High Genetic Diversity and Structure of Colletotrichum gloeosporioides s.l. in the Archipelago of Lesser Antilles
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Genetic Diversity
3.2. Estimates of Migration and Gene Flow
3.3. Genetic Clusters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cai, L.; Hyde, K.D.; Taylor, P.W.J.; Weir, B.; Waller, J.; Abang, M.M.; Zhang, J.Z.; Yang, Y.L.; Phoulivong, S.; Liu, Z.Y.; et al. A Polyphasic Approach for Studying Colletotrichum. Fungal Divers. 2009, 39, e204. [Google Scholar]
- Zakaria, L. Diversity of Colletotrichum Species Associated with Anthracnose Disease in Tropical Fruit Crops—A Review. Agriculture 2021, 11, 297. [Google Scholar] [CrossRef]
- Abang, M.M.; Winter, S.; Green, K.R.; Hoffmann, P.; Mignouna, H.D.; Wolf, G.A. Molecular Identification of Colletotrichum gloeosporioides Causing Yam Anthracnose in Nigeria. Plant Pathol. 2002, 51, 63–71. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, Q.; He, Y.; Che, H.; Lin, Y.; Luo, D.; West, J.S.; Xu, X. Genetic Analysis of Colletotrichum siamense Populations from Different Hosts and Counties in Hainan, China, Using Microsatellite Markers. Plant Dis. 2023, 107, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Dentika, P.; Gumbau, M.; Ozier-Lafontaine, H.; Penet, L. Natural Flora Is Indiscriminately Hosting High Loads of Generalist Fungal Pathogen Colletotrichum gloeosporioides Complex over Forest Niches, Vegetation Strata And Elevation Gradient. J. Fungi 2023, 9, 296. [Google Scholar] [CrossRef]
- Dentika, P.; Ozier-Lafontaine, H.; Penet, L. Weeds as pathogen hosts and disease risk for crops in the wake of a reduced use of herbicides: Evidence from Yam (Dioscorea alata) fields and Colletotrichum pathogens in the tropics. J. Fungi 2021, 7, 283. [Google Scholar] [CrossRef]
- Rojas, E.I.; Rehner, S.A.; Samuels, G.J.; Van Bael, S.A.; Herre, E.A.; Cannon, P.; Chen, R.; Pang, J.; Wang, R.; Zhang, Y.; et al. Colletotrichum gloeosporioides s.l. Associated with Theobroma cacao and other plants in Panama: Multilocus phylogenies distinguish host-associated pathogens from asymptomatic endophytes. Mycologia 2010, 102, 1318–1338. [Google Scholar] [CrossRef]
- Promputtha, I.; Lumyong, S.; Dhanasekaran, V.; McKenzie, E.H.C.; Hyde, K.D.; Jeewon, R. A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb. Ecol. 2007, 53, 579–590. [Google Scholar] [CrossRef]
- Bhunjun, C.S.; Phukhamsakda, C.; Jayawardena, R.S.; Jeewon, R.; Promputtha, I.; Hyde, K.D. Investigating species boundaries in Colletotrichum. Fungal Divers. 2021, 107, 107–127. [Google Scholar] [CrossRef]
- Lu, G.; Cannon, P.F.; Reid, A.; Simmons, C.M. Diversity and molecular relationships of endophytic Colletotrichum isolates from the Iwokrama Forest Reserve, Guyana. Mycol. Res. 2004, 108, 53–63. [Google Scholar] [CrossRef]
- Abang, M.M.; Asiedu, R.; Hoffmann, P.; Wolf, G.A.; Mignouna, H.D.; Winter, S. Pathogenic and genetic variability among Colletotrichum gloeosporioides isolates from different Yam hosts in the agroecological zones in Nigeria. J. Phytopathol. 2006, 154, 51–61. [Google Scholar] [CrossRef]
- Silva, D.N.; Talhinhas, P.; Cai, L.; Manuel, L.; Gichuru, E.K.; Loureiro, A.; VáRzea, V.; Paulo, O.S.; Batista, D. Host-Jump drives rapid and recent ecological speciation of the emergent fungal pathogen Colletotrichum kahawae: Host-jump speciation of C. kahawae. Mol. Ecol. 2012, 21, 2655–2670. [Google Scholar] [CrossRef]
- Von Arx, J. Kultur-Und Infektionsversuche Mit Einigen Colletotrichum-Arten. Tijdschr. Over Plantenziekten 1957, 63, 171–190. [Google Scholar]
- Cannon, P.F.; Damm, U.; Johnston, P.R.; Weir, B.S. Colletotrichum—Current status and future directions. Stud. Mycol. 2012, 73, 181–213. [Google Scholar] [CrossRef]
- Talhinhas, P.; Baroncelli, R. Colletotrichum species and complexes: Geographic distribution, host range and conservation status. Fungal Divers. 2021, 110, 109–198. [Google Scholar]
- da Silva, L.L.; Moreno, H.L.A.; Correia, H.L.N.; Santana, M.F.; de Queiroz, M.V. Colletotrichum: Species complexes, lifestyle, and peculiarities of some sources of genetic variability. Appl. Microbiol. Biotechnol. 2020, 104, 1891–1904. [Google Scholar] [CrossRef]
- Geiger, J.P.; Lourd, M.; Huguenin, P. Les Colletotrichum agents d’anthracnose en Côte-d’Ivoire-1′1. Polymorphisme enzymatique dans une collection d’isolats de Colletotrichum gloeosporioides Penz. Ann. De Phytopathol. 1980, 12, 177–191. [Google Scholar]
- Chowdappa, P.; KUMAR, S.M. Existence of two genetically distinct populations of Colletotrichum gloeosporioides Penz in mango from India. Pest Manag. Hortic. Ecosyst. 2013, 18, 161–170. [Google Scholar]
- Vila Nova, M.X.; Borges, L.R.; de Sousa, A.C.B.; Brasileiro, B.T.R.V.; Lima, E.A.L.A.; da Costa, A.F.; de Oliveira, N.T. Pathogenicity for onion and genetic diversity of isolates of the pathogenic fungus Colletotrichum gloeosporioides (Phyllachoraceae) from the State of Pernambuco, Brazil. Genet. Mol. Res. 2011, 10, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Masel, A.; Braithwaite, K.; Irwin, J.; Manners, J. Highly variable molecular karyotypes in the plant pathogen Colletotrichum gloeosporioides. Curr. Genet. 1990, 18, 81–86. [Google Scholar] [CrossRef]
- Aduramigba-Modupe, A.O. Genetic diversity of Colletotrichum gloeosporioides in Nigeria using amplified fragment length polymorphism (AFLP) Markers. Afr. J. Biotechnol. 2012, 11, 8189–8195. [Google Scholar] [CrossRef]
- He, C.; Masel, A.M.; Irwin, J.A.G.; Kelemu, S.; Manners, J.M. Distribution and relationship of chromosome-specific dispensable DNA sequences in diverse isolates of Colletotrichum gloeosporioides. Mycol. Res. 1995, 99, 1325–1333. [Google Scholar] [CrossRef]
- Li, H.; Zhou, G.-Y.; Liu, J.-A.; Xu, J. Population genetic analyses of the fungal pathogen Colletotrichum fructicola on Tea-oil trees in China. PLoS ONE 2016, 11, e0156841. [Google Scholar] [CrossRef] [PubMed]
- Rampersad, S.N. Genetic structure of Colletotrichum Gloeosporioides sensu lato isolates infecting Papaya inferred by multilocus ISSR markers. Phytopathology 2013, 103, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Diao, Y.; Zhang, C.; Xu, J.; Lin, D.; Liu, L.; Mtung’e, O.G.; Liu, X. Genetic differentiation and recombination among geographic populations of the fungal pathogen Colletotrichum truncatum from Chili Peppers in China. Evol. Appl. 2015, 8, 108–118. [Google Scholar] [CrossRef]
- Liu, B.; Liang, X.; Kong, J.; Jiao, C.; Li, H.; Gai, Y. Population structure and genetic diversity of Colletotrichum gloeosporioides on Citrus in China. Agronomy 2023, 13, 184. [Google Scholar] [CrossRef]
- Weeds, P.; Chakraborty, S.; Fernandes, C.D.; d’A. Charchar, M.; Ramesh, C.; Kexian, Y.; Kelemu, S. Genetic diversity in Colletotrichum gloeosporioides from Stylosanthes spp. at centers of origin and utilization. Phytopathology 2003, 93, 176–185. [Google Scholar] [CrossRef]
- Dentika, P.; Ozier-Lafontaine, H.; Penet, L. Colletotrichum gloeosporioides: Apparent continuous spore rain may hide local disparities and iterative disease dynamics. Trop. Agric. 2022, 99, 333–340. [Google Scholar]
- Golan, J.J.; Pringle, A. Long-distancedispersal of fungi. Microbiol. Spectr. 2017, 5, 5-4. [Google Scholar] [CrossRef]
- Rampersad, S.N.; Perez-Brito, D.; Torres-Calzada, C.; Tapia-Tussell, R.; Carrington, C.V. Genetic structure and demographic history of Colletotrichum gloeosporioides sensu lato and C. tuncatum isolates from Trinidad and Mexico. BMC Evol. Biol. 2013, 13, 130. [Google Scholar] [CrossRef]
- Ntahimpera, N.; Wilson, L.L.; Ellis, M.A.; Madden, L.V. Comparison of rain effects on splash dispersal of three Colletotrichum species infecting Strawberry. Phytopathology 1999, 89, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Penet, L.; Guyader, S.; Pétro, D.; Salles, M.; Bussière, F. Direct splash dispersal prevails over indirect and subsequent spread during rains in Colletotrichum gloeosporioides infecting Yams. PLoS ONE 2014, 9, e115757. [Google Scholar] [CrossRef] [PubMed]
- Penet, L.; Cornet, D.; Blazy, J.-M.; Alleyne, A.; Barthe, E.; Bussière, F.; Guyader, S.; Pavis, C.; Pétro, D. Varietal Dynamics and yam agro-diversity demonstrate complex trajectories intersecting farmers’ strategies, networks, and disease experience. Front. Plant Sci. 2016, 7, 1962. [Google Scholar] [CrossRef]
- Penet, L.; Barthe, E.; Alleyne, A.; Blazy, J.M. Disease risk perception and diversity of management strategies by farmers: The case of anthracnose caused by Colletotrichum gloeosporioides on Water Yams (Dioscorea alata) in Guadeloupe. Crop Prot. 2016, 88, 7–17. [Google Scholar] [CrossRef]
- Dentika, P.; Ozier-Lafontaine, H.; Penet, L. Dynamics of pathogenic fungi in field hedges: Vegetation cover is differentially impacted by weather. Microorganisms 2022, 10, 400. [Google Scholar] [CrossRef]
- Penet, L.; Briand, S.; Pétro, D.; Bussière, F.; Guyader, S. Data on microsatellite markers in Colletotrichum gloeosporioides s.l., polymorphism levels and diversity range. Data Brief 2017, 12, 644–648. [Google Scholar] [CrossRef]
- Frézal, L.; Jacqua, G.; Neema, C. Adaptation of a fungal pathogen to host quantitative resistance. Front. Plant Sci. 2018, 9, 1554. [Google Scholar] [CrossRef]
- Liu, B.; Louws, F.J.; Sutton, T.B.; Correll, J.C. A rapid qualitative molecular method for the identification of Colletotrichum acutatum and C. gloeosporioides. Eur. J. Plant Pathol. 2012, 132, 593–607. [Google Scholar] [CrossRef]
- Penet, L.; Collin, C.L. Current use of local folk medicine (Rimèd Razyé) in the French Lesser Antilles: Diversity patterns and links between food and health. Econ. Bot. 2022, 76, 18. [Google Scholar] [CrossRef]
- Goudet, J. Hierfstat, a package for R to compute and test hierarchical F-Statistics. Mol. Ecol. Notes 2005, 5, 184–186. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Wright, S. The interpretation of population structure by F-Statistics with special regard to systems of mating. Evolution 1965, 19, 395–420. [Google Scholar] [CrossRef]
- McDermott, J.M.; McDonald, B.A. Gene flow in plant pathosystems. Annu. Rev. Phytopathol. 1993, 31, 353–373. [Google Scholar] [CrossRef]
- Portier, P.; Taghouti, G.; Bertrand, P.-E.; Briand, M.; Dutrieux, C.; Lathus, A.; Fischer-Le Saux, M. Analysis of the diversity of Xylophilus ampelinus strains held in CIRM-CFBP reveals a strongly homogenous species. Microorganisms 2022, 10, 1531. [Google Scholar] [CrossRef]
- Song, J.Y.; Yun, Y.H.; Kim, G.-D.; Kim, S.H.; Lee, S.-J.; Kim, J.F. Genome analysis of Erwinia amylovora strains responsible for a fire blight outbreak in Korea. Plant Dis. 2021, 105, 1143–1152. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Q.; Wei, W.; Davis, R.E.; Tan, Y.; Lee, M.; Zhu, D.; Wei, H.; Zhao, Y. Multilocus genotyping identifies a highly homogeneous phytoplasma lineage associated with Sweet Cherry Virescence Disease in China and its carriage by an erythroneurine leafhopper. Crop Prot. 2018, 106, 13–22. [Google Scholar] [CrossRef]
- Mundt, C.C. Pyramiding for resistance durability: Theory and practice. Phytopathology 2018, 108, 792–802. [Google Scholar] [CrossRef]
- van Dijk, L.J.; Ehrlén, J.; Tack, A.J. The relationship between pathogen life-history traits and metapopulation dynamics. New Phytol. 2022, 233, 2585–2598. [Google Scholar] [CrossRef]
- Newlands, N.K. Model-based forecasting of agricultural crop disease risk at the regional scale, integrating airborne inoculum, environmental, and satellite-based monitoring data. Front. Environ. Sci. 2018, 6, 63. [Google Scholar] [CrossRef]
- Dupont, S.; Irvine, M.R.; Motisi, N.; Allinne, C.; Avelino, J.; Beilhe, L.B. Wind-flow dynamics and spore-like particle dispersal over agroforestry systems: Impact of the tree density distribution. Agric. For. Meteorol. 2022, 327, 109214. [Google Scholar] [CrossRef]
- Xu-Yang, Y.; Dessert, C.; Losno, R. Atmospheric deposition over the Caribbean region: Sea salt and Saharan dust are sources of essential elements on the island of Guadeloupe. J. Geophys. Res. Atmos. 2022, 127, e2022JD037175. [Google Scholar] [CrossRef]
- Sakhamuri, S.; Cummings, S. Increasing Trans-Atlantic intrusion of Sahara dust: A cause of concern? Lancet Planet. Health 2019, 3, e242–e243. [Google Scholar] [CrossRef] [PubMed]
- Bakayoko, L.; Pokou, D.N.; Kouassi, A.B.; Agre, P.A.; Kouakou, A.M.; Dibi, K.E.B.; Nzue, B.; Mondo, J.M.; Adebola, P.; Akintayo, O.T.; et al. Diversity of Water Yam (Dioscorea alata L.) accessions from Côte d’Ivoire based on SNP markers and agronomic traits. Plants 2021, 10, 2562. [Google Scholar] [CrossRef] [PubMed]
- Cisar, C.R.; Spiegel, F.W.; TeBeest, D.O.; Trout, C. Evidence for mating between isolates of Colletotrichum gloeosporioides with different host specificities. Curr. Genet. 1994, 25, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Ciampi-Guillardi, M.; Baldauf, C.; Souza, A.P.; Silva-Junior, G.J.; Amorim, L. Recent introduction and recombination in Colletotrichum acutatum populations associated with Citrus Postbloom Fruit Drop epidemics in São Paulo, Brazil. Phytopathology 2014, 104, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Weir, B.S.; Johnston, P.R.; Damm, U. The Colletotrichum gloeosporioides species complex. Stud. Mycol. 2012, 73, 115–180. [Google Scholar] [CrossRef]
Cg150 (42 Alleles Total) | Cg68 (50 Alleles Total) | Cg71 (54 Alleles Total) | Cg92 (76 Alleles Total) | Fst | 95% CI | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | D | R | A | D | R | A | D | R | A | D | R | |||
Barbados | 33 | 17 | 2.76 | 41 | 26 | 2.77 | 35 | 24 | 2.80 | 61 | 37 | 2.79 | 0.0016 NS | −0.0425–0.0232 |
Guadeloupe | 22 | 8 | 2.66 | 20 | 8 | 2.61 | 12 | 4 | 2.20 | 37 | 13 | 2.81 | 0.1606 <0.001 | 0.1010–0.2424 |
Basse Terre | 8 | 0 | 2.69 | 6 | 0 | 2.54 | 2 | 0 | 1.25 | 10 | 0 | 2.78 | 0.2381 <0.001 | 0.0385–0.5275 |
Grande Terre | 20 | 5 | 2.66 | 18 | 7 | 2.48 | 11 | 2 | 2.35 | 35 | 9 | 2.86 | 0.0832 NS | 0.0136–0.1387 |
Marie Galante | 9 | 0 | 2.62 | 5 | 0 | 2.8 | 3 | 1 | 3.00 | 10 | 1 | 2.79 | −0.0745 NS | −0.1022–0.0610 |
Martinique | 12 | 1 | 2.23 | 6 | 0 | 2.54 | 22 | 13 | 2.84 | 11 | 1 | 2.25 | 0.1357 <0.001 | 0.0174–0.2492 |
Hs | Ht | Ht′ | Dst | Dst′ | Fst | Fst′ | Dest | |
---|---|---|---|---|---|---|---|---|
cg150 | 0.852 | 0.922 | 0.940 | 0.070 | 0.088 | 0.076 | 0.093 | 0.593 |
cg68 | 0.866 | 0.925 | 0.940 | 0.059 | 0.074 | 0.064 | 0.079 | 0.550 |
cg71 | 0.752 | 0.850 | 0.874 | 0.098 | 0.122 | 0.115 | 0.140 | 0.493 |
cg92 | 0.889 | 0.937 | 0.950 | 0.048 | 0.060 | 0.052 | 0.064 | 0.545 |
Overall | 0.840 | 0.909 | 0.926 | 0.069 | 0.086 | 0.076 | 0.093 | 0.537 |
Barbados | Guadeloupe | Martinique | |||
---|---|---|---|---|---|
Basse Terre | Grande Terre | Marie Galante | |||
Barbados | 332.8 0.0015 | 3.38 | 7.05 | 33.98 | 5.54 |
Basse Terre | 0.129 | 1.60 0.238 | 9.15 | 5.39 | 1.71 |
Grande Terre | 0.066 | 0.052 | 5.50 0.083 | 57.97 | 2.70 |
Marie Galante | 0.0145 | 0.085 | −0.0087 | 67.17 −0.0075 | 4.41 |
Martinique | 0.083 | 0.226 | 0.156 | 0.102 | 3.18 0.136 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dentika, P.; Blazy, J.-M.; Alleyne, A.; Petro, D.; Eversley, A.; Penet, L. High Genetic Diversity and Structure of Colletotrichum gloeosporioides s.l. in the Archipelago of Lesser Antilles. J. Fungi 2023, 9, 619. https://doi.org/10.3390/jof9060619
Dentika P, Blazy J-M, Alleyne A, Petro D, Eversley A, Penet L. High Genetic Diversity and Structure of Colletotrichum gloeosporioides s.l. in the Archipelago of Lesser Antilles. Journal of Fungi. 2023; 9(6):619. https://doi.org/10.3390/jof9060619
Chicago/Turabian StyleDentika, Pauline, Jean-Marc Blazy, Angela Alleyne, Dalila Petro, Anderson Eversley, and Laurent Penet. 2023. "High Genetic Diversity and Structure of Colletotrichum gloeosporioides s.l. in the Archipelago of Lesser Antilles" Journal of Fungi 9, no. 6: 619. https://doi.org/10.3390/jof9060619
APA StyleDentika, P., Blazy, J. -M., Alleyne, A., Petro, D., Eversley, A., & Penet, L. (2023). High Genetic Diversity and Structure of Colletotrichum gloeosporioides s.l. in the Archipelago of Lesser Antilles. Journal of Fungi, 9(6), 619. https://doi.org/10.3390/jof9060619