Linking Lichen Metabolites to Genes: Emerging Concepts and Lessons from Molecular Biology and Metagenomics
Abstract
:1. Introduction
2. Part I: The Genetics of Secondary Metabolism and Biosynthetic Research on Non-Lichenized Versus Lichenized Fungi
2.1. Genetics of Secondary Metabolism
2.2. PKSs—Structural Diversity
2.3. Biosynthetic Research on Non-Lichenized Versus Lichenized Fungi
3. Part II: The Metagenomic Approach and Lichen Molecules Linked to Genes
3.1. Metagenomic-Guided Linking of Molecules to Genes
3.2. Lichen Metabolites Linked to Genes
3.2.1. Grayanic Acid
3.2.2. Atranorin
3.2.3. Lecanoric Acid
3.3. Molecules That Are Bioinformatically Linked to Their Respective Genes/Clusters
3.3.1. Usnic Acid
3.3.2. Olivetoric/Physodic Cluster
3.3.3. Gyrophoric Cluster
4. What We Have Learned So Far: Critical Takeaways and Novel Emerging Concepts
4.1. Metagenomic and Molecular Predictions Mostly Nail Down the Target Gene Precisely
4.2. The Biosynthetic Potential of an Organism Far Exceeds the Compounds Produced/Detected
4.3. One Cluster May Code for Several Structurally Related Compounds
4.4. The Same PKS May Produce Different Compounds in the Presence of Different Starter Units
4.5. KS, PT, or Full-Length NRPKS Generate Congruent Phylogenies, Even Though the Alignment May Be Cleaner When Only the Highly Conserved Domains, Such as KT and PT, Are Used
4.6. Not All Genes of a Cluster Are Involved in Metabolite Synthesis but May Be Involved in Its Transportation or Regulation
Funding
Acknowledgments
Conflicts of Interest
References
- Chooi, Y.-H.; Tang, Y. Navigating the Fungal Polyketide Chemical Space: From Genes to Molecules. J. Org. Chem. 2012, 77, 9933–9953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganley, J.G.; Derbyshire, E.R. Linking Genes to Molecules in Eukaryotic Sources: An Endeavor to Expand Our Biosynthetic Repertoire. Molecules 2020, 25, 625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molinari, G. Natural Products in Drug Discovery: Present Status and Perspectives. Adv. Exp. Med. Biol. 2009, 655, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.T.; Fischbach, M.A. Natural Products Version 2.0: Connecting Genes to Molecules. J. Am. Chem. Soc. 2010, 132, 2469–2493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boustie, J.; Grube, M. Lichens—A Promising Source of Bioactive Secondary Metabolites. Plant Genet. Resour. 2005, 3, 273–287. [Google Scholar] [CrossRef] [Green Version]
- Huneck, S. The Significance of Lichens and Their Metabolites. Naturwissenschaften 1999, 86, 559–570. [Google Scholar] [CrossRef]
- Ranković, B.; Kosanić, M. Lichens as a Potential Source of Bioactive Secondary Metabolites. In Lichen Secondary Metabolites: Bioactive Properties and Pharmaceutical Potential; Ranković, B., Ed.; Springer International Publishing: Cham, Germany, 2015; pp. 1–26. ISBN 978-3-319-13374-4. [Google Scholar]
- Calcott, M.J.; Ackerley, D.F.; Knight, A.; Keyzers, R.A.; Owen, J.G. Secondary Metabolism in the Lichen Symbiosis. Chem. Soc. Rev. 2018, 47, 1730–1760. [Google Scholar] [CrossRef]
- Emsen, B.; Turkez, H.; Togar, B.; Aslan, A. Evaluation of Antioxidant and Cytotoxic Effects of Olivetoric and Physodic Acid in Cultured Human Amnion Fibroblasts. Hum. Exp. Toxicol. 2017, 36, 376–385. [Google Scholar] [CrossRef]
- Ingelfinger, R.; Henke, M.; Roser, L.; Ulshöfer, T.; Calchera, A.; Singh, G.; Parnham, M.J.; Geisslinger, G.; Fürst, R.; Schmitt, I.; et al. Unraveling the Pharmacological Potential of Lichen Extracts in the Context of Cancer and Inflammation with a Broad Screening Approach. Front. Pharmacol. 2020, 11, 1322. [Google Scholar] [CrossRef]
- Xu, M.; Heidmarsson, S.; Olafsdottir, E.S.; Buonfiglio, R.; Kogej, T.; Omarsdottir, S. Secondary Metabolites from Cetrarioid Lichens: Chemotaxonomy, Biological Activities and Pharmaceutical Potential. Phytomedicine 2016, 23, 441–459. [Google Scholar] [CrossRef]
- Gerasimova, J.V.; Beck, A.; Werth, S.; Resl, P. High Diversity of Type I Polyketide Genes in Bacidia rubella as Revealed by the Comparative Analysis of 23 Lichen Genomes. J. Fungi 2022, 8, 449. [Google Scholar] [CrossRef] [PubMed]
- Pizarro, D.; Divakar, P.K.; Grewe, F.; Crespo, A.; Dal Grande, F.; Lumbsch, H.T. Genome-Wide Analysis of Biosynthetic Gene Cluster Reveals Correlated Gene Loss with Absence of Usnic Acid in Lichen-Forming Fungi. Genome Biol. Evol. 2020, 12, 1858–1868. [Google Scholar] [CrossRef] [PubMed]
- Egbert, S.; Hoffman, J.R.; McMullin, R.T.; Lendemer, J.C.; Sorensen, J.L. Unraveling Usnic Acid: A Comparison of Biosynthetic Gene Clusters between Two Reindeer Lichen (Cladonia rangiferina and C. uncialis). Fungal Biol. 2022, 126, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Calchera, A.; Merges, D.; Valim, H.; Otte, J.; Schmitt, I.; Dal Grande, F. A Candidate Gene Cluster for the Bioactive Natural Product Gyrophoric Acid in Lichen-Forming Fungi. Microbiol. Spectr. 2022, 10, e0010922. [Google Scholar] [CrossRef] [PubMed]
- Keller, N.P. Fungal Secondary Metabolism: Regulation, Function and Drug Discovery. Nat. Rev. Microbiol. 2019, 17, 167. [Google Scholar] [CrossRef]
- Stocker-Wörgötter, E. Metabolic Diversity of Lichen-Forming Ascomycetous Fungi: Culturing, Polyketide and Shikimate Metabolite Production, and PKS Genes. Nat. Prod. Rep. 2008, 25, 188–200. [Google Scholar] [CrossRef]
- Keller, N.P.; Hohn, T.M. Metabolic Pathway Gene Clusters in Filamentous Fungi. Fungal Genet. Biol. 1997, 21, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Keller, N.P.; Turner, G.; Bennett, J.W. Fungal Secondary Metabolism—From Biochemistry to Genomics. Nat. Rev. Microbiol. 2005, 3, 937–947. [Google Scholar] [CrossRef]
- Armaleo, D.; Sun, X.; Culberson, C. Insights from the First Putative Biosynthetic Gene Cluster for a Lichen Depside and Depsidone. Mycologia 2011, 103, 741–754. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, R.L.; Sorensen, J.L. Lost in Translation: Challenges with Heterologous Expression of Lichen Polyketide Synthases. ChemistrySelect 2019, 4, 6473–6483. [Google Scholar] [CrossRef]
- Gallo, A.; Ferrara, M.; Perrone, G. Phylogenetic Study of Polyketide Synthases and Nonribosomal Peptide Synthetases Involved in the Biosynthesis of Mycotoxins. Toxins 2013, 5, 717–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crawford, J.M.; Thomas, P.M.; Scheerer, J.R.; Vagstad, A.L.; Kelleher, N.L.; Townsend, C.A. Deconstruction of Iterative Multidomain Polyketide Synthase Function. Science 2008, 320, 243–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Zhang, Z.; Shao, C.-L.; Wang, J.-L.; Bai, H.; Wang, C.-Y. Bioinformatical Analysis of the Sequences, Structures and Functions of Fungal Polyketide Synthase Product Template Domains. Sci. Rep. 2015, 5, 10463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crawford, J.M.; Dancy, B.C.R.; Hill, E.A.; Udwary, D.W.; Townsend, C.A. Identification of a Starter Unit Acyl-Carrier Protein Transacylase Domain in an Iterative Type I Polyketide Synthase. Proc. Natl. Acad. Sci. USA 2006, 103, 16728–16733. [Google Scholar] [CrossRef] [Green Version]
- Fujii, I.; Ono, Y.; Tada, H.; Gomi, K.; Ebizuka, Y.; Sankawa, U. Cloning of the Polyketide Synthase Gene AtX from Aspergillus terreus and Its Identification as the 6-Methylsalicylic Acid Synthase Gene by Heterologous Expression. Mol. Gen. Genet. 1996, 253, 1–10. [Google Scholar] [CrossRef]
- Sabatini, M.; Comba, S.; Altabe, S.; Recio-Balsells, A.I.; Labadie, G.R.; Takano, E.; Gramajo, H.; Arabolaza, A. Biochemical Characterization of the Minimal Domains of an Iterative Eukaryotic Polyketide Synthase. FEBS J. 2018, 285, 4494–4511. [Google Scholar] [CrossRef] [Green Version]
- Gokhale, R.S.; Hunziker, D.; Cane, D.E.; Khosla, C. Mechanism and Specificity of the Terminal Thioesterase Domain from the Erythromycin Polyketide Synthase. Chem. Biol. 1999, 6, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Tao, W.; Qi, Z.; Wei, J.; Shi, T.; Kang, Q.; Zheng, J.; Zhao, Y.; Bai, L. Structural and Mechanistic Insights into Chain Release of the Polyene PKS Thioesterase Domain. ACS Catal. 2022, 12, 762–776. [Google Scholar] [CrossRef]
- Barajas, J.F.; Shakya, G.; Moreno, G.; Rivera, H.; Jackson, D.R.; Topper, C.L.; Vagstad, A.L.; La Clair, J.J.; Townsend, C.A.; Burkart, M.D.; et al. Polyketide Mimetics Yield Structural and Mechanistic Insights into Product Template Domain Function in Nonreducing Polyketide Synthases. Proc. Natl. Acad. Sci. USA 2017, 114, E4142–E4148. [Google Scholar] [CrossRef] [Green Version]
- Barajas, J.F.; Finzel, K.; Valentic, T.R.; Shakya, G.; Gamarra, N.; Martinez, D.; Meier, J.L.; Vagstad, A.L.; Newman, A.G.; Townsend, C.A.; et al. Structural and Biochemical Analysis of Protein-Protein Interactions between the Acyl-Carrier Protein and Product Template Domain. Angew. Chem. Int. Ed. 2016, 55, 13005–13009. [Google Scholar] [CrossRef]
- Singh, G.; Dal Grande, F.; Schmitt, I. Genome Mining as a Biotechnological Tool for the Discovery of Novel Biosynthetic Genes in Lichens. Front. Fungal Biol. 2022, 3, 993171. [Google Scholar] [CrossRef]
- Robey, M.T.; Caesar, L.K.; Drott, M.T.; Keller, N.P.; Kelleher, N.L. An Interpreted Atlas of Biosynthetic Gene Clusters from 1000 Fungal Genomes. Proc. Natl. Acad. Sci. USA 2021, 118, e2020230118. [Google Scholar] [CrossRef] [PubMed]
- Demain, A.L. Valuable Secondary Metabolites from Fungi. In Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites; Martín, J.F., García-Estrada, C., Zeilinger, S., Eds.; Fungal Biology; Springer: New York, NY, USA, 2014; pp. 1–15. [Google Scholar] [CrossRef]
- Li, Y.F.; Tsai, K.J.S.; Harvey, C.J.B.; Li, J.J.; Ary, B.E.; Berlew, E.E.; Boehman, B.L.; Findley, D.M.; Friant, A.G.; Gardner, C.A.; et al. Comprehensive Curation and Analysis of Fungal Biosynthetic Gene Clusters of Published Natural Products. Fungal Genet. Biol. 2016, 89, 18–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clardy, J.; Fischbach, M.; Currie, C. The Natural History of Antibiotics. Curr. Biol. 2009, 19, R437–R441. [Google Scholar] [CrossRef] [Green Version]
- Demain, A.L.; Sanchez, S. Microbial Drug Discovery: 80 Years of Progress. J. Antibiot. 2009, 62, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Tobert, J.A. Lovastatin and beyond: The History of the HMG-CoA Reductase Inhibitors. Nat. Rev. Drug Discov. 2003, 2, 517–526. [Google Scholar] [CrossRef]
- Verdine, G.L. The Combinatorial Chemistry of Nature. Nature 1996, 384, 11–13. [Google Scholar] [CrossRef]
- Sanchez, S.; Demain, A.L. Bioactive Products from Fungi. In Food Bioactivities; Puri, M., Ed.; Springer, Cham: New York, NY, USA, 2017; pp. 59–87. [Google Scholar] [CrossRef]
- Beck, J.; Ripka, S.; Siegner, A.; Schiltz, E.; Schweizer, E. The Multifunctional 6-Methylsalicylic Acid Synthase Gene of Penicillium Patulum. Its Gene Structure Relative to That of Other Polyketide Synthases. Eur. J. Biochem. 1990, 192, 487–498. [Google Scholar] [CrossRef]
- Kim, W.; Liu, R.; Woo, S.; Kang, K.B.; Park, H.; Yu, Y.H.; Ha, H.-H.; Oh, S.-Y.; Yang, J.H.; Kim, H.; et al. Linking a Gene Cluster to Atranorin, a Major Cortical Substance of Lichens, through Genetic Dereplication and Heterologous Expression. mBio 2021, 12, e0111121. [Google Scholar] [CrossRef]
- Rindi, F.; Lam, D.W.; López-Bautista, J.M. Phylogenetic Relationships and Species Circumscription in Trentepohlia and Printzina (Trentepohliales, Chlorophyta). Mol. Phylogenet. Evol. 2009, 52, 329–339. [Google Scholar] [CrossRef]
- Trentepohlia—An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/trentepohlia (accessed on 23 November 2022).
- Blin, K.; Shaw, S.; Kloosterman, A.M.; Charlop-Powers, Z.; van Wezel, G.P.; Medema, M.H.; Weber, T. AntiSMASH 6.0: Improving Cluster Detection and Comparison Capabilities. Nucleic Acids Res. 2021, 49, W29–W35. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Muñoz, J.C.; Collemare, J. A Bioinformatics Workflow for Investigating Fungal Biosynthetic Gene Clusters. In Engineering Natural Product Biosynthesis: Methods and Protocols; Skellam, E., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2022; pp. 1–21. ISBN 978-1-07-162273-5. [Google Scholar]
- Thacker, P.D. Understanding Fungi through Their Genomes. BioScience 2003, 53, 10–15. [Google Scholar] [CrossRef]
- Li, S.-M. Genome Mining and Biosynthesis of Fumitremorgin-Type Alkaloids in Ascomycetes. J. Antibiot. 2011, 64, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Lackner, G.; Misiek, M.; Braesel, J.; Hoffmeister, D. Genome Mining Reveals the Evolutionary Origin and Biosynthetic Potential of Basidiomycete Polyketide Synthases. Fungal Genet. Biol. 2012, 49, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Bok, J.W.; Hoffmeister, D.; Maggio-Hall, L.A.; Murillo, R.; Glasner, J.D.; Keller, N.P. Genomic Mining for Aspergillus Natural Products. Chem. Biol. 2006, 13, 31–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cacho, R.A.; Tang, Y.; Chooi, Y.-H. Next-Generation Sequencing Approach for Connecting Secondary Metabolites to Biosynthetic Gene Clusters in Fungi. Front. Microbiol. 2015, 5, 774. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.-J.; Wang, C.C.C. Recent Advances in Genome Mining of Secondary Metabolites in Aspergillus terreus. Front. Microbiol. 2014, 5, 717. [Google Scholar] [CrossRef] [Green Version]
- Meiser, A.; Otte, J.; Schmitt, I.; Grande, F.D. Sequencing Genomes from Mixed DNA Samples—Evaluating the Metagenome Skimming Approach in Lichenized Fungi. Sci. Rep. 2017, 7, 14881. [Google Scholar] [CrossRef]
- Calchera, A.; Dal Grande, F.; Bode, H.B.; Schmitt, I. Biosynthetic Gene Content of the “Perfume Lichens” Evernia prunastri and Pseudevernia furfuracea. Molecules 2019, 24, 203. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Hameed, M.; Bertrand, R.L.; Piercey-Normore, M.D.; Sorensen, J.L. Putative Identification of the Usnic Acid Biosynthetic Gene Cluster by de Novo Whole-Genome Sequencing of a Lichen-Forming Fungus. Fungal Biol. 2016, 120, 306–316. [Google Scholar] [CrossRef]
- Medema, M.H.; Blin, K.; Cimermancic, P.; de Jager, V.; Zakrzewski, P.; Fischbach, M.A.; Weber, T.; Takano, E.; Breitling, R. AntiSMASH: Rapid Identification, Annotation and Analysis of Secondary Metabolite Biosynthesis Gene Clusters in Bacterial and Fungal Genome Sequences. Nucleic Acids Res. 2011, 39, W339–W346. [Google Scholar] [CrossRef] [PubMed]
- Terlouw, B.R.; Blin, K.; Navarro-Muñoz, J.C.; Avalon, N.E.; Chevrette, M.G.; Egbert, S.; Lee, S.; Meijer, D.; Recchia, M.J.J.; Reitz, Z.L.; et al. MIBiG 3.0: A Community-Driven Effort to Annotate Experimentally Validated Biosynthetic Gene Clusters. Nucleic Acids Res. 2022, 51, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Muñoz, J.C.; Selem-Mojica, N.; Mullowney, M.W.; Kautsar, S.A.; Tryon, J.H.; Parkinson, E.I.; De Los Santos, E.L.C.; Yeong, M.; Cruz-Morales, P.; Abubucker, S.; et al. A Computational Framework to Explore Large-Scale Biosynthetic Diversity. Nat. Chem. Biol. 2020, 16, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Kautsar, S.A.; Blin, K.; Shaw, S.; Weber, T.; Medema, M.H. BiG-FAM: The Biosynthetic Gene Cluster Families Database. Nucleic Acids Res. 2021, 49, D490–D497. [Google Scholar] [CrossRef]
- Kroken, S.; Glass, N.L.; Taylor, J.W.; Yoder, O.C.; Turgeon, B.G. Phylogenomic Analysis of Type I Polyketide Synthase Genes in Pathogenic and Saprobic Ascomycetes. Proc. Natl. Acad. Sci. USA 2003, 100, 15670–15675. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Armaleo, D.; Dal Grande, F.; Schmitt, I. Depside and Depsidone Synthesis in Lichenized Fungi Comes into Focus through a Genome-Wide Comparison of the Olivetoric Acid and Physodic Acid Chemotypes of Pseudevernia furfuracea. Biomolecules 2021, 11, 1445. [Google Scholar] [CrossRef]
- Kealey, J.T.; Craig, J.P.; Barr, P.J. Identification of a Lichen Depside Polyketide Synthase Gene by Heterologous Expression in Saccharomyces cerevisiae. Metab. Eng. Commun. 2021, 13, e00172. [Google Scholar] [CrossRef]
- Wang, Y.; Geng, C.; Yuan, X.; Hua, M.; Tian, F.; Li, C. Identification of a Putative Polyketide Synthase Gene Involved in Usnic Acid Biosynthesis in the Lichen Nephromopsis pallescens. PLoS ONE 2018, 13, e0199110. [Google Scholar] [CrossRef]
- Posner, B.; Feige, G.B. Studies on the Chemistry of the Lichen Genus Umbilicaria Hoffm. Z. Für Nat. C 1992, 47, 1–9. [Google Scholar] [CrossRef]
- Walker, J.R.L.; Lintott, E.A. A Phytochemical Register of New Zealand Lichens. N. Z. J. Bot. 1997, 35, 369–384. [Google Scholar] [CrossRef] [Green Version]
- Culberson, C.F. Joint Occurrence of a Lichen Depsidone and Its Probable Depside Precursor. Science 1964, 143, 255–256. [Google Scholar] [CrossRef] [PubMed]
- Culberson, W.L.; Culberson, C.F.; Johnson, A. Pseudevernia Furfuracea-Olivetorina Relationships: Chemistry and Ecology. Mycologia 1977, 69, 604–614. [Google Scholar] [CrossRef]
- Cornejo, A.; Salgado, F.; Caballero, J.; Vargas, R.; Simirgiotis, M.; Areche, C. Secondary Metabolites in Ramalina Terebrata Detected by UHPLC/ESI/MS/MS and Identification of Parietin as Tau Protein Inhibitor. Int. J. Mol. Sci. 2016, 17, 1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, G.; Calchera, A.; Schulz, M.; Drechsler, M.; Bode, H.B.; Schmitt, I.; Dal Grande, F. Climate-Specific Biosynthetic Gene Clusters in Populations of a Lichen-Forming Fungus. Environ. Microbiol. 2021, 23, 4260–4275. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Siva, B.; Sarma, V.U.M.; Mohabe, S.; Reddy, A.M.; Boustie, J.; Tiwari, A.K.; Rao, N.R.; Babu, K.S. UPLC–MS/MS Quantitative Analysis and Structural Fragmentation Study of Five Parmotrema Lichens from the Eastern Ghats. J. Pharm. Biomed. Anal. 2018, 156, 45–57. [Google Scholar] [CrossRef]
- Nassar, A.F.; Wu, T.; Nassar, S.F.; Wisnewski, A.V. UPLC–MS for Metabolomics: A Giant Step Forward in Support of Pharmaceutical Research. Drug Discov. Today 2017, 22, 463–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-Benítez, A.; Rivera-Montalvo, M.; Sepúlveda, B.; Castro, O.N.; Nagles, E.; Simirgiotis, M.J.; García-Beltrán, O.; Areche, C. Metabolomic Analysis of Two Parmotrema Lichens: P. robustum (Degel.) Hale and P. andinum (Mull. Arg.) Hale Using UHPLC-ESI-OT-MS-MS. Molecules 2017, 22, 1861. [Google Scholar] [CrossRef] [Green Version]
- Olivier-Jimenez, D.; Chollet-Krugler, M.; Rondeau, D.; Beniddir, M.A.; Ferron, S.; Delhaye, T.; Allard, P.-M.; Wolfender, J.-L.; Sipman, H.J.M.; Lücking, R.; et al. A Database of High-Resolution MS/MS Spectra for Lichen Metabolites. Sci. Data 2019, 6, 294. [Google Scholar] [CrossRef]
- Türk, H.; Yilmaz, M.; Tay, T.; Türk, A.O.; Kivanç, M. Antimicrobial Activity of Extracts of Chemical Races of the Lichen Pseudevernia furfuracea and Their Physodic Acid, Chloroatranorin, Atranorin, and Olivetoric Acid Constituents. Z Naturforsch. C J. Biosci. 2006, 61, 499–507. [Google Scholar] [CrossRef]
- Foulke-Abel, J.; Townsend, C.A. Demonstration of Starter Unit Interprotein Transfer from a Fatty Acid Synthase to a Multidomain, Nonreducing Polyketide Synthase. Chembiochem 2012, 13, 1880–1884. [Google Scholar] [CrossRef] [Green Version]
- Crawford, J.M.; Vagstad, A.L.; Ehrlich, K.C.; Townsend, C.A. Starter Unit Specificity Directs Genome Mining of Polyketide Synthase Pathways in Fungi. Bioorg. Chem. 2008, 36, 16–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Image, I.I.; Xu, W.; Image, I.; Tang, Y.; Image, I. Classification, Prediction, and Verification of the Regioselectivity of Fungal Polyketide Synthase Product Template Domains. J. Biol. Chem. 2010, 285, 22764–22773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahuja, M.; Chiang, Y.-M.; Chang, S.-L.; Praseuth, M.B.; Entwistle, R.; Sanchez, J.F.; Lo, H.-C.; Yeh, H.-H.; Oakley, B.R.; Wang, C.C.C. Illuminating the Diversity of Aromatic Polyketide Synthases in Aspergillus nidulans. J. Am. Chem. Soc. 2012, 134, 8212–8221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.-H.; Keller, N. Regulation of Secondary Metabolism in Filamentous Fungi. Annu. Rev. Phytopathol. 2005, 43, 437–458. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, G. Linking Lichen Metabolites to Genes: Emerging Concepts and Lessons from Molecular Biology and Metagenomics. J. Fungi 2023, 9, 160. https://doi.org/10.3390/jof9020160
Singh G. Linking Lichen Metabolites to Genes: Emerging Concepts and Lessons from Molecular Biology and Metagenomics. Journal of Fungi. 2023; 9(2):160. https://doi.org/10.3390/jof9020160
Chicago/Turabian StyleSingh, Garima. 2023. "Linking Lichen Metabolites to Genes: Emerging Concepts and Lessons from Molecular Biology and Metagenomics" Journal of Fungi 9, no. 2: 160. https://doi.org/10.3390/jof9020160
APA StyleSingh, G. (2023). Linking Lichen Metabolites to Genes: Emerging Concepts and Lessons from Molecular Biology and Metagenomics. Journal of Fungi, 9(2), 160. https://doi.org/10.3390/jof9020160