Remme, N.; Hortschansky, P.; Brakhage, A.A.; Hertweck, C. Biosynthesis and function of gliotoxin in Aspergillus fumigatus. Appl. Microbiol. Biotechnol. 2012, 93, 467–472. [Google Scholar] [CrossRef]
- Lewis, R.E.; Wiederhold, N.P.; Chi, J.; Han, X.Y.; Komanduri, K.V.; Kontoyiannis, D.P.; Prince, R.A. Detection of gliotoxin in experimental and human aspergillosis. Infect. Immunity 2005, 73, 635–637. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, B.; Hedayati, M.T.; Hedayati, N.; Ilkit, M.; Syedmousavi, S. Aspergillus species in indoor environments and their possible occupational and public health hazards. Curr. Med. Mycol. 2016, 2, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, L.S.; Abe, S.; Tsunawaki, S. Fungal gliotoxin targets the onset of superoxide-generating NADPH oxidase of human neutrophils. Biochem. Biophys. Res. Commun. 2000, 268, 716–723. [Google Scholar] [CrossRef]
- Kupfahl, C.; Michalka, A.; Lass-Florl, C.; Fischer, G.; Haase, G.; Ruppert, T.; Geginat, G.; Hof, H. Gliotoxin production by clinical and environmental Aspergillus fumigatus strains. Int. J. Med. Microbiol. 2008, 298, 319–327. [Google Scholar] [CrossRef]
- Filler, S.G.; Sheppard, D.C. Fungal invasion of normally non-phagocytic host cells. PLoS Pathog. 2006, 2, e129. [Google Scholar] [CrossRef]
- Kumar, M.V.; Nagineni, C.N.; Chin, M.S.; Hooks, J.J.; Detrick, B. Innate immunity in the retina: Toll-like receptor (TLR) signaling in human retinal pigment epithelial cells. J. Neuroimmunol. 2004, 153, 7–15. [Google Scholar] [CrossRef]
- Bellocchio, S.; Montagnoli, C.; Bozza, S.; Gaziano, R.; Rossi, G.; Mambula, S.S.; Vecchi, A.; Mantovani, A.; Levitz, S.M.; Romani, L. The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J. Immunol. 2004, 172, 3059–3069. [Google Scholar] [CrossRef]
- Bellocchio, S.; Moretti, S.; Perruccio, K.; Fallarino, F.; Bozza, S.; Montagnoli, C.; Mosci, P.; Lipford, G.B.; Pitzurra, L.; Romani, L. TLRs govern neutrophil activity in aspergillosis. J. Immunol. 2004, 173, 7406–7415. [Google Scholar] [CrossRef]
- Cramer, R.A.; Rivera, A.; Hohl, T.M. Immune responses against Aspergillus fumigatus: What have we learned? Curr. Opin. Infect. Dis. 2011, 24, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Shopova, I.A.; Belyaev, I.; Dasari, P.; Jahreis, S.; Stroe, M.C.; Cseresnyes, Z.; Zimmermann, A.K.; Medyukhina, A.; Svensson, C.M.; Kruger, T.; et al. Human Neutrophils Produce Antifungal Extracellular Vesicles against Aspergillus fumigatus. mBio 2020, 11, e00596-20. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, J.; Joseph, J. Differential inflammatory response to Aspergillus flavus and Candida albicans infection in human retinal pigment epithelial cells: Role in treatment of endophthalmitis. J. Mycol. Med. 2021, 31, 101136. [Google Scholar] [CrossRef]
- Gandhi, J.; Naik, P.; Kaur, I.; Kumar, A.; Joseph, J. Microglial Response to Aspergillus flavus and Candida albicans: Implications in Endophthalmitis. J. Fungi 2020, 6, 162. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Chen, N.; Dong, X.G.; Yuan, G.Q.; Yu, B.; Xie, L.X. Surgical management of fungal endophthalmitis resulting from fungal keratitis. Int. J. Ophthalmol. 2016, 9, 848–853. [Google Scholar] [CrossRef]
- Thomas, P.A. Current Perspectives on Ophthalmic Mycoses. Clin. Microbiol. Rev. 2003, 16, 730–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, S.; Sharma, S.; Kar, S.; Sahu, S.K.; Samal, B.; Mallick, A. Is inclusion of Sabouraud dextrose agar essential for the laboratory diagnosis of fungal keratitis? Indian J. Ophthalmol. 2010, 58, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.-J.; Zhang, H.; Zhao, S.-Z. Laboratory diagnosis of infectious endophthalmitis. Int. J. Ophthalmol. 2011, 4, 100–102. [Google Scholar] [PubMed]
- Smith, T.C.; Benefield, R.J.; Kim, J.H. Risk of Fungal Endophthalmitis Associated with Cataract Surgery: A Mini-Review. Mycopathologia 2015, 180, 291–297. [Google Scholar] [CrossRef]
- Koul, S.; Philipson, A.; Arvidson, S. Role of aqueous and vitreous cultures in diagnosing infectious endophthalmitis in rabbits. Acta Ophthalmol. 1990, 68, 466–469. [Google Scholar] [CrossRef] [PubMed]
- Tamai, M.; Nakazawa, M. A collection system to obtain vitreous humor in clinical cases. Arch. Ophthalmol. 1991, 109, 465–466. [Google Scholar] [CrossRef]
- Liu, K.; Fang, F.; Li, H. Reliability of vitreous histological detection of pathogenic fungi in the diagnosis of fungal endophthalmitis. Eye 2015, 29, 424–427. [Google Scholar] [CrossRef] [Green Version]
- Peddada, K.; Khan, N.M.; Rubin, J.; Zakaryan, H.; Liu, Y.; Popnikolov, N.; Sangani, R.; Li, W. Diagnosis of Vitreoretinal Aspergillosis with Transvitreal Retinochoroidal Biopsy. Case Rep. Ophthalmol. Med. 2018, 2018, 8306163. [Google Scholar] [CrossRef] [Green Version]
- Grzybowski, A.; Turczynowska, M.; Schwartz, S.G.; Relhan, N.; Flynn, H.W., Jr. The Role of Systemic Antimicrobials in the Treatment of Endophthalmitis: A Review and an International Perspective. Ophthalmol. Ther. 2020, 9, 485–498. [Google Scholar] [CrossRef]
- Sadiq, M.A.; Hassan, M.; Agarwal, A.; Sarwar, S.; Toufeeq, S.; Soliman, M.K.; Hanout, M.; Sepah, Y.J.; Do, D.V.; Nguyen, Q.D. Endogenous endophthalmitis: Diagnosis, management, and prognosis. J. Ophthalmic Inflamm. Infect. 2015, 5, 32. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Liu, Z. Endogenous endophthalmitisEndogenous endophthalmitis: A 10-year review of culture-positive cases in northern China. Ocul. Immunol. Inflamm. 2010, 18, 133–138. [Google Scholar] [CrossRef]
- Sugita, S.; Kamoi, K.; Ogawa, M.; Watanabe, K.; Shimizu, N.; Mochizuki, M. Detection of Candida and A. aspergillus species DNA using broad-range real-time PCR for fungal endophthalmitis. Graefes Arch. Clin. Exp. Ophthalmol. 2012, 250, 391–398. [Google Scholar] [CrossRef]
- Vollmer, T.; Stormer, M.; Kleesiek, K.; Dreier, J. Evaluation of novel broad-range real-time PCR assay for rapid detection of human pathogenic fungi in various clinical specimens. J. Clin. Microbiol. 2008, 46, 1919–1926. [Google Scholar] [CrossRef] [Green Version]
- Hayette, M.P.; Vaira, D.; Susin, F.; Boland, P.; Christiaens, G.; Melin, P.; De Mol, P. Detection of Aspergillus species DNA by PCR in bronchoalveolar lavage fluid. J. Clin. Microbiol. 2001, 39, 2338–2340. [Google Scholar] [CrossRef] [Green Version]
- Kolomeyer, A.M.; Murphy, K.M.; Traband, A.; Frank, I.; Kim, B.J. Beta-D-Glucan Beta-d-glucan testing in patients with fungal endophthalmitis. Retina 2018, 38, 650–659. [Google Scholar] [CrossRef]
- Patterson, T.F.; Thompson, G.R., 3rd; Denning, D.W.; Fishman, J.A.; Hadley, S.; Herbrecht, R.; Kontoyiannis, D.P.; Marr, K.A.; Morrison, V.A.; Nguyen, M.H.; et al. Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 63, e1–e60. [Google Scholar] [CrossRef]
- Taghizadeh-Armaki, M.; Hedayati, M.T.; Moqarabzadeh, V.; Ansari, S.; Mahdavi Omran, S.; Zarrinfar, H.; Saber, S.; Verweij, P.E.; Denning, D.W.; Seyedmousavi, S. Effect of involved Aspergillus species on galactomannan in bronchoalveolar lavage of patients with invasive aspergillosis. J. Med. Microbiol. 2017, 66, 898–904. [Google Scholar] [CrossRef]
- Dupont, D.; Saison, J.; Miailhes, P.; Mouchel, R.; Wallon, M.; Persat, F. Aspergillus endophthalmitis: Potential role for vitreous galactomannan testing? Int. J. Infect. Dis. 2020, 96, 151–153. [Google Scholar] [CrossRef]
- Gandhi, J.; Gagan, S.; Mohamed, A.; Das, T.; Dave, V.P.; Joseph, J. Evaluation of Vitreous Galactomannan and (1, 3) beta-D-Glucan Levels in the Diagnosis of Fungal Endophthalmitis in Southern India. Ocular Immunol. Inflamm. 2022, 1–7. [Google Scholar] [CrossRef]
- Panackal, A.A.; Bennett, J.E.; Williamson, P.R. Treatment options in Invasive Aspergillosis. Curr. Treat. Options Infect. Dis. 2014, 6, 309–325. [Google Scholar] [CrossRef]
- Riddell, J.T.; Comer, G.M.; Kauffman, C.A. Treatment of endogenous fungal endophthalmitis: Focus on new antifungal agents. Clin. Infect. Dis. 2011, 52, 648–653. [Google Scholar] [CrossRef] [Green Version]
- Hamill, R.J. Amphotericin B formulations: A comparative review of efficacy and toxicity. Drugs 2013, 73, 919–934. [Google Scholar] [CrossRef]
- Payne, J.F.; Keenum, D.G.; Sternberg, P., Jr.; Thliveris, A.; Kala, A.; Olsen, T.W. Concentrated Intravitreal Amphotericin B in Fungal Endophthalmitis. Arch. Ophthalmol. 2010, 128, 1546–1550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Axelrod, A.J.; Peyman, G.A.; Apple, D.J. Toxicity of intravitreal injection of amphotericin B. Am. J. Ophthalmol. 1973, 76, 578–583. [Google Scholar] [CrossRef]
- Cannon, J.P.; Fiscella, R.; Pattharachayakul, S.; Garey, K.W.; De Alba, F.; Piscitelli, S.; Edward, D.P.; Danziger, L.H. Comparative toxicity and concentrations of intravitreal amphotericin B formulations in a rabbit model. Investig. Ophthalmol. Vis. Sci. 2003, 44, 2112–2117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, J.H.; Lee, S.C. Intravitreal liposomal amphotericin B for treatment of endogenous candida endophthalmitis. Jpn. J. Ophthalmol. 2015, 59, 346–352. [Google Scholar] [CrossRef]
- Ramirez Soto, M.C. Differences in clinical ocular outcomes between exogenous and endogenous endophthalmitis caused by Sporothrix: A systematic review of published literature. Br. J. Ophthalmol. 2018, 102, 977–982. [Google Scholar] [CrossRef]
- Papich, M.G. Fluconazole. In Saunders Handbook of Veterinary Drugs, 4th ed.; Papich, M.G., Ed.; W.B. Saunders: St. Louis, MO, USA, 2016; pp. 329–330. [Google Scholar]
- Shen, Y.C.; Liang, C.Y.; Wang, C.Y.; Lin, K.H.; Hsu, M.Y.; Yuen, H.L.; Wei, L.C. Pharmacokinetics and safety of intravitreal caspofungin. Antimicrob. Agents Chemother. 2014, 58, 7234–7239. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.C.; Wang, M.Y.; Wang, C.Y.; Tsai, T.C.; Tsai, H.Y.; Lee, Y.F.; Wei, L.C. Clearance of intravitreal voriconazole. Investig. Ophthalmol. Vis. Sci. 2007, 48, 2238–2241. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Cheng, Y.; Song, X.; Wang, C.; Su, G.; Liu, Z. A Comparative Treatment Study of Intravitreal Voriconazole and Liposomal Amphotericin B in an Aspergillus fumigatus Endophthalmitis Model. Investig. Ophthalmol. Vis. Sci. 2015, 56, 7369–7376. [Google Scholar] [CrossRef] [Green Version]
- Eifrig, C.W.; Flynn, H.W., Jr.; Scott, I.U.; Newton, J. Acute-onset postoperative endophthalmitis: Review of incidence and visual outcomes (1995–2001). Ophthalmic Surg. Lasers 2002, 33, 373–378. [Google Scholar] [CrossRef]
- Wilson, D.T.; Dimondi, V.P.; Johnson, S.W.; Jones, T.M.; Drew, R.H. Role of isavuconazole in the treatment of invasive fungal infections. Ther. Clin. Risk Manag. 2016, 12, 1197–1206. [Google Scholar] [CrossRef] [Green Version]
- Wattier, R.L.; Steinbach, W.J. Antifungal Agents. In Principles and Practice of Pediatric Infectious Diseases; Long, S.S., Prober, C.G., Fischer, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1532–1541.e1533. [Google Scholar]
- Lionakis, M.S.; Kontoyiannis, D.P. Drosophila melanogaster as a model organism for invasive aspergillosis. Methods Mol. Biol. 2012, 845, 455–468. [Google Scholar]
- Lamaris, G.A.; Ben-Ami, R.; Lewis, R.E. Does pre-exposure of Aspergillus fumigatus to voriconazole or posaconazole in vitro affect its virulence and the in vivo activity of subsequent posaconazole or voriconazole, respectively? A study in a fly model of aspergillosis. J. Antimicrob. Chemother. 2008, 62, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Chee, Y.E.; Eliott, D. The Role of Vitrectomy in the Management of Fungal Endophthalmitis. Semin. Ophthalmol. 2017, 32, 29–35. [Google Scholar] [CrossRef]
- Mylonakis, E. Galleria mellonella and the study of fungal pathogenesis: Making the case for another genetically tractable model host. Mycopathologia 2008, 165, 1–3. [Google Scholar] [CrossRef]
- Mojumder, D.K.; Concepcion, F.A.; Patel, S.K.; Barkmeier, A.J.; Carvounis, P.E.; Wilson, J.H.; Holz, E.R.; Wensel, T.G. Evaluating retinal toxicity of intravitreal caspofungin in the mouse eye. Investig. Ophthalmol. Vis. Sci. 2010, 51, 5796–5803. [Google Scholar] [CrossRef]
- Kernt, M.; Kampik, A. Intraocular caspofungin: In vitro safety profile for human ocular cells. Mycoses 2011, 54, e110–e121. [Google Scholar] [CrossRef] [PubMed]
- Mithal, K.; Pathengay, A.; Bawdekar, A.; Jindal, A.; Vira, D.; Relhan, N.; Choudhury, H.; Gupta, N.; Gupta, V.; Koday, N.K.; et al. Filamentous fungal endophthalmitis: Results of combination therapy with intravitreal amphotericin B and voriconazole. Clin. Ophthalmol. 2015, 9, 649–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, F.C.; Coburn, P.S.; Huzzatul, M.M.; LaGrow, A.L.; Livingston, E.; Callegan, M.C. Targets of immunomodulation in bacterial endophthalmitis. Prog. Retin. Eye Res. 2019, 73, 100763. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, A.E.; Chapman, K.E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol. Cell. Endocrinol. 2011, 335, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Chhablani, J. Fungal endophthalmitis. Expert Rev. Anti-Infect. Ther. 2011, 9, 1191–1201. [Google Scholar] [CrossRef]
- Ching Wen Ho, D.; Agarwal, A.; Lee, C.S.; Chhablani, J.; Gupta, V.; Khatri, M.; Nirmal, J.; Pavesio, C.; Agrawal, R. A Review of the Role of Intravitreal Corticosteroids as an Adjuvant to Antibiotics in Infectious Endophthalmitis. Ocul. Immunol. Inflamm. 2018, 26, 461–468. [Google Scholar] [CrossRef]
- Majji, A.B.; Jalali, S.; Das, T.; Gopinathan, U. Role of intravitreal dexamethasone in exogenous fungal endophthalmitis. Eye 1999, 13 Pt 5, 660–665. [Google Scholar] [CrossRef]
- Behera, U.C.; Budhwani, M.; Das, T.; Basu, S.; Padhi, T.R.; Barik, M.R.; Sharma, S. Role of Early Vitrectomy in the Treatment of Fungal Endophthalmitis. Retina 2018, 38, 1385–1392. [Google Scholar] [CrossRef]
- Modjtahedi, B.S.; Finn, A.P.; Barb, S.M.; MacLachlan, M.J.; van Zyl, T.; Papakostas, T.D.; Eliott, D. Characteristics and Outcomes of Endogenous Endophthalmitis: Eight-Year Experience at a Tertiary Care Center. Ophthalmol. Retin. 2019, 3, 61–72. [Google Scholar] [CrossRef]
- Dave, T.V.; Dave, V.P.; Sharma, S.; Karolia, R.; Joseph, J.; Pathengay, A.; Pappuru, R.R.; Das, T. Infectious endophthalmitis leading to evisceration: Spectrum of bacterial and fungal pathogens and antibacterial susceptibility profile. J. Ophthalmic Inflamm. Infect. 2019, 9, 9. [Google Scholar] [CrossRef]
- Tashiro, M.; Izumikawa, K. The Current Status of Drug-resistant Aspergillus. Med. Mycol. J. 2016, 57, J103–J112. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khambati, A.; Wright, R.E., III; Das, S.; Pasula, S.; Sepulveda, A.; Hernandez, F.; Kanwar, M.; Chandrasekar, P.; Kumar, A. Aspergillus Endophthalmitis: Epidemiology, Pathobiology, and Current Treatments. J. Fungi 2022, 8, 656. https://doi.org/10.3390/jof8070656
Khambati A, Wright RE III, Das S, Pasula S, Sepulveda A, Hernandez F, Kanwar M, Chandrasekar P, Kumar A. Aspergillus Endophthalmitis: Epidemiology, Pathobiology, and Current Treatments. Journal of Fungi. 2022; 8(7):656. https://doi.org/10.3390/jof8070656
Chicago/Turabian StyleKhambati, Alisha, Robert Emery Wright, III, Susmita Das, Shirisha Pasula, Alejandro Sepulveda, Francis Hernandez, Mamta Kanwar, Pranatharthi Chandrasekar, and Ashok Kumar. 2022. "Aspergillus Endophthalmitis: Epidemiology, Pathobiology, and Current Treatments" Journal of Fungi 8, no. 7: 656. https://doi.org/10.3390/jof8070656
APA StyleKhambati, A., Wright, R. E., III, Das, S., Pasula, S., Sepulveda, A., Hernandez, F., Kanwar, M., Chandrasekar, P., & Kumar, A. (2022). Aspergillus Endophthalmitis: Epidemiology, Pathobiology, and Current Treatments. Journal of Fungi, 8(7), 656. https://doi.org/10.3390/jof8070656