Comparative Study on the Antimicrobial Activities and Metabolic Profiles of Five Usnea Species from the Philippines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of the Fruticose Lichen Usnea
2.2. Characterization and Identification of Usnea
2.2.1. Morphological Characterization
2.2.2. Thalline Spot Test
2.3. Extraction of Lichen Metabolites
2.4. Determination of Antimicrobial Activities Using Paper Disk Diffusion Assay
2.4.1. Test Bacteria
2.4.2. Preparation of Bacterial Inoculum
2.4.3. Positive and Negative Controls
2.4.4. Paper Disk Diffusion Assay
2.5. Determination of Antimicrobial Activities Using TLC-Bioautography
2.5.1. Test Bacteria
2.5.2. Preparation of Inoculum and TLC Plates
2.5.3. Thin-Layer Chromatography—Bioautography
2.6. Chromatographic Analysis for Lichen Acid Profiling
2.6.1. Thin-Layer Chromatography
2.6.2. High-Performance Liquid Chromatography
3. Results
3.1. The Collected Usnea Species
3.2. Metabolic Profiles of Usnea Species
3.3. Antimicrobial Activities of Usnea
3.3.1. Against Gram-Positive Antibiotic-Sensitive Test Bacteria
3.3.2. Against Multidrug-Resistant ESKAPE Bacterial Pathogens
3.4. Detection of Bioactive Lichen Acids Using TLC-Bioautography
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Desmarets, L.; Millot, M.; Chollet-Krugler, M.; Boustie, J.; Camuzet, C.; François, N.; Rouillé, Y.; Belouzard, S.; Tomasi, S.; Mambu, L. Lichen or associated microorganism compounds are active against human coronaviruses. Viruses 2023, 15, 1859. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, G.; Thompson, A.; Robison, R.; St. Clair, L.L. Letharia vulpina, a vulpinic acid containing lichen, targets cell membrane and cell division processes in methicillin-resistant Staphylococcus aureus. Pharm. Biol. 2016, 54, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Poornima, N.S.; Nagarjun, P.; Ponmurugan, B.; Gnanamangai, M.; Narasimman, S. Toxicity and anti-inflammatory study of Parmotrema austrosinense extract against oxozalone induced intestinal inflammation in zebrafish (Danio rerio) model. Biocatal. Agric. Biotechnol. 2019, 21, 101278. [Google Scholar] [CrossRef]
- Tatipamula, V.B.; Annam, S.S.P. Antimycobacterial activity of acetone extract and isolated metabolites from folklore medicinal lichen Usnea laevis Nyl. against drug-sensitive and multidrug-resistant tuberculosis strains. J. Ethnopharmacol. 2022, 282, 114641. [Google Scholar] [CrossRef] [PubMed]
- Kocovic, A.; Jeremic, J.; Bradic, J.; Sovrlic, M.; Tomovic, J.; Vasiljevic, P.; Manojlovic, N. Phytochemical analysis, antioxidant, antimicrobial, and cytotoxic activity of different extracts of Xanthoparmelia stenophylla lichen from Stara Planina, Serbia. Plants 2022, 11, 1624. [Google Scholar] [CrossRef]
- Nash, T.H., III. Lichen sensitivity to air pollution. Lichen Biol. 2008, 2, 299–314. [Google Scholar]
- Lawrey, J.D. Biological role of lichen substances. Bryologist 1986, 89, 111–122. [Google Scholar] [CrossRef]
- Stocker-Wörgötter, E.; Cortes Cordeiro, L.M.; Iacomini, M. Accumulation of potential pharmaceutically relevant lichen metabolites in lichens and cultured lichen symbionts. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 39, pp. 337–380. [Google Scholar]
- Yamamoto, Y. Lichen-derived culture and its application. Lichenology 2005, 4, 61. [Google Scholar]
- Ingolfsdottir, K. Usnic acid. Phytochemistry 2002, 61, 729–736. [Google Scholar] [CrossRef]
- Shrestha, G.; St. Clair, L.L. Lichens: A promising source of antibiotic and anticancer drugs. Phytochem. Rev. 2013, 12, 229–244. [Google Scholar] [CrossRef]
- Popovici, V.; Bucur, L.; Gîrd, C.E.; Popescu, A.; Matei, E.; Cozaru, G.C.; Badea, V. Phenolic secondary metabolites and antiradical and antibacterial activities of different extracts of Usnea barbata (L.) Weber ex FH Wigg from Călimani Mountains, Romania. Pharmaceuticals 2022, 15, 829. [Google Scholar] [CrossRef] [PubMed]
- Dandapat, M.; Paul, S. Secondary metabolites from lichen Usnea longissima and its pharmacological relevance. Pharmacogn. Res. 2019, 11, 103–109. [Google Scholar]
- Jannah, M.; Afifah, N.; Prasetya, E.; Hariri, M.R. Usnea in West Java: A potential source of bioactive secondary metabolites. Berk. Penelit. Hayati 2022, 28, 26–31. [Google Scholar] [CrossRef]
- Kosanić, M.; Ranković, B. Lichen secondary metabolites as potential antibiotic agents. In Lichen Secondary Metabolites: Bioactive Properties and Pharmaceutical Potential, 2nd ed.; 2019; Springer: Cham, Switzerland; pp. 99–127. [Google Scholar] [CrossRef]
- Karagoz, A.; Dogruoz, N.; Zeybek, Z.; Aslan, A. Antibacterial activity of some lichen extracts. J. Med. Plants Res. 2009, 3, 1034–1039. [Google Scholar]
- Perry, N.B.; Benn, M.H.; Brennan, N.J.; Burgess, E.J.; Ellis, G.; Galloway, D.J.; Lorimer, S.D.; Tangney, R.S. Antimicrobial, antiviral and cytotoxic activity of New Zealand lichens. Lichenologist 1999, 31, 627–636. [Google Scholar] [CrossRef]
- Santiago, K.A.A.; Sangvichien, E.; Boonpragob, K.; dela Cruz, T.E.E. Secondary metabolic profiling and antibacterial activities of different species of Usnea collected in Northern Philippines. Mycosphere 2013, 4, 267–280. [Google Scholar] [CrossRef]
- Santiago, K.A.A.; Borricano, J.; Canal, J.N.; Marcelo, D.M.A.; Perez, M.C.P.; dela Cruz, T.E.E. Antibacterial activities of fruticose lichens collected from selected sites in Luzon Island, Philippines. Philipp. Sci. Lett. 2010, 3, 18–29. [Google Scholar]
- Timbreza, L.P.; Delos Reyes, J.L.; Flores, C.H.; Perez, R.; Stockel, M.A.; Santiago, K.A.A. Antibacterial activities of the lichen Ramalina and Usnea collected from Mt. Banoi, Batangas and Dahilayan, Bukidnon against multi-drug resistant (MDR) bacteria. Austrian J. Mycol. 2017, 26, 27–42. [Google Scholar]
- Santiago, K.A.A.; Edrada-Ebel, R.; dela Cruz, T.E.E.; Cheow, Y.L.; Ting, A.S.Y. Biodiscovery of potential antibacterial diagnostic metabolites from the endolichenic fungus Xylaria venustula using LC–MS-Based metabolomics. Biology 2021, 10, 191. [Google Scholar] [CrossRef]
- Santiago, K.A.A.; dela Cruz, T.E.E.; Ting, A.S.Y. Diversity and bioactivity of endolichenic fungi in Usnea lichens of the Philippines. Czech Mycol. 2021, 73, 1–19. [Google Scholar] [CrossRef]
- Kellog, J.J.; Raja, H.A. Endolichenic fungi: A new source of rich bioactive secondary metabolites on the horizon. Phytochem. Rev. 2016, 16, 271–293. [Google Scholar] [CrossRef]
- Dillenius, J.J. Historia Muscorum; The Complutense University of Madrid: Madrid, Spain, 1742; pp. 75–78. [Google Scholar]
- Clerc, P. Species concepts in the genus Usnea (Lichenized Ascomycetes). Lichenologist 1998, 30, 321–340. [Google Scholar] [CrossRef]
- Ohmura, Y. A synopsis of the lichen genus Usnea (Parmeliaceae, Ascomycota) in Taiwan. Mem. Natl. Mus. Nat. Sci. 2012, 48, 91–137. [Google Scholar]
- Truong, C.; Bungartz, F.; Clerc, P. The lichen genus Usnea (Parmeliaceae) in the tropical Andes and the Galapagos: Species with a red-orange cortical or subcortical pigmentation. Bryologist 2011, 114, 477–503. [Google Scholar] [CrossRef]
- Galinato, M.G.M.; Baguinon, J.R.C.; Santiago, K.A.A. Review of the lichen genus Usnea in the Philippines. Stud. Fungi 2018, 3, 39–48. [Google Scholar] [CrossRef]
- Salcedo, P.V.G. Floral diversity and vegetation zones of the northern slope of Mt. Amuyao, Mountain Province, Luzon (Philippines). Asia Life Sci. 2001, 10, 119–157. [Google Scholar]
- Shukla, P.; Upreti, D.K.; Tewari, L.M. Lichen genus Usnea (Parmeliaceae, Ascomycota) in Uttarakhand, India. Curr. Res. Environ. Appl. Mycol. 2014, 4, 188–201. [Google Scholar] [CrossRef]
- Swinscow, T.D.V.; Krog, H. The Usnea undulata aggregate in East Africa. Lichenologist 1975, 7, 121–138. [Google Scholar] [CrossRef]
- Herrera-Campos, M.A.; Clerc, P.; Nash, T.H., III. Pendulous species of Usnea from the temperate forests in Mexico. Bryologist 1998, 101, 303–329. [Google Scholar] [CrossRef]
- McCune, B.; Grenon, J.; Mutch, L.S.; Martin, E.P. Lichens in relation to management issues. Pac. Northwest Fungi 2007, 2, 1–39. [Google Scholar] [CrossRef]
- Randlane, T.; Tõrra, T.; Saag, A.; Saag, L. Key to European Usnea species. Bibl. Lichenol. 2009, 100, 419–462. [Google Scholar]
- Ohmura, Y.; Lin, C.-K.; Wang, P.-H. Three sorediate species of the genus Usnea (Parmeliaceae, Ascomycota) new to Taiwan. Mem. Natl. Mus. Nat. Sci Tokyo 2010, 46, 69–76. [Google Scholar]
- Truong, C.; Clerc, P. The lichen genus Usnea (Parmeliaceae) in tropical South America: Species with a pigmented medulla reacting C+ yellow. Lichenologist 2012, 44, 625–637. [Google Scholar] [CrossRef]
- Notarte, K.I.; Yaguchi, T.; Suganuma, K.; dela Cruz, T.E. Antibacterial, cytotoxic and trypanocidal activities of marine-derived fungi isolated from Philippine macroalgae and seagrasses. Acta Bot. Croat. 2018, 77, 141–151. [Google Scholar] [CrossRef]
- Culberson, C.F. Improved conditions and new data for the identification of lichen products by a standard thin-layer chromatographic method. J. Chromatogr. 1972, 72, 13–125. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Yoon, S.; Yang, Y.; Lee, H.-B.; Oh, S.; Jeong, M.-H.; Kim, J.-J.; Yee, S.-T.; Crişan, F.; Moon, C. Lichen secondary metabolites in Flavocetraria cucullata exhibit anti-cancer effects on human cancer cells through the induction of apoptosis and suppression of tumorigenic potentials. PLoS ONE 2014, 9, e111575. [Google Scholar] [CrossRef]
- Zambare, V.P.; Christopher, L.P. Biopharmaceutical potential of lichens. Pharm. Biol. 2012, 50, 778–798. [Google Scholar] [CrossRef]
- Galinato, M.G.M.; Bungihan, M.E.; Santiago, K.A.A.; Sangvichien, E.; dela Cruz, T.E.E. Antioxidant activities of fungi inhabiting Ramalina peruviana: Insights on the role of endolichenic fungi in the lichen symbiosis. Curr. Res. Environ. Appl. Mycol. 2021, 11, 119–136. [Google Scholar] [CrossRef]
- Tan, M.A.; Castro, S.G.; Oliva, P.M.P.; Yap, P.R.J.; Nakayama, A.; Magpantay, H.D.; dela Cruz, T.E.E. Biodiscovery of antibacterial constituents from the endolichenic fungi isolated from Parmotrema rampoddense. 3 Biotech 2020, 10, 212. [Google Scholar] [CrossRef]
- Gazo, S.M.T.; Santiago, K.A.A.; Tjitrosoedirjo, S.S.; dela Cruz, T.E.E. Antimicrobial and herbicidal activities of the fruticose lichen Ramalina from Guimaras Island, Philippines. Biotropia 2019, 26, 23–32. [Google Scholar]
- Behera, B.C.; Makhija, U. Effect of various culture conditions on growth and production of salazinic acid in Bulbothrix setschwanensis (lichenized ascomycetes) in vitro. Curr. Sci. 2001, 80, 1424–1427. [Google Scholar]
- Swanson, A.; Fahselt, D.; Smith, D. Phenolic levels in Umbilicaria americana in relation to enzyme polymorphism, altitude and sampling date. Lichenologist 1996, 28, 331–339. [Google Scholar] [CrossRef]
- Behera, B.C.; Verma, N.; Sonone, A.; Makhija, U. Experimental studies on the growth and usnic acid production in “lichen” Usnea ghattensis in vitro. Microbiol. Res. 2006, 161, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Heidmarsson, S.; Olafsdottir, E.S.; Buonfiglio, R.; Kogej, T.; Omarsdottir, S. Secondary metabolites from cetrarioid lichens: Chemotaxonomy, biological activities and pharmaceutical potential. Phytomedicine 2016, 23, 441–459. [Google Scholar] [CrossRef]
- Molnár, K.; Farkas, E. Current results on biological activities of lichen secondary metabolites: A review. Z. Naturforsch. C 2010, 65, 157–173. [Google Scholar] [CrossRef]
- Omarsdottir, S.; Freysdottir, J.; Olafsdottir, E.S. Immunomodulating polysaccharides from the lichen Thamnolia vermicularis Var. subuliformis. Phytomedicine 2007, 14, 179–184. [Google Scholar] [CrossRef]
- Lauterwein, M.; Oethinger, M.; Belsner, K.; Peters, T.; Marre, R. In vitro activities of the lichen secondary metabolites vulpinic acid, (+)-usnic acid, and (−)-usnic acid against aerobic and anaerobic microorganisms. Antimicrob. Agents Chemother. 1995, 39, 2541–2543. [Google Scholar] [CrossRef]
- Cocchietto, M.; Skert, N.; Nimis, P.; Sava, G. A review on usnic acid, an interesting natural compound. Sci. Nat. 2002, 89, 137–146. [Google Scholar] [CrossRef]
- Bate, P.N.N.; Orock, A.E.; Nyongbela, K.D.; Babiaka, S.B.; Kukwah, A.; Ngemenya, M.N. In vitro activity against multi-drug resistant bacteria and cytotoxicity of lichens collected from Mount Cameroon. J. King Saud. Univ. Sci. 2020, 32, 614–619. [Google Scholar] [CrossRef]
- Santos, P.S.; Mondragon, A. Studies on the Philippine Lichens, II Thin-layer chromatographic study of the constituents of some lichen species. Philipp. J. Sci. 1969, 98, 297–303. [Google Scholar]
- Cansaran, D.; Çetin, D.; Halıcı, M.G.; Atakol, O. Determination of usnic acid in some Rhizoplaca species from middle Anatolia and their antimicrobial activities. Z. Naturforsch. C 2006, 61, 47–51. [Google Scholar] [CrossRef] [PubMed]
Species | K Test a | C Test | K + C Test | Percent Yield (WCE/WLT) b | ||||||
---|---|---|---|---|---|---|---|---|---|---|
C | A | M | C | A | M | C | A | M | ||
U. baileyi | Y/O | nr | nr | nr | nr | nr | PY/Y | nr | nr | 4% |
U. diffracta | nr | R | R | nr | nr | nr | nr | nr | nr | 1% |
U. glabrata | nr | Y/O | nr | nr | nr | nr | nr | PY/Y | nr | 2% |
U. longissima | nr | nr | nr | nr | nr | nr | P/Y | P/Y | nr | 3% |
U. rubicunda | nr | R | Y/O | nr | nr | nr | Y | O | nr | 1% |
Solvent System | Lichen Acids | Total No. of Metabolites |
---|---|---|
A only | Alectronic acid Erythrin acid Fumarprotocetraric acid Galbinic acid Haematoventosin acid Hypoprotocetraric acid Hypostictic acid Lobaric acid Pulvinic dilactone | 9 |
G only | Connorstictic acid Diffractaic acid Hypothamnolic acid Micareic acid Protocetraric acid Sekikaic acid | 6 |
A and G | Argopsin Consalazinic acid Echinocarpic acid Hypoconstictic acid Hyposalazinic acid Menegazzaic acid Norstictic acid Pannarin Salazinic acid Stictic acid Usnic acid | 11 |
Total Lichen Acids Detected: | 26 |
Test Bacteria Zone of Inhibition (mm) (200 μg/Disk) | ||||||||
---|---|---|---|---|---|---|---|---|
Lichen Extracts | Against Standard Bacteria | Against MDR Bacteria | ||||||
E. faecalis | S. aureus | E. faecalis | MRSA | K. pneumoniae | A. baumanii | P. aeruginosa | E. cloacae | |
U. baileyi | 14 ± 0.46 | 10 ± 0.58 | 10 ± 0.23 | 10 ± 0.58 | 0 | 0 | 0 | 0 |
U. diffracta | 14 ± 1.16 | 10 ± 0.58 | 14 ± 0.98 | 14 ± 0.58 | 0 | 0 | 0 | 0 |
U. glabrata | 10 ± 1.73 | 8 ± 1.55 | 9 ± 1.73 | 9 ± 1.15 | 0 | 0 | 0 | 0 |
U. longissima | 12 ± 1.37 | 8 ± 1.33 | 9 ± 1.37 | 9 ± 1.33 | 0 | 0 | 0 | 0 |
U. rubicunda | 13 ± 2.08 | 8 ± 0.29 | 13 ± 1.82 | 13 ± 0.29 | 0 | 0 | 0 | 0 |
Ampicillin | 27 ± 0.46 | - | 23 ± 0.46 | - | - | - | - | - |
Sulfame- thoxazole | - | 30 ± 0 | - | 28 ± 0 | - | - | - | - |
Doripenem | - | - | - | - | 27 ± 0.58 | 28 ± 0.58 | 29 ± 0 | 27 ± 1.53 |
Acetone | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dela Cruz, T.E.E.; Timbreza, L.P.; Sangvichien, E.; Notarte, K.I.R.; Santiago, K.A.A. Comparative Study on the Antimicrobial Activities and Metabolic Profiles of Five Usnea Species from the Philippines. J. Fungi 2023, 9, 1117. https://doi.org/10.3390/jof9111117
dela Cruz TEE, Timbreza LP, Sangvichien E, Notarte KIR, Santiago KAA. Comparative Study on the Antimicrobial Activities and Metabolic Profiles of Five Usnea Species from the Philippines. Journal of Fungi. 2023; 9(11):1117. https://doi.org/10.3390/jof9111117
Chicago/Turabian Styledela Cruz, Thomas Edison E., Lawrence P. Timbreza, Ek Sangvichien, Kin Israel R. Notarte, and Krystle Angelique A. Santiago. 2023. "Comparative Study on the Antimicrobial Activities and Metabolic Profiles of Five Usnea Species from the Philippines" Journal of Fungi 9, no. 11: 1117. https://doi.org/10.3390/jof9111117
APA Styledela Cruz, T. E. E., Timbreza, L. P., Sangvichien, E., Notarte, K. I. R., & Santiago, K. A. A. (2023). Comparative Study on the Antimicrobial Activities and Metabolic Profiles of Five Usnea Species from the Philippines. Journal of Fungi, 9(11), 1117. https://doi.org/10.3390/jof9111117