Melanin Induction Restores the Pathogenicity of Gaeumannomyces graminis var. tritici in Wheat Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inoculum Preparation and Melanin Fungal Pigment Activation
2.2. Detection and Quantification of Melanin Fungal Pigment
2.3. Reactive Oxygen Species (ROS) and Lipid Peroxidation of Fungal Cell Membrane
2.4. Greenhouse Assay: Ggt Pathogenicity in Wheat Roots
2.5. Gaeumannomyces graminis var. tritici Quantification in Wheat Roots
2.6. Statistical Analysis
3. Results
3.1. In Vitro Induction of Melanin Fungal Pigment
3.2. Detection and Quantification of Melanin Fungal Pigment
3.3. Response of Fungal Cell Membrane to Melanin Activation
3.4. Greenhouse Assay
3.5. Gaeumannomyces graminis var. tritici Quantification in Wheat Roots
3.6. Oxidative Damage by Lipid Peroxidation (MDA Accumulation)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouvet, L.; Holdgate, S.; James, L.; Thomas, J.; Mackay, I.J.; Cockram, J. The evolving battle between yellow rust and wheat: Implications for global food security. Theor. Appl. Genet. 2022, 135, 741–753. [Google Scholar] [CrossRef] [PubMed]
- Chaves, M.S.; Martinelli, J.A.; Wesp-Guterres, C.; André, F.; Graichen, S.; Brammer, S.P.; Scagliusi, S.M.; Roberto, P.; Wiethölter, P.; Abigail, G.; et al. The importance for food security of maintaining rust resistance in wheat. Food Secur. 2013, 5, 157–176. [Google Scholar] [CrossRef]
- Durán, P.; Tortella, G.; Sadowsky, M.J.; Viscardi, S.; Barra, P.J.; de la Mora, M.L. Engineering multigenerational host-modulated microbiota against soilborne pathogens in response to global climate change. Biology 2021, 10, 865. [Google Scholar] [CrossRef] [PubMed]
- Méndez, I.; Fallard, A.; Soto, I.; Tortella, G.; de la Luz Mora, M.; Valentine, A.J.; Barra, P.J.; Duran, P. Efficient Biocontrol of Gaeumannomyces graminis var. tritici in Wheat: Using Bacteria Isolated from Suppressive Soils. Agronomy 2021, 11, 2008. [Google Scholar] [CrossRef]
- Cheng, W.; Sun, Y.; Fan, M.; Li, Y.; Wang, L.; Qian, H. Wheat bran, as the resource of dietary fiber: A review. Crit. Rev. Food Sci. Nutr. 2021, 62, 7269–7281. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.S.; Jeon, C.W.; Bae, D.W.; Seo, J.S.; Thomashow, L.S.; Weller, D.M.; Kwak, Y.S. Construction of a proteome reference map and response of Gaeumannomyces graminis var. tritici to 2,4-diacetylphloroglucinol. Fungal Biol. 2018, 122, 1098–1108. [Google Scholar] [CrossRef]
- Paz, C.; Viscardi, S.; Iturra, A.; Marin, V.; Miranda, F.; Barra, P.J.; Mendez, I.; Duran, P. Antifungal effects of drimane sesquiterpenoids isolated from Drimys winteri against Gaeumannomyces graminis var. tritici. Appl. Environ. Microbiol. 2020, 86, e01834-20. [Google Scholar] [CrossRef]
- Shahverdi, A.; Shakibaie, M.; Nazari, P. Metal Nanoparticles in Microbiology; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Jayaraman, S.; Naorem, A.K.; Lal, R.; Dalal, R.C.; Sinha, N.K.; Patra, A.K.; Chaudhari, S.K. Disease-Suppressive Soils—Beyond Food Production: A Critical Review. J. Soil Sci. Plant Nutr. 2021, 21, 1437–1465. [Google Scholar] [CrossRef]
- Durán, P.; Acuña, J.J.; Jorquera, M.A.; Azcón, R.; Paredes, C.; Rengel, Z.; de la Luz Mora, M. Endophytic bacteria from selenium-supplemented wheat plants could be useful for plant-growth promotion, biofortification and Gaeumannomyces graminis biocontrol in wheat production. Biol. Fertil. Soils 2014, 50, 983–990. [Google Scholar] [CrossRef]
- Durán, P.; Acuña, J.J.; Jorquera, M.A.; Azcón, R.; Borie, F.; Cornejo, P.; Mora, M.L. Enhanced selenium content in wheat grain by co-inoculation of selenobacteria and arbuscular mycorrhizal fungi: A preliminary study as a potential Se biofortification strategy. J. Cereal Sci. 2013, 57, 275–280. [Google Scholar] [CrossRef]
- Durán, P.; Viscardi, S.; Acuña, J.J.; Cornejo, P.; Azcón, R.; de la Mora, M.L. Endophytic selenobacteria and arbuscular mycorrhizal fungus for Selenium biofortification and Gaeumannomyces graminis biocontrol. J. Soil Sci. Plant Nutr. 2018, 18, 1021–1035. [Google Scholar] [CrossRef]
- Al-Bedak, O.A.; Sayed, R.M.; Hassan, S.H.A. A new low-cost method for long-term preservation of filamentous fungi. Biocatal. Agric. Biotechnol. 2019, 22, 101417. [Google Scholar] [CrossRef]
- García-Martínez, J.; López Lacomba, D.; Castaño Pascual, A. Evaluation of a Method for Long-Term Cryopreservation of Fungal Strains. Biopreserv. Biobank. 2018, 16, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Ayala-Zermeño, M.A.; Gallou, A.; Berlanga-Padilla, A.M.; Andrade-Michel, G.Y.; Rodríguez-Rodríguez, J.C.; Arredondo-Bernal, H.C.; Montesinos-Matías, R. Viability, purity, and genetic stability of entomopathogenic fungi species using different preservation methods. Fungal Biol. 2017, 121, 920–928. [Google Scholar] [CrossRef]
- Jong, S.-C.; Birmingham, J.M. Cultivation and Preservation of Fungi in Culture. In Systematics and Evolution; Springer: Berlin/Heidelberg, Germany, 2001; pp. 193–202. [Google Scholar] [CrossRef]
- Naiki, T.; Cook, R.J. Factors in Loss of Pathogenicity in Gaeumannomyces graminis var. tritici. Phytopathology 1983, 73, 1652. [Google Scholar] [CrossRef]
- Chang, T.H.; Lin, Y.H.; Wan, Y.L.; Chen, K.S.; Huang, J.W.; Chang, P.F.L. Degenerated virulence and irregular development of fusarium oxysporum f. sp. niveum induced by successive subculture. J. Fungi 2020, 6, 382. [Google Scholar] [CrossRef] [PubMed]
- Bell, A.A.; Wheeler, M.H. Biosynthesis and Functions of Fungal Melanins. Annu. Rev. Phytopathol. 1986, 24, 411–451. [Google Scholar] [CrossRef]
- Howard, R.J.; Valent, B. Breaking and Entering: Host Penetration by the Fungal Rice Blast Pathogen Magnaporthe grisea. Annu. Rev. Microbiol. 1996, 50, 491–512. [Google Scholar] [CrossRef]
- Baker, R.P.; Chrissian, C.; Stark, R.E.; Casadevall, A. Cryptococcus neoformans melanization incorporates multiple catecholamines to produce polytypic melanin. J. Biol. Chem. 2022, 298, 101519. [Google Scholar] [CrossRef]
- Nosanchuk, J.D.; Stark, R.E.; Casadevall, A. Fungal melanin: What do we know about structure? Front. Microbiol. 2015, 6, 1463. [Google Scholar] [CrossRef]
- Vanesa, A.; Emilio, M.; Franco, E.; Marianela, S.; Lopez, Y. Physiological and Molecular Plant Pathology Melanins in fungi: Types, localization and putative biological roles. Physiol. Mol. Plant Pathol. 2017, 99, 2–6. [Google Scholar] [CrossRef]
- Jia, S.; Chi, Z.; Chen, L.; Liu, G.; Hu, Z.; Chi, Z. Genomics Molecular evolution and regulation of DHN melanin-related gene clusters are closely related to adaptation of different melanin-producing fungi. Genomics 2021, 113, 1962–1975. [Google Scholar] [CrossRef] [PubMed]
- Buckner, C.A.; Lafrenie, R.M.; Dénommée, J.A.; Caswell, J.M.; Want, D.A.; Gan, G.G.; Leong, Y.C.; Bee, P.C.; Chin, E.; Teh, A.K.H.; et al. Production of Melanin Pigment by Fungi and Its Biotechnological Applications. Intech 2016, 11, 13. [Google Scholar]
- Cordero, R.J.B.; Casadevall, A. Functions of fungal melanin beyond virulence. Fungal Biol. Rev. 2017, 31, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Tsirilakis, K.; Kim, C.; Vicencio, A.; Andrade, C.; Casadevall, A.; Goldman, D. Methylxanthine Inhibit Fungal Chitinases and Exhibit Antifungal Activity. Mycopathologia 2012, 173, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Mattoon, E.R.; Cordero, R.J.B.; Casadevall, A. Fungal Melanins and Applications in Healthcare, Bioremediation and Industry. J Fungi 2021, 7, 488. [Google Scholar] [CrossRef]
- Butler, M.J.; Day, A.W.; Henson, J.M.; Money, N.P. Pathogenic properties of fungal melanins. Mycologia 2001, 93, 1–8. [Google Scholar] [CrossRef]
- Henson, J.M.; Butler, M.J.; Day, A.W. The Dark Side of the Mycelium: Melanins of Phytopathogenic Fungi. Annu. Rev. Phytopathol. 1999, 37, 447–471. [Google Scholar] [CrossRef]
- Howard, R.J.; Ferrari, M.A.; Roacht, D.H.; Money, N.P. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc. Natl. Acad. Sci. USA 1991, 88, 11281–11284. [Google Scholar] [CrossRef]
- Dufresne, M.; Osbourn, A.E.; Centre, J.I.; Lane, C.; Nr, N. Definition of Tissue-Specific and General Requirements for Plant Infection in a Phytopathogenic Fungus. Mol. Plant-Microbe Interact. 2001, 14, 300–307. [Google Scholar] [CrossRef]
- Osbourn, A.E. Plant mechanisms that give defence against soilborne diseases. Australas. Plant Pathol. 2001, 30, 99–102. [Google Scholar] [CrossRef]
- Steiner, U.; Oerke, E. A Melanin-Deficient Isolate of Venturia inaequalis Reveals Various Roles of Melanin in Pathogen Life Cycle and Fitness. J. Fungi 2023, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Youngchim, S.; Zamith-Miranda, D.; Nosanchuk, J.D. Fungal melanin and the Mammalian immune system. J. Fungi 2021, 7, 264. [Google Scholar] [CrossRef]
- Durán, P.; Jorquera, M.; Viscardi, S.; Carrion, V.J. Screening and Characterization of Potentially Suppressive Soils against Gaeumannomyces graminis under Extensive Wheat Cropping by Chilean Indigenous Communities. Front. Microbiol. 2017, 8, 1–1552. [Google Scholar] [CrossRef] [PubMed]
- Id, N.S.; Kumla, J.; Watanabe, B.; Matsui, K. Characterization of melanin and optimal conditions for pigment production by an endophytic fungus, Spissiomyces endophytica. PLoS ONE 2019, 14, e02221871-15. [Google Scholar]
- Rajagopal, K.; Kathiravan, G.; Karthikeyan, S. Extraction and characterization of melanin from Phomopsis: A phellophytic fungi Isolated from Azadirachta indica A. Juss. Afr. J. Microbiol. Res. 2011, 5, 762–766. [Google Scholar] [CrossRef]
- Raman, N.M.; Ramasamy, S. Genetic validation and spectroscopic detailing of DHN-melanin extracted from an environmental fungus. Biochem. Biophys. Rep. 2017, 12, 98–107. [Google Scholar] [CrossRef]
- Yang, S.L.; Chung, K.R. The nadph oxidase-mediated production of hydrogen peroxide (H2O2) and resistance to oxidative stress in the necrotrophic pathogen alternaria alternata of citrus. Mol. Plant Pathol. 2012, 13, 900–914. [Google Scholar] [CrossRef]
- Taylor, G.J.; Foy, C.D. Mechanisms of Aluminum Tolerance in Triticum aestivum L. (Wheat). I. Differential pH Induced by Winter Cultivars in Nutrient Solutions. Am. J. Bot. 2016, 72, 695–701. [Google Scholar] [CrossRef]
- Duran, P.; Tortella, G.; Viscardi, S.; Barra, P.J.; Carrion, V.J.; Mora, M.D.L.L.; Pozo, M.J. Microbial Community Composition in Take-All Suppressive Soils. Front. Microbiol. 2018, 9, 2198. [Google Scholar] [CrossRef]
- Gosme, M.; Lebreton, L.; Sarniguet, A.; Lucas, P.; Gilligan, C.A.; Bailey, D.J. A new model for the pathozone of the take-all pathogen, Gaeumannomyces graminis var. tritici. Ann. Appl. Biol. 2013, 163, 359–366. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, X.; Sun, S.; Zhang, L.; Shan, S.; Zhu, H. Production of natural melanin by Auricularia auricula and study on its molecular structure. Food Chem. 2016, 190, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Daval, S.; Lebreton, L.; Gazengel, K.; Guillerm-Erckelboudt, A.Y.; Sarniguet, A. Genetic evidence for differentiation of Gaeumannomyces graminis var. tritici into two major groups. Plant Pathol. 2010, 59, 165–178. [Google Scholar] [CrossRef]
- Eisenman, H.C.; Casadevall, A. Synthesis and assembly of fungal melanin. Appl. Microbiol. Biotechnol. 2012, 93, 931–940. [Google Scholar] [CrossRef] [PubMed]
- Eisenman, H.C.; Greer, E.M.; McGrail, C.W. The role of melanins in melanotic fungi for pathogenesis and environmental survival. Appl. Microbiol. Biotechnol. 2020, 104, 4247–4257. [Google Scholar] [CrossRef]
- Chumley, F.; Valent, B. Genetic Analysis of Melanin-Deficient, Nonpathogenics Mutants of Magnaporthe grisea. Mol. Plant-Microbe Interact. 1990, 3, 135–143. [Google Scholar] [CrossRef]
- Feng, B.; Wang, X.; Hauser, M.; Kaufmann, S.; Jentsch, S.; Haase, G.; Becker, J.M.; Szaniszlo, P.J. Molecular cloning and characterization of WdPKS1, a gene involved in dihydroxynaphthalene melanin biosynthesis and virulence in Wangiella (Exophiala) dermatitidis. Infect. Immun. 2001, 69, 1781–1794. [Google Scholar] [CrossRef]
- Salas, S.D.; Bennett, J.E.; Kwon-Chung, K.J.; Perfect, J.R.; Williamson, P.R. Effect of the laccase gene, CNLAC1, on virulence of Cryptococcus neoformans. J. Exp. Med. 1996, 184, 377–386. [Google Scholar] [CrossRef]
- Tsai, H.F.; Chang, Y.C.; Washburn, R.G.; Wheeler, M.H.; Kwon-Chung, K.J. The developmentally regulated alb1 gene of Aspergillus fumigatus: Its role in modulation of conidial morphology and virulence. J. Bacteriol. 1998, 180, 3031–3038. [Google Scholar] [CrossRef]
- Wang, X.; Lu, D.; Tian, C. Analysis of melanin biosynthesis in the plant pathogenic fungus Colletotrichum gloeosporioides. Fungal Biol. 2021, 125, 679–692. [Google Scholar] [CrossRef]
- Rangel-montoya, E.A.; Paolinelli, M. The role of melanin in the grapevine trunk disease pathogen Lasiodiplodia gilanensis. Phytopathol. Mediterr. 2020, 59, 549–563. [Google Scholar] [CrossRef]
- Kong, W.; Huang, C.; Chen, Q.; Zou, Y.; Zhang, J. Nitric oxide alleviates heat stress-induced oxidative damage in Pleurotus eryngii var. tuoliensis. Fungal Genet. Biol. 2012, 49, 15–20. [Google Scholar] [CrossRef]
- Barcarolo, M.V.; Garavaglia, B.S.; Thomas, L.; Marondedze, C.; Gehring, C.; Gottig, N.; Ottado, J. Proteome changes and physiological adaptations of the phytopathogen Xanthomonas citri subsp. citri under salt stress and their implications for virulence. FEMS Microbiol. Ecol. 2019, 95, fiz081. [Google Scholar] [CrossRef] [PubMed]
- Bocsanczy, A.M.; Achenbach, U.C.M.; Mangravita-Novo, A.; Chow, M.; Norman, D.J. Proteomic comparison of Ralstonia solanacearum strains reveals temperature dependent virulence factors. BMC Genom. 2014, 15, 280. [Google Scholar] [CrossRef] [PubMed]
- Fouly, H.; Henning, S.; Radwan, O.; Wilkinson, H.; Martin, B. The role of melanin production in Gaeumannomyces graminis infection of cereal plants. In Melanin: Biosynthesis Functions and Health Effects; Nova Science Publishers: New York, NY, USA, 2012; pp. 139–165. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aranda, C.; Méndez, I.; Barra, P.J.; Hernández-Montiel, L.; Fallard, A.; Tortella, G.; Briones, E.; Durán, P. Melanin Induction Restores the Pathogenicity of Gaeumannomyces graminis var. tritici in Wheat Plants. J. Fungi 2023, 9, 350. https://doi.org/10.3390/jof9030350
Aranda C, Méndez I, Barra PJ, Hernández-Montiel L, Fallard A, Tortella G, Briones E, Durán P. Melanin Induction Restores the Pathogenicity of Gaeumannomyces graminis var. tritici in Wheat Plants. Journal of Fungi. 2023; 9(3):350. https://doi.org/10.3390/jof9030350
Chicago/Turabian StyleAranda, Camila, Isabel Méndez, Patricio Javier Barra, Luis Hernández-Montiel, Ana Fallard, Gonzalo Tortella, Evelyn Briones, and Paola Durán. 2023. "Melanin Induction Restores the Pathogenicity of Gaeumannomyces graminis var. tritici in Wheat Plants" Journal of Fungi 9, no. 3: 350. https://doi.org/10.3390/jof9030350
APA StyleAranda, C., Méndez, I., Barra, P. J., Hernández-Montiel, L., Fallard, A., Tortella, G., Briones, E., & Durán, P. (2023). Melanin Induction Restores the Pathogenicity of Gaeumannomyces graminis var. tritici in Wheat Plants. Journal of Fungi, 9(3), 350. https://doi.org/10.3390/jof9030350