Isavuconazole for COVID-19-Associated Invasive Mold Infections
Abstract
:1. Introduction
2. Antifungal Activity of Isavuconazole
3. Pharmacokinetics and Pharmacodynamic of Isavuconazole
4. Isavuconazole in CAPA
5. Isavuconazole in CAM
6. Prophylaxis of CAPA in ICU
7. Challenges of the Use of Isavuconazole in CAPA
8. Therapeutic Drug Monitoring (TDM) of Isavuconazole
9. The Impact of Obesity on Isavuconazole Levels
10. The Impact of Renal Replacement Therapy, Hemodialysis, and ECMO on Isavuconazole Therapy
11. Drug–Drug Interactions (DDIs)
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schauwvlieghe, A.F.; Rijnders, B.J.; Philips, N.; Verwijs, R.; Vanderbeke, L.; Van Tienen, C.; Lagrou, K.; Verweij, P.E.; Van de Veerdonk, F.L.; Gommers, D. Invasive aspergillosis in patients admitted to the intensive care unit with severe influenza: A retrospective cohort study. Lancet Respir. Med. 2018, 6, 782–792. [Google Scholar] [CrossRef]
- Arastehfar, A.; Carvalho, A.; Nguyen, M.H.; Hedayati, M.T.; Netea, M.G.; Perlin, D.S.; Hoenigl, M. COVID-19-associated candidiasis (CAC): An underestimated complication in the absence of immunological predispositions? J. Fungi 2020, 6, 211. [Google Scholar] [CrossRef] [PubMed]
- Rutsaert, L.; Steinfort, N.; Van Hunsel, T.; Bomans, P.; Naesens, R.; Mertes, H.; Dits, H.; Van Regenmortel, N. COVID-19-associated invasive pulmonary aspergillosis. Ann. Intensive Care 2020, 10, 71. [Google Scholar] [CrossRef] [PubMed]
- van de Veerdonk, F.L.; Brüggemann, R.J.; Vos, S.; De Hertogh, G.; Wauters, J.; Reijers, M.H.; Netea, M.G.; Schouten, J.A.; Verweij, P.E. COVID-19-associated Aspergillus tracheobronchitis: The interplay between viral tropism, host defence, and fungal invasion. Lancet Respir. Med. 2021, 9, 795–802. [Google Scholar] [CrossRef]
- Feys, S.; Almyroudi, M.P.; Braspenning, R.; Lagrou, K.; Spriet, I.; Dimopoulos, G.; Wauters, J. A Visual and Comprehensive Review on COVID-19-Associated Pulmonary Aspergillosis (CAPA). J. Fungi 2021, 7, 1067. [Google Scholar] [CrossRef]
- Baddley, J.W.; Thompson, G.R.; Chen, S.C.-A.; White, P.L.; Johnson, M.D.; Nguyen, M.H.; Schwartz, I.S.; Spec, A.; Ostrosky-Zeichner, L.; Jackson, B.R. Coronavirus Disease 2019–Associated Invasive Fungal Infection. Open Forum Infect. Dis. 2021, 8, ofab510. [Google Scholar] [CrossRef]
- Salmanton-Garcia, J.; Sprute, R.; Stemler, J.; Bartoletti, M.; Dupont, D.; Valerio, M.; Garcia-Vidal, C.; Falces-Romero, I.; Machado, M.; de la Villa, S. COVID-19–associated pulmonary aspergillosis, March–August 2020. Emerg. Infect. Dis. 2021, 27, 1077. [Google Scholar] [CrossRef]
- Koehler, P.; Cornely, O.A.; Böttiger, B.W.; Dusse, F.; Eichenauer, D.A.; Fuchs, F.; Hallek, M.; Jung, N.; Klein, F.; Persigehl, T. COVID-19 associated pulmonary aspergillosis. Mycoses 2020, 63, 528–534. [Google Scholar] [CrossRef]
- Poignon, C.; Blaize, M.; Vezinet, C.; Lampros, A.; Monsel, A.; Fekkar, A. Invasive pulmonary fusariosis in an immunocompetent critically ill patient with severe COVID-19. Clin. Microbiol. Infect. 2020, 26, 1582–1584. [Google Scholar] [CrossRef]
- Cornely, O.A.; Alastruey-Izquierdo, A.; Arenz, D.; Chen, S.C.; Dannaoui, E.; Hochhegger, B.; Hoenigl, M.; Jensen, H.E.; Lagrou, K.; Lewis, R.E. Global guideline for the diagnosis and management of mucormycosis: An initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infect. Dis. 2019, 19, e405–e421. [Google Scholar] [CrossRef]
- Zurl, C.; Hoenigl, M.; Schulz, E.; Hatzl, S.; Gorkiewicz, G.; Krause, R.; Eller, P.; Prattes, J. Autopsy proven pulmonary mucormycosis due to Rhizopus microsporus in a critically ill COVID-19 patient with underlying hematological malignancy. J. Fungi 2021, 7, 88. [Google Scholar] [CrossRef] [PubMed]
- Rudramurthy, S.M.; Hoenigl, M.; Meis, J.F.; Cornely, O.A.; Muthu, V.; Gangneux, J.P.; Perfect, J.; Chakrabarti, A.; ECMM; ISHAM. ECMM/ISHAM recommendations for clinical management of COVID-19 associated mucormycosis in low-and middle-income countries. Mycoses 2021, 64, 1028–1037. [Google Scholar] [CrossRef] [PubMed]
- Hoenigl, M.; Seidel, D.; Carvalho, A.; Rudramurthy, S.M.; Arastehfar, A.; Gangneux, J.P.; Nasir, N.; Bonifaz, A.; Araiza, J.; Klimko, N.; et al. The emergence of COVID-19 associated mucormycosis: A review of cases from 18 countries. Lancet Microbe 2022. epub ahaead of print. [Google Scholar]
- Patel, A.; Agarwal, R.; Rudramurthy, S.M.; Shevkani, M.; Xess, I.; Sharma, R.; Savio, J.; Sethuraman, N.; Madan, S.; Shastri, P. Multicenter epidemiologic study of coronavirus disease–associated mucormycosis, India. Emerg. Infect. Dis. 2021, 27, 2349. [Google Scholar] [CrossRef] [PubMed]
- Divakar, P.K. Fungal taxa responsible for mucormycosis/“black fungus” among COVID-19 patients in India. J. Fungi 2021, 7, 641. [Google Scholar] [CrossRef] [PubMed]
- Ravindra, K.; Ahlawat, A. Five probable factors responsible for the COVID-associated mucormycosis outbreak in India. Int. J. Infect. Dis. 2021, 112, 278–280. [Google Scholar] [CrossRef] [PubMed]
- Muthu, V.; Rudramurthy, S.M.; Chakrabarti, A.; Agarwal, R. Epidemiology and pathophysiology of COVID-19-associated mucormycosis: India versus the rest of the world. Mycopathologia 2021, 186, 739–754. [Google Scholar] [CrossRef]
- Warris, A.; Lehrnbecher, T.; Roilides, E.; Castagnola, E.; Brüggemann, R.; Groll, A.H. ESCMID-ECMM guideline: Diagnosis and management of invasive aspergillosis in neonates and children. Clin. Microbiol. Infect. 2019, 25, 1096–1113. [Google Scholar] [CrossRef] [Green Version]
- Donnelley, M.A.; Zhu, E.S.; Thompson, G.R., 3rd. Isavuconazole in the treatment of invasive aspergillosis and mucormycosis infections. Infect. Drug Resist. 2016, 9, 79–86. [Google Scholar]
- Maertens, J.A.; Raad, I.I.; Marr, K.A.; Patterson, T.F.; Kontoyiannis, D.P.; Cornely, O.A.; Bow, E.J.; Rahav, G.; Neofytos, D.; Aoun, M. Isavuconazole versus voriconazole for primary treatment of invasive mould disease caused by Aspergillus and other filamentous fungi (SECURE): A phase 3, randomised-controlled, non-inferiority trial. Lancet 2016, 387, 760–769. [Google Scholar] [CrossRef]
- Marty, F.M.; Ostrosky-Zeichner, L.; Cornely, O.A.; Mullane, K.M.; Perfect, J.R.; Thompson, G.R., III; Alangaden, G.J.; Brown, J.M.; Fredricks, D.N.; Heinz, W.J. Isavuconazole treatment for mucormycosis: A single-arm open-label trial and case-control analysis. Lancet Infect. Dis. 2016, 16, 828–837. [Google Scholar] [CrossRef]
- Astvad, K.; Hare, R.; Arendrup, M. Evaluation of the in vitro activity of isavuconazole and comparator voriconazole against 2635 contemporary clinical Candida and Aspergillus isolates. Clin. Microbiol. Infect. 2017, 23, 882–887. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Carvalhaes, C.G.; Rhomberg, P.; Messer, S.A.; Castanheira, M. Antifungal susceptibilities of opportunistic filamentous fungal pathogens from the Asia and Western Pacific Region: Data from the SENTRY Antifungal Surveillance Program (2011–2019). J. Antibiot. 2021, 74, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Arendrup, M.C.; Jensen, R.H.; Meletiadis, J. In vitro activity of isavuconazole and comparators against clinical isolates of the Mucorales order. Antimicrob. Agents Chemother. 2015, 59, 7735–7742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kloezen, W.; Meis, J.F.; Curfs-Breuker, I.; Fahal, A.H.; van de Sande, W.W. In vitro antifungal activity of isavuconazole against Madurella mycetomatis. Antimicrob. Agents Chemother. 2012, 56, 6054–6056. [Google Scholar] [CrossRef] [Green Version]
- Van der Linden, J.; Arendrup, M.; Warris, A.; Lagrou, K.; Pelloux, H.; Hauser, P.; Chryssanthou, E.; Mellado, E.; Kidd, S.; Tortorano, A. Prospective multicenter international surveillance of azole resistance in Aspergillus fumigatus. Emerg. Infect. Dis. 2015, 21, 1041. [Google Scholar] [CrossRef]
- Lestrade, P.P.; Bentvelsen, R.G.; Schauwvlieghe, A.F.; Schalekamp, S.; van der Velden, W.J.; Kuiper, E.J.; van Paassen, J.; van der Hoven, B.; van der Lee, H.A.; Melchers, W.J. Voriconazole resistance and mortality in invasive aspergillosis: A multicenter retrospective cohort study. Clin. Infect. Dis. 2019, 68, 1463–1471. [Google Scholar] [CrossRef] [Green Version]
- Buil, J.B.; Brüggemann, R.J.; Wasmann, R.E.; Zoll, J.; Meis, J.F.; Melchers, W.J.; Mouton, J.W.; Verweij, P.E. Isavuconazole susceptibility of clinical Aspergillus fumigatus isolates and feasibility of isavuconazole dose escalation to treat isolates with elevated MICs. J. Antimicrob. Chemother. 2018, 73, 134–142. [Google Scholar] [CrossRef]
- Rivero-Menendez, O.; Soto-Debran, J.C.; Medina, N.; Lucio, J.; Mellado, E.; Alastruey-Izquierdo, A. Molecular identification, antifungal susceptibility testing, and mechanisms of azole resistance in Aspergillus species received within a surveillance program on antifungal resistance in Spain. Antimicrob. Agents Chemother. 2019, 63, e00865-19. [Google Scholar] [CrossRef] [Green Version]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs for Antifungal Agents, Version 10.0. 2020. Available online: http://www.eucast.org/astoffungi/clinicalbreakpointsforantifungals/ (accessed on 1 May 2022).
- Schmitt-Hoffmann, A.; Roos, B.; Heep, M.; Schleimer, M.; Weidekamm, E.; Brown, T.; Roehrle, M.; Beglinger, C. Single-ascending-dose pharmacokinetics and safety of the novel broad-spectrum antifungal triazole BAL4815 after intravenous infusions (50, 100, and 200 milligrams) and oral administrations (100, 200, and 400 milligrams) of its prodrug, BAL8557, in healthy volunteers. Antimicrob. Agents Chemother. 2006, 50, 279–285. [Google Scholar]
- Schmitt-Hoffmann, A.; Roos, B.; Maares, J.; Heep, M.; Spickerman, J.; Weidekamm, E.; Brown, T.; Roehrle, M. Multiple-dose pharmacokinetics and safety of the new antifungal triazole BAL4815 after intravenous infusion and oral administration of its prodrug, BAL8557, in healthy volunteers. Antimicrob. Agents Chemother. 2006, 50, 286–293. [Google Scholar] [CrossRef] [Green Version]
- Cornely, O.A.; Böhme, A.; Schmitt-Hoffmann, A.; Ullmann, A.J. Safety and pharmacokinetics of isavuconazole as antifungal prophylaxis in acute myeloid leukemia patients with neutropenia: Results of a phase 2, dose escalation study. Antimicrob. Agents Chemother. 2015, 59, 2078–2085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamoth, F.; Mercier, T.; André, P.; Pagani, J.; Pantet, O.; Maduri, R.; Guery, B.; Decosterd, L. Isavuconazole brain penetration in cerebral aspergillosis. J. Antimicrob. Chemother. 2019, 74, 1751–1753. [Google Scholar] [CrossRef]
- Schmitt-Hoffmann, A.; Desai, A.; Kowalski, D.; Pearlman, H.; Yamazaki, T.; Townsend, R. Isavuconazole absorption following oral administration in healthy subjects is comparable to intravenous dosing, and is not affected by food, or drugs that alter stomach pH. Int. J. Clin. Pharmacol. Ther. 2016, 54, 572. [Google Scholar] [CrossRef] [PubMed]
- Rouzaud, C.; Jullien, V.; Herbrecht, A.; Palmier, B.; Lapusan, S.; Morgand, M.; Guéry, R.; Dureault, A.; Danion, F.; Puget, S. Isavuconazole diffusion in infected human brain. Antimicrob. Agents Chemother. 2019, 63, e02474-18. [Google Scholar] [CrossRef] [PubMed]
- Lahmer, T.; Batres Baires, G.; Schmid, R.M.; Wiessner, J.R.; Ulrich, J.; Reichert, M.; Huber, W.; Sörgel, F.; Kinzig, M.; Rasch, S. Penetration of Isavuconazole in Ascites Fluid of Critically Ill Patients. J. Fungi 2021, 7, 376. [Google Scholar] [CrossRef]
- Desai, A.; Kovanda, L.; Kowalski, D.; Lu, Q.; Townsend, R.; Bonate, P.L. Population pharmacokinetics of isavuconazole from phase 1 and phase 3 (SECURE) trials in adults and target attainment in patients with invasive infections due to Aspergillus and other filamentous fungi. Antimicrob. Agents Chemother. 2016, 60, 5483–5491. [Google Scholar] [CrossRef] [Green Version]
- Kaindl, T.; Andes, D.; Engelhardt, M.; Saulay, M.; Larger, P.; Groll, A.H. Variability and exposure–response relationships of isavuconazole plasma concentrations in the Phase 3 SECURE trial of patients with invasive mould diseases. J. Antimicrob. Chemother. 2019, 74, 761–767. [Google Scholar] [CrossRef] [Green Version]
- Desai, A.; Schmitt-Hoffmann, A.-H.; Mujais, S.; Townsend, R. Population pharmacokinetics of isavuconazole in subjects with mild or moderate hepatic impairment. Antimicrob. Agents Chemother. 2016, 60, 3025–3031. [Google Scholar] [CrossRef] [Green Version]
- Schmitt-Hoffmann, A.; Roos, B.; Spickermann, J.; Heep, M.; Peterfai, E.; Edwards, D.; Stoeckel, K. Effect of mild and moderate liver disease on the pharmacokinetics of isavuconazole after intravenous and oral administration of a single dose of the prodrug BAL8557. Antimicrob. Agents Chemother. 2009, 53, 4885–4890. [Google Scholar] [CrossRef] [Green Version]
- Kovanda, L.L.; Desai, A.V.; Lu, Q.; Townsend, R.W.; Akhtar, S.; Bonate, P.; Hope, W.W. Isavuconazole population pharmacokinetic analysis using nonparametric estimation in patients with invasive fungal disease (results from the VITAL study). Antimicrob. Agents Chemother. 2016, 60, 4568–4576. [Google Scholar] [CrossRef] [Green Version]
- Townsend, R.; Dietz, A.; Hale, C.; Akhtar, S.; Kowalski, D.; Lademacher, C.; Lasseter, K.; Pearlman, H.; Rammelsberg, D.; Schmitt-Hoffmann, A. Pharmacokinetic evaluation of CYP3A4-mediated drug-drug interactions of isavuconazole with rifampin, ketoconazole, midazolam, and ethinyl estradiol/norethindrone in healthy adults. Clin. Pharmacol. Drug Dev. 2017, 6, 44–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamazaki, T.; Desai, A.; Goldwater, R.; Han, D.; Lasseter, K.C.; Howieson, C.; Akhtar, S.; Kowalski, D.; Lademacher, C.; Rammelsberg, D. Pharmacokinetic interactions between isavuconazole and the drug transporter substrates atorvastatin, digoxin, metformin, and methotrexate in healthy subjects. Clin. Pharmacol. Drug Dev. 2017, 6, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Antinori, S.; Rech, R.; Galimberti, L.; Castelli, A.; Angeli, E.; Fossali, T.; Bernasconi, D.; Covizzi, A.; Bonazzetti, C.; Torre, A. Invasive pulmonary aspergillosis complicating SARS-CoV-2 pneumonia: A diagnostic challenge. Travel Med. Infect. Dis. 2020, 38, 101752. [Google Scholar] [CrossRef] [PubMed]
- Falces-Romero, I.; Ruiz-Bastián, M.; Díaz-Pollán, B.; Maseda, E.; García-Rodríguez, J.; Group, S.C.W. Isolation of Aspergillus spp. in respiratory samples of patients with COVID-19 in a Spanish tertiary care hospital. Mycoses 2020, 63, 1144–1148. [Google Scholar] [CrossRef] [PubMed]
- Gangneux, J.-P.; Reizine, F.; Guegan, H.; Pinceaux, K.; Le Balch, P.; Prat, E.; Pelletier, R.; Belaz, S.; Le Souhaitier, M.; Le Tulzo, Y. Is the COVID-19 pandemic a good time to include Aspergillus molecular detection to categorize aspergillosis in ICU patients? A monocentric experience. J. Fungi 2020, 6, 105. [Google Scholar] [CrossRef] [PubMed]
- Prattes, J.; Wauters, J.; Giacobbe, D.R.; Lagrou, K.; Hoenigl, M. Diagnosis and treatment of COVID-19 associated pulmonary apergillosis in critically ill patients: Results from a European confederation of medical mycology registry. Intensive Care Med. 2021, 47, 1158–1160. [Google Scholar] [CrossRef]
- Gangneux, J.-P.; Dannaoui, E.; Fekkar, A.; Luyt, C.-E.; Botterel, F.; De Prost, N.; Tadié, J.-M.; Reizine, F.; Houzé, S.; Timsit, J.-F. Fungal infections in mechanically ventilated patients with COVID-19 during the first wave: The French multicentre MYCOVID study. Lancet Respir. Med. 2022, 10, 180–190. [Google Scholar] [CrossRef]
- Paramythiotou, E.; Dimopoulos, G.; Koliakos, N.; Siopi, M.; Vourli, S.; Pournaras, S.; Meletiadis, J. Epidemiology and incidence of COVID-19-associated pulmonary aspergillosis (CAPA) in a Greek tertiary care academic reference hospital. Infect. Dis. Ther. 2021, 10, 1779–1792. [Google Scholar] [CrossRef]
- Machado, M.; Valerio, M.; Álvarez-Uría, A.; Olmedo, M.; Veintimilla, C.; Padilla, B.; De la Villa, S.; Guinea, J.; Escribano, P.; Ruiz-Serrano, M.J. Invasive pulmonary aspergillosis in the COVID-19 era: An expected new entity. Mycoses 2021, 64, 132–143. [Google Scholar] [CrossRef]
- Fekkar, A.; Lampros, A.; Mayaux, J.; Poignon, C.; Demeret, S.; Constantin, J.-M.; Marcelin, A.-G.; Monsel, A.; Luyt, C.-E.; Blaize, M. Occurrence of invasive pulmonary fungal infections in patients with severe COVID-19 admitted to the ICU. Am. J. Respir. Crit. Care Med. 2021, 203, 307–317. [Google Scholar] [CrossRef]
- Lahmer, T.; Kriescher, S.; Herner, A.; Rothe, K.; Spinner, C.D.; Schneider, J.; Mayer, U.; Neuenhahn, M.; Hoffmann, D.; Geisler, F. Invasive pulmonary aspergillosis in critically ill patients with severe COVID-19 pneumonia: Results from the prospective AspCOVID-19 study. PLoS ONE 2021, 16, e0238825. [Google Scholar] [CrossRef] [PubMed]
- Wasylyshyn, A.I.; Wasylyshyn, G.R.; Linder, K.A.; Miceli, M.H. COVID-19-Associated Pulmonary Aspergillosis at an Academic Medical Center in the Midwestern United States. Mycopathologia 2021, 186, 499–505. [Google Scholar] [CrossRef]
- de Almeida, J.N., Jr.; Mario Doi, A.; Watanabe, M.J.L.; Maraghello Maluf, M.; Calderon, C.L.; Silva, M., Jr.; Pasternak, J.; Koga, P.C.M.; Santiago, K.A.S.; Aranha, L.F.C. COVID-19 Associated Aspergillosis in a Brazilian Referral Centre: Diagnosis, risk factors, and outcomes. Mycoses 2022, 65, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, G.; Almyroudi, M.-P.; Myrianthefs, P.; Rello, J. COVID-19-associated pulmonary aspergillosis (CAPA). J. Intensive Med. 2021, 1, 71–80. [Google Scholar] [CrossRef]
- Hatzl, S.; Reisinger, A.C.; Posch, F.; Prattes, J.; Stradner, M.; Pilz, S.; Eller, P.; Schoerghuber, M.; Toller, W.; Gorkiewicz, G. Antifungal prophylaxis for prevention of COVID-19-associated pulmonary aspergillosis in critically ill patients: An observational study. Crit. Care 2021, 25, 335. [Google Scholar] [CrossRef] [PubMed]
- Arjun, R.; Felix, V.; Niyas, V.K.M.; Kumar, M.A.S.; Krishnan, R.B.; Mohan, V.; Ansar, A.; Gautaam, S.; Lalitha, S. COVID-19-associated rhino-orbital mucormycosis: A single-centre experience of 10 cases. QJM Int. J. Med. 2021, 114, 831–834. [Google Scholar] [CrossRef]
- Buil, J.B.; van Zanten, A.R.; Bentvelsen, R.G.; Rijpstra, T.A.; Goorhuis, B.; van der Voort, S.; Wammes, L.J.; Janson, J.A.; Melchers, M.; Heusinkveld, M. Case series of four secondary mucormycosis infections in COVID-19 patients, the Netherlands, December 2020 to May 2021. Eurosurveillance 2021, 26, 2100510. [Google Scholar] [CrossRef]
- Danion, F.; Letscher-Bru, V.; Guitard, J.; Sitbon, K.; Dellière, S.; Angoulvant, A.; Desoubeaux, G.; Botterel, F.; Bellanger, A.-P.; Gargala, G. Coronavirus Disease 2019-Associated Mucormycosis in France: A Rare but Deadly Complication. Open Forum Infectious Diseases 2022, 9, ofab566. [Google Scholar] [CrossRef]
- Seidel, D.; Simon, M.; Sprute, R.; Lubnow, M.; Evert, K.; Speer, C.; Seeßle, J.; Khatamzas, E.; Merle, U.; Behrens, C. Results from a national survey on COVID-19-associated mucormycosis in Germany: 13 patients from six tertiary hospitals. Mycoses 2022, 65, 103–109. [Google Scholar] [CrossRef]
- Bowen, C.D.; Tallman, G.B.; Hakki, M.; Lewis, J.S., II. Isavuconazole to prevent invasive fungal infection in immunocompromised adults: Initial experience at an academic medical centre. Mycoses 2019, 62, 665–672. [Google Scholar] [CrossRef]
- Fontana, L.; Perlin, D.S.; Zhao, Y.; Noble, B.N.; Lewis, J.S.; Strasfeld, L.; Hakki, M. Isavuconazole prophylaxis in patients with hematologic malignancies and hematopoietic cell transplant recipients. Clin. Infect. Dis. 2020, 70, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Rausch, C.R.; DiPippo, A.J.; Bose, P.; Kontoyiannis, D.P. Breakthrough fungal infections in patients with leukemia receiving isavuconazole. Clin. Infect. Dis. 2018, 67, 1610–1613. [Google Scholar] [CrossRef]
- Bose, P.; McCue, D.; Wurster, S.; Wiederhold, N.P.; Konopleva, M.; Kadia, T.M.; Borthakur, G.; Ravandi, F.; Masarova, L.; Takahashi, K. Isavuconazole as primary antifungal prophylaxis in patients with acute myeloid leukemia or myelodysplastic syndrome: An open-label, prospective, phase 2 study. Clin. Infect. Dis. 2021, 72, 1755–1763. [Google Scholar] [CrossRef] [PubMed]
- Stern, A.; Su, Y.; Lee, Y.J.; Seo, S.; Shaffer, B.; Tamari, R.; Gyurkocza, B.; Barker, J.; Bogler, Y.; Giralt, S. A single-center, open-label trial of isavuconazole prophylaxis against invasive fungal infection in patients undergoing allogeneic hematopoietic cell transplantation. Biol. Blood Marrow Transplant. 2020, 26, 1195–1202. [Google Scholar] [CrossRef]
- Vu, C.A.; Rana, M.M.; Jacobs, S.E.; Saunders-Hao, P. Isavuconazole for the prophylaxis and treatment of invasive fungal disease: A single-center experience. Transpl. Infect. Dis. 2021, 23, e13469. [Google Scholar] [CrossRef] [PubMed]
- Fung, M.; Schwartz, B.S.; Doernberg, S.B.; Langelier, C.; Lo, M.; Graff, L.; Tan, M.; Logan, A.C.; Chin-Hong, P.; Babik, J.M. Breakthrough invasive fungal infections on isavuconazole prophylaxis and treatment: What is happening in the real-world setting? Clin. Infect. Dis. 2018, 67, 1142–1143. [Google Scholar] [CrossRef] [PubMed]
- Samanta, P.; Clancy, C.J.; Marini, R.V.; Rivosecchi, R.M.; McCreary, E.K.; Shields, R.K.; Falcione, B.A.; Viehman, A.; Sacha, L.; Kwak, E.J. Isavuconazole is as effective as and better tolerated than voriconazole for antifungal prophylaxis in lung transplant recipients. Clin. Infect. Dis. 2021, 73, 416–426. [Google Scholar] [CrossRef]
- Buil, J.B.; Zoll, J.; Verweij, P.E.; Melchers, W.J. Molecular detection of azole-resistant Aspergillus fumigatus in clinical samples. Front. Microbiol. 2018, 9, 515. [Google Scholar] [CrossRef] [Green Version]
- de Palencia Espinosa, F.M.Á.; Díaz Carrasco, M.S.; Salinas, A.S.; de la Rubia Nieto, A.; Miró, A.E. Potential drug–drug interactions in hospitalised haematological patients. J. Oncol. Pharm. Pract. 2017, 23, 443–453. [Google Scholar] [CrossRef]
- Verweij, P.E.; Brüggemann, R.J.; Azoulay, E.; Bassetti, M.; Blot, S.; Buil, J.B.; Calandra, T.; Chiller, T.; Clancy, C.J.; Cornely, O.A. Taskforce report on the diagnosis and clinical management of COVID-19 associated pulmonary aspergillosis. Intensive Care Med. 2021, 47, 819–834. [Google Scholar] [CrossRef]
- Desai, A.V.; Kovanda, L.L.; Hope, W.W.; Andes, D.; Mouton, J.W.; Kowalski, D.L.; Townsend, R.W.; Mujais, S.; Bonate, P.L. Exposure-response relationships for isavuconazole in patients with invasive aspergillosis and other filamentous fungi. Antimicrob. Agents Chemother. 2017, 61, e01034-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andes, D.; Kovanda, L.; Desai, A.; Kitt, T.; Zhao, M.; Walsh, T.J. Isavuconazole concentration in real-world practice: Consistency with results from clinical trials. Antimicrob. Agents Chemother. 2018, 62, e00585-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borman, A.M.; Hughes, J.M.; Oliver, D.; Fraser, M.; Sunderland, J.; Noel, A.R.; Johnson, E.M. Lessons from isavuconazole therapeutic drug monitoring at a United Kingdom Reference Center. Med. Mycol. 2020, 58, 996–999. [Google Scholar] [CrossRef] [PubMed]
- Furfaro, E.; Signori, A.; Di Grazia, C.; Dominietto, A.; Raiola, A.; Aquino, S.; Ghiggi, C.; Ghiso, A.; Ungaro, R.; Angelucci, E. Serial monitoring of isavuconazole blood levels during prolonged antifungal therapy. J. Antimicrob. Chemother. 2019, 74, 2341–2346. [Google Scholar] [CrossRef] [PubMed]
- Kronig, I.; Masouridi-Levrat, S.; Chalandon, Y.; Glampedakis, E.; Vernaz, N.; Van Delden, C.; Neofytos, D. Clinical Considerations of Isavuconazole Administration in High-Risk Hematological Patients: A Single-Center 5-Year Experience. Mycopathologia 2021, 186, 775–788. [Google Scholar] [CrossRef] [PubMed]
- Cojutti, P.G.; Carnelutti, A.; Lazzarotto, D.; Sozio, E.; Candoni, A.; Fanin, R.; Tascini, C.; Pea, F. Population Pharmacokinetics and Pharmacodynamic Target Attainment of Isavuconazole against Aspergillus fumigatus and Aspergillus flavus in Adult Patients with Invasive Fungal Diseases: Should Therapeutic Drug Monitoring for Isavuconazole Be Considered as Mandatory as for the Other Mold-Active Azoles? Pharmaceutics 2021, 13, 2099. [Google Scholar]
- Kosmidis, C.; Otu, A.; Moore, C.B.; Richardson, M.D.; Rautemaa-Richardson, R. Isavuconazole therapeutic drug monitoring during long-term treatment for chronic pulmonary aspergillosis. Antimicrob. Agents Chemother. 2020, 65, e01511–e01520. [Google Scholar] [CrossRef]
- Risum, M.; Vestergaard, M.-B.; Weinreich, U.M.; Helleberg, M.; Vissing, N.H.; Jørgensen, R. Therapeutic drug monitoring of isavuconazole: Serum concentration variability and success rates for reaching target in comparison with voriconazole. Antibiotics 2021, 10, 487. [Google Scholar] [CrossRef]
- Zurl, C.; Waller, M.; Schwameis, F.; Muhr, T.; Bauer, N.; Zollner-Schwetz, I.; Valentin, T.; Meinitzer, A.; Ullrich, E.; Wunsch, S. Isavuconazole treatment in a mixed patient cohort with invasive fungal infections: Outcome, tolerability and clinical implications of isavuconazole plasma concentrations. J. Fungi 2020, 6, 90. [Google Scholar] [CrossRef]
- McCreary, E.K.; Nguyen, M.H.; Davis, M.R.; Borlagdan, J.; Shields, R.K.; Anderson, A.D.; Rivosecchi, R.M.; Marini, R.V.; Sacha, L.M.; Silveira, F.P. Achievement of clinical isavuconazole blood concentrations in transplant recipients with isavuconazonium sulphate capsules administered via enteral feeding tube. J. Antimicrob. Chemother. 2020, 75, 3023–3028. [Google Scholar] [CrossRef]
- Mueller, S.C.; Karasch, I.; Lakner, J.; Wacke, R. Validation of an isavuconazole high-performance liquid chromatography assay in plasma for routine therapeutic drug monitoring applications. Ther. Drug Monit. 2018, 40, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Clancy, C.J.; Rivosecchi, R.M.; Zhao, W.; Shields, R.K.; Marini, R.V.; Venkataramanan, R.; Nguyen, M.H. Pharmacokinetics of intravenous isavuconazole in solid-organ transplant recipients. Antimicrob. Agents Chemother. 2018, 62, e01643-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Seelhammer, T.G.; Barreto, E.F.; Wilson, J.W. Altered pharmacokinetics and dosing of liposomal amphotericin B and isavuconazole during extracorporeal membrane oxygenation. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2020, 40, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.; Kludjian, G.; Mohrien, K.; Morita, K. Decreased isavuconazole trough concentrations in the treatment of invasive aspergillosis in an adult patient receiving extracorporeal membrane oxygenation support. Am. J. Health-Syst. Pharm. 2022, zxac043. [Google Scholar] [CrossRef] [PubMed]
- Echeverria-Esnal, D.; Martín-Ontiyuelo, C.; Navarrete-Rouco, M.E.; Barcelo-Vidal, J.; Conde-Estévez, D.; Carballo, N.; De-Antonio Cusco, M.; Ferrández, O.; Horcajada, J.P.; Grau, S. Pharmacological management of antifungal agents in pulmonary aspergillosis: An updated review. Expert Rev. Anti-Infect. Ther. 2022, 20, 179–197. [Google Scholar] [CrossRef]
- Moirangthem, D.S.; Surbala, L. Remdesivir (GS-5734) in COVID-19 therapy: The fourth chance. Curr. Drug Targets 2021, 22, 1346–1356. [Google Scholar] [CrossRef]
- Humeniuk, R.; Mathias, A.; Kirby, B.J.; Lutz, J.D.; Cao, H.; Osinusi, A.; Babusis, D.; Porter, D.; Wei, X.; Ling, J. Pharmacokinetic, pharmacodynamic, and drug-interaction profile of remdesivir, a SARS-CoV-2 replication inhibitor. Clin. Pharmacokinet. 2021, 60, 569–583. [Google Scholar] [CrossRef]
- Brooks, K.G.; Callen, E.D. Outpatient Treatment Options for Acute COVID-19. US Pharm. 2022, 47, 18–21. [Google Scholar]
- Yamazaki, T.; Desai, A.; Han, D.; Kato, K.; Kowalski, D.; Akhtar, S.; Lademacher, C.; Kovanda, L.; Townsend, R. Pharmacokinetic interaction between isavuconazole and a fixed-dose combination of lopinavir 400 mg/ritonavir 100 mg in healthy subjects. Clin. Pharmacol. Drug Dev. 2017, 6, 93–101. [Google Scholar] [CrossRef]
- Cresemba. Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/cresemba-epar-product-information_en.pdf. (accessed on 1 May 2022).
- Emergency Use Authorization for Paxlovid TM 12/2021. Available online: https://www.fda.gov/media/155050/download. (accessed on 1 May 2022).
Study, Species (Number of Isolates Tested) | Isavuconazole | Voriconazole | Posaconazole | |||
---|---|---|---|---|---|---|
MIC50, MIC90 | ECOFF/R Breakpoint According to EUCAST v. 10.0 2020 | MIC50, MIC90 | ECOFF/R Breakpoint According to EUCAST v. 10.0 2020 | MIC50, MIC90 | ECOFF/R Breakpoint According to EUCAST v. 10.0 2020 | |
Pfaller et al., 2021 [23] | ||||||
A. fumigatus ISA (n = 70), VORI (n = 189), POSA (n = 189) | 0.5, 1 | 2/>2 | 0.5, 0.5 | 1/>1 | 0.25, 0.5 | 0.25/>0.25 |
A. flavus ISA (n = 19), VORI (n = 43), POSA (n = 43) | 0.5, 1 | 2/>2 | 0.5, 1 | 2/- | 0.25, 0.5 | 0.5/- |
A. niger ISA (n = 18), VORI (n = 46), POSA (n = 46) | 0.5, 4 | 4/- | 1, 1 | 2/- | 0.5, 1 | 0.5/- |
A. terreus ISA (n = 6), VORI (n = 14), POSA (n = 14) | 2, ND | 1/>2 | 0.25, 0.25 | 2/- | 0.25, 0.25 | 0.25/>0.25 |
A. nidulans ISA (n = 6), VORI (n = 11), POSA (n = 11) | 0.03, ND | 0.25/>0.25 | 0.12, 0.25 | 1/>1 | 0.25, 0.5 | 0.5/- |
Astvad et al., 2017 [22] | ||||||
A. fumigatus (n = 211) | 1, ND | 2/>2 | 0.5, ND | 1/>1 | ND | 0.25 > 0.25 |
A. niger (n = 41) | 2, ND | 4/- | 1, ND | 2/- | ND | 0.5/ND |
A. terreus species complex (n = 27) | 1, ND | 1/>2 | 1, ND | 2/- | ND | 0.25/>0.25 |
A. flavus species complex (n = 19) | 1, ND | 2/>2 | 1, ND | 2/- | ND | 0.5/- |
References | Country | Total No of Patients with CAPA | No of the Patients Who Received Antifungal Treatment | Treated with ISA Monotherapy (Usually as 1st Line) | Treated with VORI Monotherapy (Usually as 1st Line) | Treated with L-AmB Monotherapy (Usually as 1st Line) | Other Antifungals in Monotherapy | Combined or Sequential Treatment | Outcome in ISA-Treated Patients |
---|---|---|---|---|---|---|---|---|---|
Falces et al., 2020 [46] | Spain | 10 | 8 | None | 2/8 (25%) | None | 2/8 (25%) AmB | VORI + CASP in 1 AmB followed by ISA in 1 Sequential combination treatment: MICA + VORI > AmB + ISA in 1 ANID followed by AmB in 1 | No data |
Gangneux et al., 2020 [47] | France | 9 | 7 | All treated with VORI or ISA, no further details | None | None | None | No data | |
Rutsaert et al., 2020 [3] | Belgium | 7 | 6 | 2/6 (33%) | 4/6 (67%) | None | None | None | 2/6 patients died; no data on which treatment they received |
Koehler et al., 2020 [8] | Germany | 5 | 5 | 1/5 (20%) | 2/5 (40%) | None | 2/5 CASP followed by VORI | None | The only patient treated with ISA died, no cause of death provided |
Antinori et al., 2020 [45] | Italy | 1 | 1 | 1/1 (100%) | None | None | None | - | Died soon after starting treatment |
Prattes et al., 2021 [48] | Europe, USA, Pakistan | 109 | 99 | 36/99 (36%) * | 52/99 (53%) | 17/99 (17%) | POSA 4/99 (4%), Echinocandins 13/99 (13%), Deoxycholate AmB 3/99 (3%) | 18/99 (18%) VORI or ISA combined with echinocandin or L-AmB | No data |
Lahmer et al., 2021 [53] | Germany | 11 | 11 | 1/11 (9%) | 5/11 (45%) | 5/11 (45%) | None | None | No data for ISA treated patient |
Hatzl et al., 2021 [57] | Austria | 9 | 9 | 3/9 (33%) | None | None | 6/9 (67%) POSA | None | No data for 3 ISA treated patients |
Fekkar et al., 2021 [52] | France | 7 | 6 | None | None | None | CASP | VORI + CASP in 3 L-AmB + CASP in 1 VORI/L-AmB/CASP/ISA in 1 VORI/CASP/L-AmB in 1 | Success in the single patient who received combination treatment including ISA |
Paramythiotou et al., 2021 [50] | Greece | 6 | 6 | 5/6 (83%) | None | None | CASP | Sequential treatment CASP > L-AmB in 1 | Two patients alive at the last follow up and still on ISA treatment, 3 patients died, mainly due to MDR A. baumanni infection |
Machado et al., 2021 [51] | Spain | 8 | 5 | 4/5 (80%) | None | 1/5 (20%) | None | None | All 5 died due to CAPA |
Wasylyshyn et al., 2021 [54] | UK | 3 | 2 | None | None | None | None | Sequential treatment VORI > ISA in both | Both ISA treated patients alive at 12 weeks. |
Gangneux et al., 2022 [49] | France | 76 | 58 (76%) | 11/58 (19%) *° | 44/58 (76%) | 20/58 (28%) | CASP 16 (28%), unspecified 5 (9%) | 29/58 more than one type | No data |
de Almeida et al., 2022 [55] | Brazil | 14 | 12 | None | 8/12 (%) | 1/12 (%) | - | 2 days of L-AmB + ISA, followed by ISA in 1 Sequential monotherapy VORI > L-AmB and L-AmB > VORI in 2 | The only patient treated with a combination containing ISA: died on day 19 after diagnosis of CAPA; no direct cause of death provided |
References | Country | Total No of Patients with CAM | No of the Patients Who Received Antifungal Treatment | Treated with ISA Monotherapy | Treated with (L-) AmB Monotherapy | Treated with POSA Monotherapy | Other Antifungals Monotherapy | Combined Treatment | Outcome in ISA-Treated Patients |
---|---|---|---|---|---|---|---|---|---|
Patel et al., 2021 [14] | India | 187 | 187 | 19/187 (10%) *° | 136/187 (73%) *° | 73/187 (39%) *° | AmB 31/187 (17%) *° | Single antifungal 95/187; combination therapy 137/187; sequential 79/187 | No such data was provided on patients’ responses to ISA. However, survival rate was high when patients were receiving antifungal drugs concurrent, sequential, and medical surgery |
Hoenigl et al., 2021 [13] | 18 Countries | 80 | 79 | 3/79 1st line in 1; salvage therapy in 2 | 54/79 (68%) *° | 6/79 (8%) *° | CASP, VORI and MICA | Antifungal combination 14/79 3 patients’ combination therapy ISA + L-AmB | |
Arjun et al., 2021 [58] | India | 10 | 10 | 1 (10%) | 6 (30%) L-AmB or d-AmB | None | None | L-AmB + ISA in 1; d- AmB + ISA in 1; L-AmB/d-AmB followed by ISA | All the three ISA-treated patients were improved and discharged |
Buil et al., 2021 [59] | The Netherlands | 4 | 4 | None | None | None | None | VORI (days 0–13); L-AmB (from day 13); POSA (from day 19) in 1; VORI (7–12); L-AmB (12–23) in 1; VORI + ANID (0–21); POSA (13–23); ISA (21–24); VORI (24–30); ISA (30–35); ISA + L-AmB + INF-γ (35–43); AmB bladder irrigation (39–43) in 1; L-AmB + ISA + INF-γ for 7 weeks in 1 | Two patients received combined treatment of ISA and L-AmB, and died due to CAM |
Danion et al., 2022 [60] | France | 17 | 12 | 2/12 (17%) | 10/12 (83%) | None | None | No combination treatment | One patient was alive after receiving 3 months treatment of ISA and one died, no cause of death provided |
Seidel et al., 2022 [61] | Germany | 13 | 12 | 3/12 (25%) | 2/12 (17%) | None | Echinocandin 1/12 (8%) | ISA + L-AmB + VORI in 3; ISA + L-AmB in 1; VORI + echinocandin in 1; ISA + echinocandin in 1 | No data |
References | Patients’ Underlying Condition (Number) | Total No. of Patients | No. of Measurements | Mean/Median, mg/L | Min–Max, mg/L | Subtherapeutic Levels (<1 mg/L) | Potentially Supratherapeutic Levels | Safety: No. of Patients with Side Effects | Comment |
---|---|---|---|---|---|---|---|---|---|
Furfaro et al., 2019 [76] | HM (13); other (6) | 19 | 264 | Median 3.6; median 2.86 during the first 14 days; median 4.4 after 14 days of therapy | 0.64–8.13 | ND | ND | 6 (31.6%) gastrointestinal | Failure in 1 with concentration of 1.55 GI side effects were associated with high levels (5.13 mg/L) and prolonged administration Drug accumulation observed over time |
Kosmidis et al., 2020 [79] | Chronic pulmonary aspergillosis | 45 | 285 | Overall mean 4.1; mean 4.6 if dose 200 mg/day; mean 4.1 if 200 mg/100 mg on alternate days; mean 3.7 if 100 mg/day | 1.1–10.1 | <1 mg/L in none of the patients All 117 measurements from patients taking 100 mg/day were >1 mg/L | >6 mg/L in 36 (13%) | 16 (36%) discounted ISA due to side effects (5 within 28 days) such as hepatotoxicity in 4, neuropathy in 3, headache in 2, malaise in 2, weight loss in 1, confusion in 1, nausea in 1, photosensitivity in 1 case, dysgeusia in 1 | 38 patients (86%) were started on a standard dose ISA at lower dose resulted in acceptable levels and favorable profile during > 6 months of therapy |
Borman et al., 2020 [75] | ND | 150 | 210 | Mean 3.32 | 0.5–11.6 | <1 mg/L in 6 (4%), patients 62 (41%) achieved target level of 2–4 mg/L | ND | ND | In patients <18 years greater interpatient variability of blood levels was found |
Zurl et al., 2020 [81] | HM (14), SOT (4), cancer (2), other (12), including osteomyelitis | 33 | 140 | Median 2.35 If RRT/ECMO excluded: median 3.05 | 0.66–9.1 1.38–9.1 | Only in case of RRT, ECMO, or Cytosorb use | ND | 6 (18%) developed side effects: 1 anaphylaxis, 1 leukopenia, 2 increased liver enzymes, 1 paraesthesia, 1 erythema, and elevated liver enzymes | Lower concentration in case of RRT (median 0.91 in 7 patients), ECMO, and Cytosorb® |
McCreary et al., 2020 [82] | SOT (18), HSCT (1) treated with ISA via enteral feeding tube | 19 | ND | Mean 1.8 | 0.3–5.2 | <1 mg/L in 2 | >5 mg/L in 1 | ND | Favorable PK confirms that capsule content can be safely sprinkled into an enteral feeding tube |
Risum et al., 2021 [80] | HM (16); SOT (2); pulmonary disorder (13); (COPD in 7); other (5) | 36 | 273 | Median 4.3 | 0.5–15.4 | <0.2 mg/L in 7 (no data on compliance) 32/273 (12%) measurements <2 mg/L | >10 mg/L in 9/247 (4%) | ND | One case of ISA detectable for 35 days after stopping |
Kronig et al., 2021 [77] | All HM or HSCT | 16 | 35 | Mean 2.9 | 0.9–6.7 | ND | ND | Discontinued in 5 (16%): hypersensitivity in 2, increased liver enzymes in 2, drug interactions in 1 | |
Cojutti et al., 2021 [78] | Onco-hematological malignancy (25); other (25) | 50 | 199 | Median 3.68 | 2.07–5.38 | ND | ND | ND | Drug accumulation observed over time In Monte Carlo simulations standard dose was optimal against A. fumigatus and A. flavus with MIC up to 1 mg/L |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, N.; Sepulcri, C.; Mikulska, M. Isavuconazole for COVID-19-Associated Invasive Mold Infections. J. Fungi 2022, 8, 674. https://doi.org/10.3390/jof8070674
Ullah N, Sepulcri C, Mikulska M. Isavuconazole for COVID-19-Associated Invasive Mold Infections. Journal of Fungi. 2022; 8(7):674. https://doi.org/10.3390/jof8070674
Chicago/Turabian StyleUllah, Nadir, Chiara Sepulcri, and Malgorzata Mikulska. 2022. "Isavuconazole for COVID-19-Associated Invasive Mold Infections" Journal of Fungi 8, no. 7: 674. https://doi.org/10.3390/jof8070674
APA StyleUllah, N., Sepulcri, C., & Mikulska, M. (2022). Isavuconazole for COVID-19-Associated Invasive Mold Infections. Journal of Fungi, 8(7), 674. https://doi.org/10.3390/jof8070674