Clinical Uses of Inhaled Antifungals for Invasive Pulmonary Fungal Disease: Promises and Challenges
Abstract
:1. Introduction and Background
2. Methods
3. Problems in Interpreting Inhaled Antifungal Literature
4. Inhaled AMB as Treatment in Patients with Fungal Pneumonia
5. Inhaled AMB as Treatment or Prophylaxis in Patients with Post-Viral Fungal Pneumonia
6. Inhaled Antifungals under Clinical Testing
7. Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Lu, G.; Meng, G. Pathogenic Fungal Infection in the Lung. Front. Immunol. 2019, 10, 1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn-Ast, C.; Glasmacher, A.; Muckter, S.; Schmitz, A.; Kraemer, A.; Marklein, G.; Brossart, P.; von Lilienfeld-Toal, M. Overall survival and fungal infection-related mortality in patients with invasive fungal infection and neutropenia after myelosuppressive chemotherapy in a tertiary care centre from 1995 to 2006. J. Antimicrob. Chemother. 2010, 65, 761–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rayens, E.; Norris, K.A. Prevalence and Healthcare Burden of Fungal Infections in the United States 2018. Open Forum Infect. Dis. 2022, 9, ofab593. [Google Scholar] [CrossRef] [PubMed]
- Vanderbeke, L.; Spriet, I.; Breynaert, C.; Rijnders, B.J.A.; Verweij, P.E.; Wauters, J. Invasive pulmonary aspergillosis complicating severe influenza: Epidemiology, diagnosis and treatment. Curr. Opin. Infect. Dis. 2018, 31, 471–480. [Google Scholar] [CrossRef]
- Trujillo, H.; Fernandez-Ruiz, M.; Gutierrez, E.; Sevillano, A.; Caravaca-Fontan, F.; Morales, E.; Lopez-Medrano, F.; Aguado, J.M.; Praga, M.; Andres, A. Invasive pulmonary aspergillosis associated with COVID-19 in a kidney transplant recipient. Transpl. Infect. Dis. 2021, 23, e13501. [Google Scholar] [CrossRef]
- Van Ackerbroeck, S.; Rutsaert, L.; Roelant, E.; Dillen, K.; Wauters, J.; Van Regenmortel, N. Inhaled liposomal amphotericin-B as a prophylactic treatment for COVID-19-associated pulmonary aspergillosis/aspergillus tracheobronchitis. Crit. Care 2021, 25, 298. [Google Scholar] [CrossRef]
- Bruggemann, R.J.; Verheggen, R.; Boerrigter, E.; Stanzani, M.; Verweij, P.E.; Blijlevens, N.M.A.; Lewis, R.E. Management of drug-drug interactions of targeted therapies for haematological malignancies and triazole antifungal drugs. Lancet Haematol. 2022, 9, e58–e72. [Google Scholar] [CrossRef]
- Neofytos, D.; Avdic, E.; Magiorakos, A.P. Clinical safety and tolerability issues in use of triazole derivatives in management of fungal infections. Drug Healthc. Patient Saf. 2010, 2, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Drew, R.H.; Dodds Ashley, E.; Benjamin, D.K., Jr.; Duane Davis, R.; Palmer, S.M.; Perfect, J.R. Comparative safety of amphotericin B lipid complex and amphotericin B deoxycholate as aerosolized antifungal prophylaxis in lung-transplant recipients. Transplantation 2004, 77, 232–237. [Google Scholar] [CrossRef] [Green Version]
- Rijnders, B.J.; Cornelissen, J.J.; Slobbe, L.; Becker, M.J.; Doorduijn, J.K.; Hop, W.C.; Ruijgrok, E.J.; Lowenberg, B.; Vulto, A.; Lugtenburg, P.J.; et al. Aerosolized liposomal amphotericin B for the prevention of invasive pulmonary aspergillosis during prolonged neutropenia: A randomized, placebo-controlled trial. Clin. Infect. Dis. 2008, 46, 1401–1408. [Google Scholar] [CrossRef] [Green Version]
- Maertens, J.A.; Girmenia, C.; Bruggemann, R.J.; Duarte, R.F.; Kibbler, C.C.; Ljungman, P.; Racil, Z.; Ribaud, P.; Slavin, M.A.; Cornely, O.A.; et al. European guidelines for primary antifungal prophylaxis in adult haematology patients: Summary of the updated recommendations from the European Conference on Infections in Leukaemia. J. Antimicrob. Chemother. 2018, 73, 3221–3230. [Google Scholar] [CrossRef]
- Patterson, T.F.; Thompson, G.R., 3rd; Denning, D.W.; Fishman, J.A.; Hadley, S.; Herbrecht, R.; Kontoyiannis, D.P.; Marr, K.A.; Morrison, V.A.; Nguyen, M.H.; et al. Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 63, e1–e60. [Google Scholar] [CrossRef] [Green Version]
- Ullmann, A.J.; Aguado, J.M.; Arikan-Akdagli, S.; Denning, D.W.; Groll, A.H.; Lagrou, K.; Lass-Florl, C.; Lewis, R.E.; Munoz, P.; Verweij, P.E.; et al. Diagnosis and management of Aspergillus diseases: Executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin. Microbiol. Infect. 2018, 24 (Suppl. 1), e1–e38. [Google Scholar] [CrossRef] [Green Version]
- Mellinghoff, S.C.; Panse, J.; Alakel, N.; Behre, G.; Buchheidt, D.; Christopeit, M.; Hasenkamp, J.; Kiehl, M.; Koldehoff, M.; Krause, S.W.; et al. Primary prophylaxis of invasive fungal infections in patients with haematological malignancies: 2017 update of the recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society for Haematology and Medical Oncology (DGHO). Ann. Hematol. 2018, 97, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Husain, S.; Camargo, J.F. Invasive Aspergillosis in solid-organ transplant recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin. Transplant. 2019, 33, e13544. [Google Scholar] [CrossRef]
- Husain, S.; Sole, A.; Alexander, B.D.; Aslam, S.; Avery, R.; Benden, C.; Billaud, E.M.; Chambers, D.; Danziger-Isakov, L.; Fedson, S.; et al. The 2015 International Society for Heart and Lung Transplantation Guidelines for the management of fungal infections in mechanical circulatory support and cardiothoracic organ transplant recipients: Executive summary. J. Heart Lung Transplant. 2016, 35, 261–282. [Google Scholar] [CrossRef] [Green Version]
- Pennington, K.M.; Yost, K.J.; Escalante, P.; Razonable, R.R.; Kennedy, C.C. Antifungal prophylaxis in lung transplant: A survey of United States’ transplant centers. Clin. Transplant. 2019, 33, e13630. [Google Scholar] [CrossRef]
- Krenke, R.; Grabczak, E.M. Tracheobronchial manifestations of Aspergillus infections. Sci. World J. 2011, 11, 2310–2329. [Google Scholar] [CrossRef] [Green Version]
- Peghin, M.; Monforte, V.; Martin-Gomez, M.T.; Ruiz-Camps, I.; Berastegui, C.; Saez, B.; Riera, J.; Ussetti, P.; Sole, J.; Gavalda, J.; et al. 10 years of prophylaxis with nebulized liposomal amphotericin B and the changing epidemiology of Aspergillus spp. infection in lung transplantation. Transpl. Int. 2016, 29, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Doligalski, C.T.; Benedict, K.; Cleveland, A.A.; Park, B.; Derado, G.; Pappas, P.G.; Baddley, J.W.; Zaas, D.W.; Harris, M.T.; Alexander, B.D. Epidemiology of invasive mold infections in lung transplant recipients. Am. J. Transplant. 2014, 14, 1328–1333. [Google Scholar] [CrossRef] [Green Version]
- Borro, J.M.; Sole, A.; de la Torre, M.; Pastor, A.; Fernandez, R.; Saura, A.; Delgado, M.; Monte, E.; Gonzalez, D. Efficiency and safety of inhaled amphotericin B lipid complex (Abelcet) in the prophylaxis of invasive fungal infections following lung transplantation. Transplant. Proc. 2008, 40, 3090–3093. [Google Scholar] [CrossRef] [PubMed]
- Bhaskaran, A.; Mumtaz, K.; Husain, S. Anti-Aspergillus Prophylaxis in Lung Transplantation: A Systematic Review and Meta-analysis. Curr. Infect. Dis. Rep. 2013, 15, 514–525. [Google Scholar] [CrossRef]
- Pilarczyk, K.; Haake, N.; Heckmann, J.; Carstens, H.; Haneya, A.; Cremer, J.; Jakob, H.; Pizanis, N.; Kamler, M. Is universal antifungal prophylaxis mandatory in adults after lung transplantation? A review and meta-analysis of observational studies. Clin. Transplant. 2016, 30, 1522–1531. [Google Scholar] [CrossRef] [PubMed]
- Alexander, B.D.; Dodds Ashley, E.S.; Addison, R.M.; Alspaugh, J.A.; Chao, N.J.; Perfect, J.R. Non-comparative evaluation of the safety of aerosolized amphotericin B lipid complex in patients undergoing allogeneic hematopoietic stem cell transplantation. Transpl. Infect. Dis. 2006, 8, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Hullard-Pulstinger, A.; Holler, E.; Hahn, J.; Andreesen, R.; Krause, S.W. Prophylactic application of nebulized liposomal amphotericin B in hematologic patients with neutropenia. Onkologie 2011, 34, 254–258. [Google Scholar] [CrossRef] [Green Version]
- Nihtinen, A.; Anttila, V.J.; Ruutu, T.; Juvonen, E.; Volin, L. Low incidence of invasive aspergillosis in allogeneic stem cell transplant recipients receiving amphotericin B inhalation prophylaxis. Transpl. Infect. Dis. 2012, 14, 24–32. [Google Scholar] [CrossRef]
- Chong, G.L.; Broekman, F.; Polinder, S.; Doorduijn, J.K.; Lugtenburg, P.J.; Verbon, A.; Cornelissen, J.J.; Rijnders, B.J. Aerosolised liposomal amphotericin B to prevent aspergillosis in acute myeloid leukaemia: Efficacy and cost effectiveness in real-life. Int. J. Antimicrob. Agents 2015, 46, 82–87. [Google Scholar] [CrossRef]
- Minari, A.; Husni, R.; Avery, R.K.; Longworth, D.L.; DeCamp, M.; Bertin, M.; Schilz, R.; Smedira, N.; Haug, M.T.; Mehta, A.; et al. The incidence of invasive aspergillosis among solid organ transplant recipients and implications for prophylaxis in lung transplants. Transpl. Infect. Dis. 2002, 4, 195–200. [Google Scholar] [CrossRef]
- Monforte, V.; Ussetti, P.; Gavalda, J.; Bravo, C.; Laporta, R.; Len, O.; Garcia-Gallo, C.L.; Tenorio, L.; Sole, J.; Roman, A. Feasibility, tolerability, and outcomes of nebulized liposomal amphotericin B for Aspergillus infection prevention in lung transplantation. J. Heart Lung Transplant. 2010, 29, 523–530. [Google Scholar] [CrossRef]
- Safdar, A.; Rodriguez, G.H. Aerosolized amphotericin B lipid complex as adjunctive treatment for fungal lung infection in patients with cancer-related immunosuppression and recipients of hematopoietic stem cell transplantation. Pharmacotherapy 2013, 33, 1035–1043. [Google Scholar] [CrossRef] [Green Version]
- Venanzi, E.; Martin-Davila, P.; Lopez, J.; Maiz, L.; de la Pedrosa, E.G.; Gioia, F.; Escudero, R.; Filigheddu, E.; Moreno, S.; Fortun, J. Aerosolized Lipid Amphotericin B for Complementary Therapy and/or Secondary Prophylaxis in Patients with Invasive Pulmonary Aspergillosis: A Single-Center Experience. Mycopathologia 2019, 184, 239–250. [Google Scholar] [CrossRef]
- Rouze, A.; Lemaitre, E.; Martin-Loeches, I.; Povoa, P.; Diaz, E.; Nyga, R.; Torres, A.; Metzelard, M.; Du Cheyron, D.; Lambiotte, F.; et al. Invasive pulmonary aspergillosis among intubated patients with SARS-CoV-2 or influenza pneumonia: A European multicenter comparative cohort study. Crit. Care 2022, 26, 11. [Google Scholar] [CrossRef]
- Alanio, A.; Delliere, S.; Fodil, S.; Bretagne, S.; Megarbane, B. Prevalence of putative invasive pulmonary aspergillosis in critically ill patients with COVID-19. Lancet Respir. Med. 2020, 8, e48–e49. [Google Scholar] [CrossRef]
- Sharma, A.; Mishra, T.; Kumar, N.; Soubani, A.O. Influenza-Associated Aspergillosis: Nationwide Trends, Predictors and Outcomes From 2005 to 2014. Chest 2020, 158, 1857–1866. [Google Scholar] [CrossRef]
- Schauwvlieghe, A.; Rijnders, B.J.A.; Philips, N.; Verwijs, R.; Vanderbeke, L.; Van Tienen, C.; Lagrou, K.; Verweij, P.E.; Van de Veerdonk, F.L.; Gommers, D.; et al. Invasive aspergillosis in patients admitted to the intensive care unit with severe influenza: A retrospective cohort study. Lancet Respir. Med. 2018, 6, 782–792. [Google Scholar] [CrossRef]
- Schwartz, I.S.; Friedman, D.Z.P.; Zapernick, L.; Dingle, T.C.; Lee, N.; Sligl, W.; Zelyas, N.; Smith, S.W. High Rates of Influenza-Associated Invasive Pulmonary Aspergillosis May Not Be Universal: A Retrospective Cohort Study from Alberta, Canada. Clin. Infect. Dis. 2020, 71, 1760–1763. [Google Scholar] [CrossRef]
- Uyeki, T.M.; Ison, M.G.; Wolfe, C.R.; Pavia, A.T. Reply to Verweij et al. Clin. Infect. Dis. 2020, 70, 350–351. [Google Scholar] [CrossRef]
- Rijnders, B.J.A.; Schauwvlieghe, A.; Wauters, J. Influenza-Associated Pulmonary Aspergillosis: A Local or Global Lethal Combination? Clin. Infect. Dis. 2020, 71, 1764–1767. [Google Scholar] [CrossRef]
- Lamoth, F.; Lewis, R.E.; Walsh, T.J.; Kontoyiannis, D.P. Navigating the Uncertainties of COVID-19-Associated Aspergillosis: A Comparison With Influenza-Associated Aspergillosis. J. Infect. Dis. 2021, 224, 1631–1640. [Google Scholar] [CrossRef]
- Egger, M.; Bussini, L.; Hoenigl, M.; Bartoletti, M. Prevalence of COVID-19-Associated Pulmonary Aspergillosis: Critical Review and Conclusions. J. Fungi 2022, 8, 390. [Google Scholar] [CrossRef]
- Gangneux, J.P.; Bougnoux, M.E.; Dannaoui, E.; Cornet, M.; Zahar, J.R. Invasive fungal diseases during COVID-19: We should be prepared. J. Mycol. Med. 2020, 30, 100971. [Google Scholar] [CrossRef] [PubMed]
- Koehler, P.; Bassetti, M.; Chakrabarti, A.; Chen, S.C.A.; Colombo, A.L.; Hoenigl, M.; Klimko, N.; Lass-Florl, C.; Oladele, R.O.; Vinh, D.C.; et al. Defining and managing COVID-19-associated pulmonary aspergillosis: The 2020 ECMM/ISHAM consensus criteria for research and clinical guidance. Lancet Infect. Dis. 2021, 21, e149–e162. [Google Scholar] [CrossRef] [PubMed]
- Boots, R.J.; Paterson, D.L.; Allworth, A.M.; Faoagali, J.L. Successful treatment of post-influenza pseudomembranous necrotising bronchial aspergillosis with liposomal amphotericin, inhaled amphotericin B, gamma interferon and GM-CSF. Thorax 1999, 54, 1047–1049. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.Y.; Yang, W.J.; Zhao, X.Q. Pulmonary aspergillosis treated with inhaled amphotericin B. Int. J. Infect. Dis. 2017, 54, 92–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melchers, M.; Festen, B.; den Dekker, B.M.; Mooren, E.R.M.; van Binsbergen, A.L.; van Bree, S.H.W.; Heusinkveld, M.; Schellaars, R.; Buil, J.B.; Verweij, P.E.; et al. A 67-Year-Old Male Patient With COVID-19 With Worsening Respiratory Function and Acute Kidney Failure. Chest 2022, 161, e5–e11. [Google Scholar] [CrossRef] [PubMed]
- Van de Veerdonk, F.L.; Wauters, J.; Verweij, P.E. Invasive Aspergillus Tracheobronchitis Emerging as a Highly Lethal Complication of Severe Influenza. Am. J. Respir. Crit. Care Med. 2020, 202, 646–648. [Google Scholar] [CrossRef]
- Rutsaert, L.; Steinfort, N.; Van Hunsel, T.; Bomans, P.; Naesens, R.; Mertes, H.; Dits, H.; Van Regenmortel, N. COVID-19-associated invasive pulmonary aspergillosis. Ann. Intensive Care 2020, 10, 71. [Google Scholar] [CrossRef]
- Melchers, M.; van Zanten, A.R.H.; Heusinkveld, M.; Leeuwis, J.W.; Schellaars, R.; Lammers, H.J.W.; Kreemer, F.J.; Haas, P.J.; Verweij, P.E.; van Bree, S.H.W. Nebulized Amphotericin B in Mechanically Ventilated COVID-19 Patients to Prevent Invasive Pulmonary Aspergillosis: A Retrospective Cohort Study. Crit. Care Explor. 2022, 4, e0696. [Google Scholar] [CrossRef]
- Soriano, M.C.; Narvaez-Chavez, G.; Lopez-Olivencia, M.; Fortun, J.; de Pablo, R. Inhaled amphotericin B lipid complex for prophylaxis against COVID-19-associated invasive pulmonary aspergillosis. Intensive Care Med. 2022, 48, 360–361. [Google Scholar] [CrossRef]
- Verweij, P.E.; Rijnders, B.J.A.; Bruggemann, R.J.M.; Azoulay, E.; Bassetti, M.; Blot, S.; Calandra, T.; Clancy, C.J.; Cornely, O.A.; Chiller, T.; et al. Review of influenza-associated pulmonary aspergillosis in ICU patients and proposal for a case definition: An expert opinion. Intensive Care Med. 2020, 46, 1524–1535. [Google Scholar] [CrossRef]
- Brunet, K.; Martellosio, J.P.; Tewes, F.; Marchand, S.; Rammaert, B. Inhaled Antifungal Agents for Treatment and Prophylaxis of Bronchopulmonary Invasive Mold Infections. Pharmaceutics 2022, 14, 641. [Google Scholar] [CrossRef] [PubMed]
- Murray, A.; Cass, L.; Ito, K.; Pagani, N.; Armstrong-James, D.; Dalal, P.; Reed, A.; Strong, P. PC945, a Novel Inhaled Antifungal Agent, for the Treatment of Respiratory Fungal Infections. J. Fungi 2020, 6, 373. [Google Scholar] [CrossRef] [PubMed]
- Pulmocide Ltd. Safety and Efficacy of PC945 in Combination with Other Antifungal Therapy for the Treatment of Refractory Invasive Pulmonary Aspergillosis; Pulmocide Ltd.: London, UK, 2021. [Google Scholar]
- Pulmocide Ltd. PC945 Prophylaxis or Pre-Emptive Therapy against Pulmonary Aspergillosis in Lung Transplant Recipients; Pulmocide Ltd.: London, UK, 19 November 2021. [Google Scholar]
- Gamaletsou, M.N.; Walsh, T.J.; Sipsas, N.V. Invasive Fungal Infections in Patients with Hematological Malignancies: Emergence of Resistant Pathogens and New Antifungal Therapies. Turk. J. Haematol. 2018, 35, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Berger, S.; El Chazli, Y.; Babu, A.F.; Coste, A.T. Azole Resistance in Aspergillus fumigatus: A Consequence of Antifungal Use in Agriculture? Front. Microbiol. 2017, 8, 1024. [Google Scholar] [CrossRef] [Green Version]
- Suttle, A.B.; Grossmann, K.F.; Ouellet, D.; Richards-Peterson, L.E.; Aktan, G.; Gordon, M.S.; LoRusso, P.M.; Infante, J.R.; Sharma, S.; Kendra, K.; et al. Assessment of the drug interaction potential and single- and repeat-dose pharmacokinetics of the BRAF inhibitor dabrafenib. J. Clin. Pharmacol. 2015, 55, 392–400. [Google Scholar] [CrossRef]
- Beavers, C.J.; Rodgers, J.E.; Bagnola, A.J.; Beckie, T.M.; Campia, U.; Di Palo, K.E.; Okwuosa, T.M.; Przespolewski, E.R.; Dent, S.; American Heart Association Clinical Pharmacology Committee; et al. Cardio-Oncology Drug Interactions: A Scientific Statement From the American Heart Association. Circulation 2022, 145, e811–e838. [Google Scholar] [CrossRef]
- Solana-Altabella, A.; Ballesta-Lopez, O.; Megias-Vericat, J.E.; Martinez-Cuadron, D.; Montesinos, P. Emerging FLT3 inhibitors for the treatment of acute myeloid leukemia. Expert Opin. Emerg. Drugs 2022, 27, 1–18. [Google Scholar] [CrossRef]
- Cronin, S.; Chandrasekar, P.H. Safety of triazole antifungal drugs in patients with cancer. J. Antimicrob. Chemother. 2010, 65, 410–416. [Google Scholar] [CrossRef] [Green Version]
- Swaisland, H.C.; Ranson, M.; Smith, R.P.; Leadbetter, J.; Laight, A.; McKillop, D.; Wild, M.J. Pharmacokinetic drug interactions of gefitinib with rifampicin, itraconazole and metoprolol. Clin. Pharmacokinet. 2005, 44, 1067–1081. [Google Scholar] [CrossRef]
- Lamoth, F.; Lewis, R.E.; Kontoyiannis, D.P. Investigational Antifungal Agents for Invasive Mycoses: A Clinical Perspective. Clin. Infect. Dis. 2022, 75, 534–544. [Google Scholar] [CrossRef]
Reference | Type of Study | Study Population | Formulation and Delivery System | Dosage and Duration | Concomitant Antifungal | Outcome | Side Effects | Comments |
---|---|---|---|---|---|---|---|---|
2006 Alexander et al. [24] | Prospective, open-label non-comparative study assessing safety and tolerability | Allogeneic stem cell transplant n = 40 | Aerosolized ABLC | 50 mg daily × 4 days, then once per week for 13 weeks (total 17 doses) | Fluconazole daily as prophylaxis through transplant day 100 | 3 cases of proven IFI, of which 1 developed while on treatment | Safe and well-tolerated Cough, nausea, taste disturbance or vomiting in 2.2% | |
2008 Rijnder et al. [10] | Randomized, double-blind placebo-controlled trial | Neutropenic patients with hematologic malignancies, neutropenia expected >10 days n = 271 | Nebulized L-AMB vs. Placebo | 12.5 mg nebulized twice weekly until neutrophils above 300 cells/mm3 | All patients received prophylactic fluconazole | Developed IPA (ITT): L-AMB 6/139 vs. Placebo 18/132 (OR 0.26; 95%CI, 0.09–0.72; p = 0.005) | Some, but none serious Cough: L-AMB 16 vs. Placebo 1 (p = 0.002) | On-treatment analysis: L-AMB 2/91 vs. Placebo 13/97 (OR 0.14; 95% CI, 0.02–0.66; p = 0.007) |
2011 Hullard-Pulstinger et al. [25] | Prospective phase II trial, an evaluation of toxicity vs. historical control (n = 105) | Patients expected to be neutropenic >10 days after chemotherapy or stem cell transplant Treatment n = 98 | Nebulized L-AMB | 12.5 mg for 4 consecutive days, then twice weekly until neutrophil recovery (>500 cells/mm3) | Fluconazole prophylaxis allowed and used in majority of patients | Unable to show reduction in IFI, early termination of trial | 41 patients terminated trial early due to unpleasant treatment experiences, not toxicities | Voriconazole was available for intervention group but not for control group |
2012 Nihtinen et al. [26] | Retrospective, single center study with historical control evaluating inhaled AMB as prophylaxis Vs. historical control (n = 257) | Stem cell transplant patients (acute GvHD treated with high-dose methylprednisolone) n = 357 | Nebulized AMB-d | 25 mg daily for 2 or 3 months, per attending | Systemic antifungal prophylaxis not routinely used in either group | Significantly more patients in control group had detectable IPA 17/257 (6.6%) vs. Prophylaxis group 9/354 (2.5%) p = 0.007 | Prophylaxis was well tolerated | |
2015 Chong et al. [27] | Prospective cohort evaluation of the efficacy and cost effectiveness of aerosolized L-AMB | AML patients n = 127 | Nebulized L-AMB | 12.5 mg twice a week at beginning of first and second cycle of chemotherapy, continued until recovery of neutrophils (2 consecutive counts of ≥0.2 × 109 L−1 or one ≥0.5 × 109 L−1) | Prophylaxis with fluconazole | Incidence of IPA during the first and second chemotherapy cycles was 9.5% and was a significant decrease when compared to the control group (23.4%), p = 0.0064 | Prophylaxis with inhaled L-AMB stopped during auto or allogeneic stem cell transplant |
Reference | Type of Study | Study Population | Formulation and Delivery System | Dosage and Duration | Concomitant Prophylactic Antifungal | Outcome | Side Effects | Comments |
---|---|---|---|---|---|---|---|---|
2002 Minari et al. [28] | Retrospective study with historical control (10-year study) of universal Aspergillus prophylaxis in lung transplant | Lung transplant recipients n = 183 | Aerosolized AMB-d | 5–10 mg twice daily, immediately post-transplant for up to two weeks | Once oral intake tolerated, patients converted to itraconazole | 24 patients diagnosed with IPA All had lung involvement with an incidence of 40.5/1000patient-years and overall mortality of 50% The incidence of IA was significantly higher in a historical control group (49.7/1000patient-years vs. 31.6/1000 patient-years, p ≤ 0.05) | Advocate using aerosolized AMB followed by itraconazole as prophylaxis in lung transplant recipients | |
2004 Drew et al. [9] | Prospective, randomized, double-blind study comparing safety and tolerability of AMB-d and ABLC | Lung transplant recipients n = 100 Randomized 1:1 | Aerosolized AMB-d Or Aerosolized ABLC | AMB-dd 25 mg Or ABLC 50 mg Once daily for four days, then once weekly for 7 weeks | Nonabsorbable antifungal agent (nystatin) permitted | Primary prophylaxis failure was similar in both groups (14.3% AMB-d vs. 11.8% ABLC) with Aspergillus infections documented in only 2 patients No fungal pneumonias were observed in either group | Adverse events more common in AMB-d | |
2010 Monforte et al. [29] | Comparative, prospective observational study with historical control on the feasibility, tolerability, and outcomes of nebulized amphotericin | Lung transplant recipients n = 104 L-AMB Historical control: n = 49 AMB-d | Nebulized L-AMB vs. AMB-d | L-AMB 25 mg three times weekly for 60 days post-transplant, continued at 25 mg once weekly on days 60–180, then 25 mg once every two weeks thereafter AMB-d 6 mg every 8 h immediately post-transplant for 120 days, then 6mg once daily for life | Not stated | Development of IPA: L-AMB 2/104 (1.9%) vs. AMB-d historical control 2/49 4.1% p = 0.43 | Well tolerated |
Reference | Type of Study | Study Population | Formulation and Delivery System | Dosage and Duration | Outcome | Side Effects | Comments |
---|---|---|---|---|---|---|---|
2020 Rutsaert et al. [47] | Prospective study of L-AMB as prophylaxis after raised suspicion of IPA in COVID-19 patients | All mechanically ventilated COVID-19 patients, sample size not defined | Nebulized L-AMB | 12.5 mg, duration not specified | No new cases of IPA identified after initiation of prophylaxis | Environmental sources ruled out by air sampling. All mechanically ventilated patients screened with serum galactomannan twice weekly | |
2021 Van Ackerbroeck et al. [6] | Retrospective observational comparison of L-AMB for prophylaxis of CAPA | Mechanically ventilated n = 32 received L-AMB n = 18 no prophylaxis | Nebulized L-AMB | 12.5 mg twice a week, duration not specified | Development of CAPA/AT occurred in 11 patients that did not receive prophylaxis compared to 3 that did (risk ratio 0.15, 95%CI 0.05 to 0.48, p < 0.001) Further development of Aspergillus colonization in endotracheal aspirates was significantly lower in the prophylaxis group (risk ratio 0.28, 95%CI 0.10 to 0.81, p = 0.017) | Well-tolerated | |
2022 Soriano et al. [49] | Prospective observational cohort study evaluating use of inhaled ABLC | All mechanically ventilated patients n = 45 | Inhaled ABLC | 50 mg every 48 h, duration not specified | None developed CAPA | Well-tolerated 8.8% bronchospasm 33.3% with drug buildup in ventilator | Surveillance protocol for CAPA in mechanically ventilated COVID-19 patients identified an outbreak |
2022 Melchers et al. [48] | Retrospective cohort study evaluating use of nebulized AMB-d as prophylaxis in mechanically ventilated ICU patients with COVID-19 | Mechanically ventilated ICU patients with COVID-19 n = 39 n = 16 nebulized AMB-d | Nebulized AMB-d | 20 mg in two or four divided doses | Incidence of positive Aspergillus cultures, positive BAL serological markers, and tracheobronchial lesions was significantly lower in the prophylaxis group compared to the control (9% vs. 53%, 20% vs. 60%, and 9% vs. 47%), respectively No observed cases of proven CAPA were seen in the prophylaxis group Overall frequency of probable or proven CAPA was much lower in the prophylaxis group Overall mortality at 90-days was 21% and was similar in both groups |
Slow absorption from the lungs and minimal systemic absorption No systemic toxicity No drug–drug interactions |
High protein plasma binding Minimization of systemic free drug concentration |
Sustained local concentrations in the airways Increased antifungal efficacy Less likelihood of acquisition of resistance |
High lung residence times Longer duration of action → No need for high doses or frequent administration Accumulation on repeat dosing → extended prophylactic effect |
Small antifungal drug particles (e.g., <5 mm) Deposition to distal airways |
Limited interference with mechanical ventilation machinery |
Delivery system (e.g., nebulizers) that is convenient, portable, easy to operate, has low cost |
Broad spectrum of activity against respiratory fungal pathogens |
Activity against fungal biofilms |
Intracellular accumulation within lung neutrophils and macrophages |
Synergy with systemically administered antifungals and effector immune cells in lungs |
No local respiratory side effects (e.g., bronchospasm, metallic taste, breathlessness, decrease in PFTs) * |
Proof of principle demonstration of safety and activity in in vitro and preclinical in vivo studies |
Preclinical/Translational |
---|
What are the optimal physicochemical properties (e.g., size, lipophilicity, solubility) of an inhaled antifungal? |
Since an inhaled drug achieves a concentration gradient in the airways (central > distal airways), is there an increased likelihood of resistance? |
Is a microbiological end point predictive of a meaningful clinical endpoint? Is a decrease of the burden more realistic than fungal eradication? |
What is the role of fungal biomarkers (e.g., Aspergillus GM) in BAL and/or serum for fungal load assessment? |
How do in vitro studies (e.g., bronchial epithelial cell lines) predict in vivo behavior and toxicity potential of an inhaled antifungal? |
Due to differences in anatomy, physiology and local immunology, how useful are mouse models of infections using inhaled antifungals? |
How to best estimate relevant PKs of inhaled antifungals in normal and infected human lungs? Role of NMR spectroscopy, PET, compound concentration in sputum, BAL, or epithelial lining fluid (or combinations)? |
Clinical |
Are inhaled antifungals best used as adjunct treatment only for central airway or cavitary disease? |
Are inhaled antifungals best used as primary prophylaxis/? Is there a role for secondary prophylaxis? |
For lipid formulations of antifungals (e.g., liposomal AMB), is there a concern of fatty infiltration and foamy macrophage accumulation in the lungs? |
Do inhaled antifungals work less well in the setting of excess mucus (e.g., COPD, bronchiectasis) or biofilms (e.g., CF)? |
In addition to AMB, what is the potential for aerosolized echinocandins, azoles or other antifungal drugs? |
What is the impact of aerosolized antifungals on the treatment of fungal sinusitis? |
What is the optimal delivery technology to deliver intact drugs to the distal airways? |
What is the optimal regulatory pathway for the development and approval of an inhaled antifungal? What is an optimal trial design, end points and scenarios for use? |
As a portion of inhaled antifungals might be swallowed, how does one evaluate the impact of oral absorption, when orally active compounds are repurposed for delivery via the inhalation route? |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vuong, N.N.; Hammond, D.; Kontoyiannis, D.P. Clinical Uses of Inhaled Antifungals for Invasive Pulmonary Fungal Disease: Promises and Challenges. J. Fungi 2023, 9, 464. https://doi.org/10.3390/jof9040464
Vuong NN, Hammond D, Kontoyiannis DP. Clinical Uses of Inhaled Antifungals for Invasive Pulmonary Fungal Disease: Promises and Challenges. Journal of Fungi. 2023; 9(4):464. https://doi.org/10.3390/jof9040464
Chicago/Turabian StyleVuong, Nancy N., Danielle Hammond, and Dimitrios P. Kontoyiannis. 2023. "Clinical Uses of Inhaled Antifungals for Invasive Pulmonary Fungal Disease: Promises and Challenges" Journal of Fungi 9, no. 4: 464. https://doi.org/10.3390/jof9040464
APA StyleVuong, N. N., Hammond, D., & Kontoyiannis, D. P. (2023). Clinical Uses of Inhaled Antifungals for Invasive Pulmonary Fungal Disease: Promises and Challenges. Journal of Fungi, 9(4), 464. https://doi.org/10.3390/jof9040464